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A new method for the calculation of anomaly coefficients is presented. For su(n) some explicit 
and general expressions are given for these. In particular, certain congruences are discovered 
and investigated among the leading anomaly coefficients. As an application of these 
congruences, the absence of global six-dimensional gauge anomalies is shown. 

I. INTRODUCTION 

A recurring problem in mathematical physics is the cal
culation of "anomaly coefficients." At its simplest we have a 
Weyl-invariant polynomial and we wish to express this in 
terms of a given basis of Weyl-invariant polynomials: the 
coefficients of this expansion are the anomaly coefficients. 

The name arises as follows. Suppose we have a gauge 
theory with fermionic content in a representation A of the 
gauge group G. That is, we have a vector bundle' with fiber 
V upon which G acts via the representation A. By a now 
standard analysis, I the anomalies of this theory are associat
ed with a secondary invariant of the principal G bundle P 
associated with G. Because the de Rham ring of P may be 
expressed in terms of G-invariant polynomials (whose coef
ficients are forms on the base space) these secondary invar
iants are also expressible in terms of G-invariant polynomials 
upon the use of the Chern-Weil homomorphism. The appro
priate polynomial for a 2n-dimensional theory is determined 
via the descent equations (or transgression) from 
Tr A F" + I, where the trace is over the representation A of G 
and Fis a curvature form on P. [This polynomial may also be 
viewed as resulting from the restriction ofthe GL( V) theory 
to G.] The work of Borel-Hirzebruch2 shows that we can 
reduce our considerations to a maximal totus H of G and we 
then wish to express the Weyl-invariant polynomial 
Tr A F" + , in terms of some given basis. When this basis cor
responds to certain homotopy generators we actually get an 
expansion with integral coefficients, the anomaly coeffi
cients. (The choice of basis will be elaborated upon in due 
course.) 

In this paper we are going to present an alternate tech
nique for calculating these anomaly coefficients, which, 
though in principle are known, are often tedious to obtain. 
The merit of this approach is that with a tractable method of 
computation we are able to discover a variety of congruences 
among these coefficients. One application we shall put to 
these congruences is to show the absence of six-dimensional 
global gauge anomalies. 

An outline of the paper is as follows. In Sec. II we will 
describe our method of calculating these anomaly coeffi
cients. After a preliminary section establishing notation and 
some elementary results we then describe both our and other 
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approaches to these calculations. Although the techniques 
we describe in Sec. II are general for any group G we will 
focus our attention in Sec. III to su(n). Here again we give 
some preliminary remarks on A,. _, and symmetric polyno
mials before finding a general expression (3.37) for the 
anomaly coefficients in Sec. III C. In Sec. III D we give a 
variety of closed forms for the leading anomaly coefficient 
(which is used most often in physics). We give some exam
ples in Sec. III E before proceeding to investigate the con
gruences of these leading anomaly coefficients in Sec. IV. 
After a discussion of su (2) in Sec. IV B some general results 
are presented for su(n) in Sec. IV C. A few other congru
ences are also noted in Sec. IV C that will be of use in Sec. V 
where we make some applications of these results. In partic
ular we show the absence of six-dimensional global gauge 
anomalies. Finally in Sec. VI a review and some discussion 
are presented. 

II. THE GENERAL CALCULATION OF ANOMALY 
COEFFICIENTS 

In this section we will describe our approach to calculat
ing anomaly coefficients, comparing this with other tech
niques. The specific implementation of this method and 
some examples will be given here; applications will be given 
in later sections. 

A. Preliminaries 

First we give preliminary notation and results. For this 
we will largely follow Ref. 3. Consider L a finite-dimensional 
semisimple Lie algebra with Cartan subalgebra H over a 
field of characteristic zero. Let ~ be a root system of L with 
~ C E, E a Euclidean space of dimension I = rank L. Let fl. 
be a base of ~ and fix an ordering of the simple roots 
{a" ... ,a/}. Denote by A the weight lattice, 

A = {AEE 12(A,a)/(a,a)EZ, ae~}. (2.1) 

Let AreA be the root lattice and W the Weyl group. A 
weight is called dominant (with respect to a fixed basis fl.) if 
all the integers 2(A,a)/(a,a) (aefl.) , are non-negative. It is 
called strongly dominant if these integers are positive. De
note by A + the set of dominant weights. We let A1, ... ,A./ be 
the dual basis of fl. relative to the inner product on E: 
2(AjOaj )/(aj ,aj ) = 8ij' TheA; are known as thefundamen
tal dominant weights (relative to fl.) and form a basis of A. 
We set 
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I 1 
8= LAi=- L a. 

i= I 2 a>O 

(2.2) 

Now let Vbe an L-module and denote by 1T( V) the set 
of all of its weights. We will be working with finite-dimen
sional modules V = V(A) of highest weight A; in this case we 
will also denote 1T( V) = 1T(A). Standard theory tells us that 
the map A ..... V(A) induces a one-to-one correspondence 
between A + and the isomorphism classes of finite-dimen
sional irreducible L-modules. Set 1T+ (A) = 1T(A) n A +, 

m" (Il) the multiplicity of the weight Il in V(A), and denote 
by Stab A the stabilizer of the weight A in W: 

Stab A = {CTEW, 0"(...1.) = A}. (2.3) 

The stabilizer of a dominant weight (and thus any 
weight) is easily determined. Let 

I 

...1.= L mjAjEA+ 
j=1 

and set J(A) = {jlmj = a}. Ifwe denote by rj the Weyl re
flection associated with aj' then Stab A is the group genera
ted by {rj , jE.!}. The groups Stab A are again Weyl groups 
and are known as parabolic subgroups.4 Clearly Stab A is the 
Weyl group associated with the Dynkin diagram obtained 
from that of L by deleting all nodes and incident edges not 
indexed by the set J. 

Finally we need some results on various algebras con
structed from Land H. Recall that for a finite-dimensional 
vector space V we may define the tensor algebra T( V) on V. 
The symmetric algebra S( V) is formed from the (two-sid
ed) ideal I in T( V) generated by all x ®y - Y ®x (X,YEV), 
S( V) = T( V)/l. The algebra P( V) of polynomials on Vis 
given by P( V) = S( V*). Further, when the vector space has 
the additional structure of a Lie algebra (not necessarily fin
ite-dimensional) we may construct the universal enveloping 
algebra U(L). Here U(L) = T(L)/J and the (two-sided) 
ideal J in T( V) is generated by all x ® Y - Y ® x - [x,y] 
(x,yeL). Note when L is Abelian the symmetric and univer
sal enveloping algebras coincide, thus S(H) = U(H). Let 1T 
be the canonical algebra homomorphism 1T: T(L) -+ U(L), 
and set G = Inn L, the inner automorphisms of L. Now G 
acts on T(L) fixing the ideals I and J and the algebra S(L). 
Thus the induced map fr: S(L) -+ U(L) is an isomorphism of 
G-modules. (Note fr is only a linear map, not an algebra 
homomorphism. See Ref. 3 for remarks on this point.) De
note by S(L) G and U(L) G the G-invariant subspaces of S(L) 
and U(L), respectively. These are in fact subalgebras. By 
our earlier comments we may identify S(L)G with P(L)G, 
the G-invariant polynomial functions on L using the nonde
generate Killing form. 

Similar comments apply to H and we may identify 
S(H) W with P(H) w, the Weyl-invariant polynomials. A 
theorem of Chevalley says that P(L) G and P(H) ware iso
morphic as algebras. In particular, because W is a finite re
flection group, this algebra is finitely generated with 1 gener
ators. Moreover, the degrees mj of these generators are 
known. Let deL) be the set of these generators, 
deL) = {mj> i = 1, ... ,/}. Further the center 3 of U(L) is 
precisely U(L)G and 3 contains the 1 independent Casimirs 
of L. The trace polynomials generate P(L) G. We will express 
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these as follows. Suppose ¢: L-+gl[ V(A)] is an irreducible 
representation of highest weightA. Then for xeL we have the 
trace polynomial Tr[ ¢ (x) k ]. Sometimes we shall simply ex
press this as Tr" x\ the notation readily including reducible 
representations as well. 

B. The anomaly coefficients and their properties 

We may now begin describing our approach to calculat
ing anomaly coefficients. To do this we shall begin by review
ing some other investigations pertaining to the weight struc
ture of representations of L. First we recall the notion ofthe 
2nth order index 12n (A) of a representation V(A), 

12n (A) = L (1l,Il)n. (2.4) 
/LE1T(") 

This was introduced5 to generalize the notion of Dynkin in
dex.6 Here 10 (...1.) = dim V(A) and 12 (A) is, up to a constant 
multiple, the Dynkin index. [Note that some authors write 
12n (A) as 12n (A).] The Dynkin index 12 (A) has both addi
tive and multiplicative properties as well as a simple scaling 
for subalgebras: 

12(...1. 1 E9A 2 ) = 12(...1. 1 ) + 12(...1. 2 ), (2.5) 

12(...1. 1 ®A2) =/2(...1. 1 )/0 (...1.2) +/0 (...1. 1 )/2(...1. 2), (2.6) 

12(A L,) =pI2(AL2). (2.7) 

In (2.5)-(2.7) wehaveasemisimplesubalgebraL2 CL I 

and the representation A L, branching to A L2; the constant p 
that appears depends only on the embedding. In general, the 
higher-order indices retain only the first of these properties. 
For example, for L semisimple we have 

14(...1. 1 ®A2) = 14(...1. 1)/0 (...1.2) + 10 (...1.2)/4(...1.2) 

+ [2(1 + 2)/1]12(...1. 1 )/2(...1. 2), (2.8) 

Despite the loss of these additional properties, such higher
order indices have been useful in the decomposition of tensor 
products and computing branching ratios. 7 The second- and 
fourth-order indices have been extensively tabulated.s 

With a desire to maintain the multiplicative as well as 
additive properties of the Dynkin index, Okub09

,10 modified 
the above definition of index. With the definition 

14(...1.) = 14(...1.) _ (I + 2)/0 (Aadj ) 12(...1.) 
1 [/o(Aad) +2] 10 (...1.) 

12 (Aadj ) 1
2

(...1.), 
6 10(Aadj ) 

(2.9) 

whereAadj denotes the adjoint representation of L, one finds9 

that (2.6) generalizes for 14(...1. 1 ®A2). These modified in
dices are then observed to correspond to the higher, even
ordered Casimirs of U(L). This is fairly evident when we 
express (2.4) in the form 

12n (A) = Tr(ij¢(hi)¢(hj»)n. (2.10) 

Here¢(h i ) is the representation under A of the element hi in 
the Cartan subalgebra of L andij is the inverse of the Killing 
form. Clearly Okubo is polarizing a given polynomial in 
U(L). In order to understand this polarization we must dis
cuss the basis of U(L) G he chooses. 

As we mentioned in the first part of this section a trace 
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polynomial such as (2.10) lies in the center 3 of U(L) and 3 
is finitely generated with 1 generators. It will be convenient in 
what ensues to introduce the polynomials/k (p.) in P(H) W 

defined for each p.EA and kEN by 

Ik (p.) = I L (up.)k. 
1 Stab p.1 oeW 

(2.11 ) 

Clearly Ik (p.) is a homogeneous polynomial with integer co
efficients of degree k in the A; and it suffices to take p.EA + , 

each weight being conjugate under W to one and only one 
dominant weight. (This polynomial is referred to as Sym p.k 
in Ref. 3.) 

An interesting question to ask is the following: For 
which p.EA + does {/dp.), kEd(L)} constitute a basis of 
P(H) W over Q? Let us call F(L) the set of such p. forming a 
basis in this fashion. The quartic trace identity for the anti
symmetric tensor representation (with Young tableaux 8 ) 
ofA7 , 

(2.12) 

shows, for example, that for some p. the Ik are not always 
independent. This identity is related to E7.9 Although we do 
not know the answer to our question in general, there are 
some widely used weights (which may coincide) that do 
yield a basis. One is the highest weight of the adjoint repre
sentation of L. For the classical groups the homotopy equiv
alence between the groups SO(n), U(n), Sp(n), and 
GL(n,F) with F = R, C, or H means that the weight asso
ciated with the vector (or fundamental) representation also 
yields a basis. When we are dealing with the algebra L rather 
than the group, this last representation need not be the repre
sentation of lowest Dynkin index whose highest weight 
yields a basis of P(H) w. For example, the (algebra) isomor
phisms AI-BI, B2 -C2, A3-D3 show, in fact, that the 
spinor representations ofso(3), so(5), and so(6) also pro
vide bases via their highest weights, these representations 
having both lower dimension and Dynkin index than the 
corresponding vector representations. 

In what follows we will denote by the generating repre
sentation of L that representation whose highest weight Agen 
is an element of F(L) and whose Dynkin index is lowest. 
This is obviously only defined up to an algebra automor
phism. Actually for so(7) there is ambiguity as both the 
spinor and vector representations have the same Dynkin in
dex. Here we take the spinor representation as 14 (A vector ) 
= - 2h(AsPinor) + products oflower/'s. Clearly, the gen

erating representation is just the vector representation of 
su(n) and sp(n) whileforso(n) it depends on thevalueofn. 

Returning to Okubo's work, he is essentially expressing 
polynomials in P(H) W in terms of the trace polynomials of 
the vector representation. Alternatively he is calculating the 
Chern characters of the given representation. The Chern 
characters have the splitting properties 

ch(a EB,8) = ch a EB ch,8, 

ch(a ®,8) = ch a 1\ ch,8, 

(2.13) 

(2.14 ) 

and these give rise to the additive and multiplicative proper
ties of the modified indices via 
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T ;F121T __ ~ Ik(A) T (iF)k rA e £.. rvector 
k-O k! 2r 

+ products of traces. (2.15) 

These modified indices Ik are also known as the leading 
anomaly coefficients; the coefficients of the products of the 
traces give the nonleading anomaly coefficients. For a given 
representation these anomaly coefficients or the Chern char
acters are in principle known: a simple method for their cal
culation is, however, another matter. We shall now com
ment upon the calculation of these coefficients proposing a 
new technique. 

First let us characterize these coefficients purely alge
braically. To do this, we define polynomials P1T (p.,x) for 
p.EA +, xEH and partitions of k, r = (pr' , ... ,p~r) by 

P1T (p.,x) = (Trl' XP,)1T, . .. (Trl' xr)1Tr. (2.16) 

Thus whenp.EF(L) we may write 

(2.17) 
1T 

Here the sum is over partitions of r of k withp;Ed(L). As 
defined by (2.15) we have Ik (A) = A(k) (A,A.vector). We will 
be interested in calculating A1T (A,A.gen ), which are integers 
by our choice of Agen. Let us setA1T (A) = A1T (A,A.gen). 

The calculation of anomaly coefficients is then the de
termination (in a given basis) of the coordinatesA

1T 
(A) for a 

given polynomial inP(H)w. Several approaches7.9-11 deter
mine these from the character formula 

chv(.I.) = L mA (p.)e(p.) (2.18 ) 
JLE1T(A) 

1 
= ~ m A (p.) L e(up.) 

JLE~A) 1 Stab p.1 oeW 
(2.19) 

l:oeW sn(u)e(u[A + 15]) 
(2.20) = 

l:oeW sn(u)e(ul5) 

where the e(p.), p.EA, are the basis elements of Z(A), the 
group ring of A over Z. These methods are essentially based 
on the form (2.20) and its expansions. 

Rather than working with the characters directly to 
evaluate the A1T (A) we will break the problem up into a cal
culation for each of the weight spaces appearing in (2.17). 
First let us view the e (p.) appearing in (2.19) as a formal 
exponential. 

Thus 

00 1 
chv(A)=L - ~ mA(p.)lk(P.). (2.21) 

k-O k! Ae~A) 
Ifwe expresslk (p.) in terms of a basis of P(H) W analogously 
to (2.16) and (2.17) forsomeVEF(L) as 

Ik (p.) = L a1T (p.,v) II U;'i (v) rio (2.22) 
1T i 

Then we have 

A 1T (A,A.gen) = ~ mA(p.)a1T (p.,A.gen)· 
JLE1T (A) 

(2.23) 

Again for simplicity set a1T (p.,A.gen ) = a1T (p.). 
Our approach to calculating anomaly coefficients re-
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duces then to being able to express the Weyl-invariant poly
nomialfk (J.l) in a given basis of PCB) w. One might expect 
this problem was studied under classical invariant theory 
last century, though I am unaware of where such algorithms 
might appear. In the following section we will show how to 
evaluate afT (J.l) for su(n) giving a general expression for an 
arbitrary leading anomaly coefficient and explicit formulas 
up to the sixth-order coefficients. This considerably extends 
the formulas in the literature. We note this method depends 
on knowing the multiplicities mA. (J.l). These mUltiplicities 
may be evaluated by several known recursions and have been 
extensively tabulated. 12 The method is recursive and easily 
implemented. In a later section we will, in fact, observe some 
congruences the afT's evidence and utilize these to discuss 
global anomalies. 

We end this section by mentioning two other ap
proaches to calculating the leading anomaly coefficients. 
Both are based on expressing a given representation in terms 
of tensor products of representations whose leading anomaly 
coefficient is known and then using the multiplicative prop
erties of the I k • This involves knowing the branching rules of 
tensor products. Schellekens and Warner13 work directly 
with the Chern characters utilizing (2.15). Most other auth
ors do this for a fixed I k' A disadvantage of this approach is 
that, aside from the often nontrivial question of evaluating 
the branching rules for large representations, frequently sev
eral unknown representations will appear in calculating any 
tensor product and so various linear combinations of tensor 
products must be found to isolate anyone unknown index. 
Also. the nonleading anomalies are not given in this ap
proach. 

III. CALCULATING SU(n) ANOMALY COEFFICIENTS 

We shall now obtain the anomaly coefficients afT (J.l) 
[(2.23)] for an arbitrary representation of su(n) subject to 
11T1 <,n. This restriction will be discussed in due course. First 
we will recall some elementary properties ofsu(n) and dis
cuss the basis of symmetric functions we will be using. After 
a brief interlude where we fix notation and establish some 
elementary results pertaining to symmetric polynomials we 
then go on to give expressions for afT (J.l). These formulas 
allow us to give some simple expressions for the leading 
anomaly coefficient. A short section of examples and use of 
the accompanying tables is included. 

A. SU(n) 

The Weyl group of An_I -su(n) is Sn. the symmetric 
group on n symbols. Following our discussion in Sec. II A 
we are interested in symmetric polynomials. We shall now 
establish the basis we will later be expanding in. Let us de
note the inverse to the (n - 1) X (n - 1) Cartan matrix 
A = (aij) by G = (gkj)' where 

_ {( l!n)(n - j)k. k<,j. 
gkj- (l!n)(n-k)j. j<,k. (3.1) 

The matrix G gives us a metric on weight space. If {xl ..... x n } 

form an orthonormal basis of R n we may view the weight 
space as the subspace of R n orthogonal to 
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1/ = XI + ". + x n • Set ij = 1//n. The Weyl group acts natu
rally on the basis of R n: 

wj(xj ) = x:~1> i=j-l. (3.2) 
{

X i=j, 

xi' i=/=j,j - 1. 

In terms of this basis we have <I> = {a j : 

a j = Xj - x j+ I' 1 <,i<,n -l} and the elementary weights 
are 

Ak = ~ [ ~ (n - k)jaj + ). (n - j)kaj ] (3.3) 
n J<k tiJ 

=XI+"·+xk-kij. (3.4) 

We may associate with any dominant weight J.l a Young 
diagram as follows. Suppose 

n-I 

J.l = L njAj 

where 

j=1 

n-I 
= L fjxj - c(J.l)ij, 

j=1 

n-I 

c(J.l) = L jnj . 
j= I 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

ThenJ.l is associated with the Young diagram with lj the 
length of the ith row. When there is no confusion we will also 
denote the irreducible representation ofwhichJ.l is the high
est weight by the same Young diagram. The vector (or gen
erating) representation is then given by D. 

Remark: In the notation of Ref. 8 we have J.l given by 
(nn' .... n l ) while in Ref. 12 it is given by 

(]J 
With this notation we find 

fk(D) =A~ + (A2-A I )k 

+ ... + (An -An_I )k+ (-An)k (3.9) 

=X~ + (X2-ij)k+ ... + (Xn _ij)k. (3.10) 

Because we are dealing with su(n), that is, the ij = 0 sub
space ofR n, we may simply set ij = 0 in (3.10) and (3.11). 
[The u(n) trace or ij=/=O component may be dealt with by 
suitable modifications of the ensuing discussion.] Thus for 
our purposes we may identify fk (D) with the symmetric 
power function S k : 

n 

fdD) =Sk = L x7· (3.11 ) 
;=1 

For an arbitrary J.l our technique for calculating the 
anomaly coefficients for su (n) reduces then to expressing 
the symmetric polynomialfk (J.l) in terms of the symmetric 
functions of powers. This we shall do after some general 
comments on symmetric functions. 
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B. Symmetric functions 

We shall now fix some notation and establish a few sim
ple results associated with symmetric polynomials. (For 
further results see Ref. 14.) Let 1T = (YI'Y2""'Yq) 

= (pf', ... ,p;'), where h;;'Y2>'" >Yq > 0, PI >P2 > ... 
> P r > 0, be a partition of 11T1, the weight of 1T, with 

11T1 = YI + ... + Yq = 1TI PI + ... + 1Tr Pr' 

Here the length ofthe partition is l( 1T) = q. Set 

(3.12) 

g(1T) = 1T1!1T2!" ·1Tr !. (3.13) 

Consider now the ring of polynomials with rational inte
gral coefficients Z [xl, ... ,xn] in n independent variables 
XW .. ,xn' The symmetric group Sn acts naturally on this ring 
by permuting the variables and we have the symmetric poly
nomials forming the subring invariant under this action, 

In = Z [xl"",Xn ]8 •. (3.14) 

This is a graded ring, 

In = ED I:, (3.15) 
q 

where In consists of the homogeneous symmetric polynomi
als of degree q together with the zero polynomial. 

For each Y = (YI'Y2, ... ,Yn )ENn let us denote by xY the 
monomial 

(3.16 ) 

Then for any partition 1T of length l( 1T).;;;,n we define the 
symmetric monomial 

m (x X) - ~ x Y
I '" ·X

Y
k

k
• fT I"'" n - "-

(3.17) 
distinct 

permutations 

Here the summation is over distinct permutations of II;xf'. 
When we do not require those permutations to be distinct we 
have the augmented monomial symmetric functions 15 

n (x ,x) - ~ x YI '" ·XYkk. fT I"" n - "- (3.18 ) 
perms 

Then 

(3.19) 

We have that the set {mfT , 11T1 = k} form a basis of I~. 
There are several bases of In commonly employed. These 
include (a) the elementary symmetric polynomials er 

= m(l')' which are algebraically independent over Z and 
have the generating function 

E(t) = L ert r = II (1 +x;t); (3.20) 
r>O ;>1 

(b) the complete symmetric, Wronski, or aleph functions 

hr = L mfT' 
IfTl = r 

(3.21 ) 

which are again algebraically independent over Z and have 
the generating function 

H(t) = L hrtr= II (1_X;t)-I; 
r>O ;>1 

(3.22) 

and (c) the symmetric power polynomials Sr = m(rP which 
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are algebraically independent over Q and have the generat
ing function 

d 
S(t) = L sr+ ,tr=-lnH(t). 

r>O dt 
(3.23) 

These functions are defined to be zero for r < O. For our par
tition 1T = (YI""'Yq), we define 

The transition functions between the efT' hfT' and Schur 
functions (all of which are Z-bases of the symmetric func
tions) are described in Ref. 14. For partitions of small weight 
these are tabulated in Ref. 15 along with the transition func
tions between the augmented symmetric monomials and the 
symmetric powers SfT' We note that the assumption of 
q = l( 1T).;;;,n enters when we use the above functions as bases 
for I:. When this does not hold we have further relations 
between the monomials to be accounted for. This is the ori
gin of the restriction l( 1T).;;;,n that will appear when we apply 
our results to su (n ) . 

We will now establish a simple lemma pertaining to the 
symmetric monomials. First we introduce the symmetriza
tion operator; as follows. Letf(x I' .... ,xn ) be any function of 
X"''''Xn and set 

;f(x,,···,xn) = L f(xq(l) ,···,x(7(n»· 
OES. 

Thus, iff(x" ... ,xn) is a symmetric function, we have 

and, in particular, 

IStabmfTl = (n -q)!g(1T), 

IStab nfT I = (n - q)! . 

Then we have the following lemma. 
Lemma: 

;mfT (llxl,· .. ,lnxn) = (n -l( 1T) )!mfT (l)n fT (x) 

(3.24) 

(3.26) 

(3.27) 

= (n -l(1T»)!n fT (l)m fT (x), (3.28) 

;nfT (llxl,· .. ,lnXn) = (n - l( 1T) )!nfT (l)n fT (x). (3.29) 

Proof This follows if upon writing 

1 
mfT (x) = ;(xj" .. x;-) 

I Stab xj'" . x;-I 

then 

1 ------;(xp·· ·x;-), 
(n -l(1T»)!g(1T) 

X ~ lY' ., ·lY. x y , •• ·xY• 
"- (7(1) (7(n) <1(1) (7(n) 

- ~ lY' .. ·lY. m (x) 
- "- (7(1) (7(n) fT 
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c. An_1 anomaly coefficients 

We will now bring the results of Secs. III A and III B 
together to derive the anomaly coefficients ofsu(n). Let 

n 

Jl = L I;x; (3.30) 
;=\ 

be a weight. Thus In = ° for su(n) while In can be nonzero 
for u(n). Viewing this as a polynomial in the x; we have 

k k! 
Jl = ) m 1T (/\x\, ... ,lnxn )· 

11T1= k y\! .. 'Yk! 

Now we may write 

Ik (Jl) = I Sta~ JlI 1;. (uJl) k 

= (IOrbit Jll/n!)~(Jlk), 

(3.31) 

(3.32) 

(3.33) 

where ~ is the symmetrization operator introduced in Sec. 
III B. Thus (3.28) and (3.31) together yield 

Ik (Jl) = I Orbit JlI ) k !(n - I( 1T) )! m
1T 

(/)n
1T 

(x). 
n! 11Tl=k y\! .. 'Yk! 

(3.34) 

Let us express the augmented symmetric monomials n1T (x) 
in terms of the symmetric powers S1T' via 

n1T (x) = L n11"1l' srr" (3.35) 
1T' 

where only now do we assume 11T1 = 11T'1 <no We have shown 
that if (2.23) is given as 

Ik (Jl) = L arr' (Jl )S1T" (3.36) 
11T'1 = k 

then the coefficient is 

() IOrbitJlI" k!(n-/(1T»)! (I) 
arr' Jl = ~ n1T1T, m 1T . 

n! 11T1 =k y\! .. 'Yk! 
(3.37) 

Although (3.37) may look complicated, it is, in fact, 
very easy to compute low-order coefficients because the 
summation over different partitions is not that large. Thus 

h(Jl) = [IOrbitJll/n(n -l)]{[(n -1)m(2) (l) 

- 2m (\2) (l) ]S2 + 2m(\2) (/)si}, (3.38) 

13(Jl) = [IOrbit Jll/n(n - l)(n - 2)] 

X{[ (n - l)(n - 2)m(3) (/) 

- 3(n - 2)m(2,\) (/) + 12m(\3) (/) ]S3 

+ [3(n - 2)m(2.\) (/) - 18m(\3) (/)]S2S\ 

+ 6m(\3) (/)st}. (3.39) 

Let us define a reduced coefficient a1T (Jl) by 

a1T (Jl) = [IOrbitJll!n(n -l)"'(n -11TI)]a1T (Jl). 
(3.40) 

Further, if we drop the explicit I dependence of the symmet
ric monomials we have 
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a(4) = (n - l)(n - 2)(n - 3)m(4) 

- 4(n - 2) (n - 3)m(3,\) 

- 6(n - 2) (n - 3)m(22) 

+ 24(n - 3 )m(2,\2) - 144m(\4p 

a(3,\) = 4(n - 2)(n - 3)m(3,\) 

- 24(n - 3)m(2,\2) + 192m(\4p 

a(22) = 6(n - 2) (n - 3)m(22) 

- 12(n - 3)m(2,1') + 72m(\4p 

a(2,\2) = 12(n - 3)m(2,\2) - 144m (\4) , 

a(\4) = 24m(\4), 

a(5) = (n - l)(n - 2)(n - 3)(n - 4)m(5) 

(3.41a) 

(3.41b) 

(3.41c) 

( 3.41d) 

(3.41e) 

- 5(n - 2)(n - 3)(n - 4) [m(4,\) + 2m(3,2)] 

+ 20(n - 3)(n - 4) [2m(3,\2) + 3m(22,\)] 

- 360(n -4)m(2,\3) +4!XS!m(\>p (3.42) 

a(6) = (n - l)(n - 2)(n - 3)(n - 4)(n - 5)m(6) 

- (n - 2)(n - 3)(n - 4)(n - 5) 

x [6m(5,\) + 15m(4,2) + 20m(32) ] 

+ 60(n - 3)(n - 4)(n - 5) 

x [m(4,\2) + 2m(3,2,\) + 3m(23) ] 

- 360(n - 4)(n - 5) [2m(3,\3) + 3m(22,\2)] 

+ 8640(n - 5 )m(2,\4) - 5! X 6!m(\o). (3.43) 

Several comments are now in order. 
( 1) When we are dealing with su (n) rather than u (n ) , 

s\ = ° in all of the preceding equations; in this case, a1T = ° 
whenever In = 1. 

(2) Suppose the Young diagram we are calculating for 
has rrows, 

1= (/\, ... ,/,,0, ... ). 

Then m 1T (l) = ° whenever r</(1T). 
This last comment means that for a Young diagram of 

only a few rows many of the terms appearing in a1T (Jl) van
ish. The formula (3.37) and its specializations (3.38)
(3.43) are easy to implement on a computer. We have tabu
lated some of these results in Tables I-III. We will conclude 
this section discussing these results, giving some examples of 
their use, and comparing them with existing results. Before 
doing this, however, it is useful to specialize (3.37) to the 
case of the leading coefficients ark) (Jl), giving some simple 
expressions for these. 

D. Leading anomaly coefficients 

Our purpose now is to give some simple closed expres
sions for the coefficient ark) (Jl) in the general formula 
(3.37), this being the term relevant for the leading anomaly 
coefficient. Similar reasoning may be applied to the nonlead
ing coefficients though we do not pursue this here. 

First, let us define the symmetric polynomial F(k,j) by 
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TABLE I. The coefficients ak for sue 4) weights (d,). The orbit size (O.S.) TABLE III. The coefficients ak for su(6) weights (d,). The orbit size 
of this weight and the dimension (DIM) of the corresponding highest (O.S.) of this weight and the dimension (DIM) of the corresponding high-
weight representation and its congruence class are also given. est weight representation and its congruence class are also given. 

d3 d2 d. DIM O.S. Class a2 a3 a. ds d. d3 d2 d. DIM O.S. Class a2 a3 a4 as a6 

0 0 1 4 4 1 I 1 1 0 0 0 0 1 6 6 1 1 1 1 1 
0 1 0 6 6 2 2 0 -4 0 0 0 1 0 15 15 2 4 2 -2 -10 -26 
0 0 2 10 4 2 4 8 16 0 0 1 0 0 20 20 3 6 0 -6 0 66 
1 0 1 15 12 0 8 0 8 0 0 0 0 2 21 6 2 4 8 16 32 64 
0 0 3 20 4 -1 9 27 81 1 0 0 0 1 35 30 0 12 0 12 0 12 
0 1 1 20 12 -1 11 9 -13 0 0 0 0 3 56 6 3 9 27 81 243 729 
0 2 0 20 6 0 8 0 -64 0 0 0 1 1 70 30 3 21 27 21 -45 - 339 
0 0 4 35 4 0 16 64 256 0 1 0 0 1 84 60 -1 34 8 -2 80 -146 
1 0 2 36 12 1 19 27 67 0 0 0 0 0 105 15 -2 16 16 -32 - 320 -1664 
0 1 2 45 12 0 24 48 72 0 0 1 0 1 105 60 - 2 40 28 -8 -20 520 
0 3 0 50 6 2 18 0 - 324 1 0 0 0 2 120 30 1 29 41 101 185 389 
0 0 5 56 4 1 25 125 625 0 0 0 0 4 126 6 -2 16 64 256 1024 4096 
0 2 1 60 12 1 27 15 - 237 0 0 2 0 0 175 20 0 24 0 -96 0 4224 
1 1 1 64 24 2 40 0 - 80 0 1 0 1 0 189 90 0 72 0 - 108 0 - 828 
1 0 3 70 12 2 36 96 312 0 0 0 1 2 210 30 - 2 44 104 236 440 284 
0 0 6 84 4 2 36 216 1296 0 0 1 1 0 210 60 -1 58 26 -134 -430 898 
0 1 3 84 12 1 43 135 403 0 0 0 0 5 252 6 -1 25 125 625 3125 15625 
2 0 2 84 12 0 32 0 128 0 1 0 0 2 280 60 0 72 108 216 540 792 
0 4 0 105 6 0 32 0 -1024 1 0 0 0 3 315 30 2 56 148 476 1420 4316 
0 0 7 120 4 -1 49 343 2401 0 0 1 0 2 336 60 -1 82 152 286 560 1822 
1 0 4 120 12 -1 59 225 947 1 0 0 1 1 384 120 2 128 88 80 -440 - 2272 

F{k,j) = L 
kl (3.44) This follows from (3.37) when we realize that 

m1l" 
111'1 =k rll"'rjl 

n(k)1I' = ( - 1)/(11') - 1(1(11') - 1)1. (3.46) 1(11') =j 

We will return to properties of this polynomial in a moment; The evaluation of the leading anomaly coefficient re-
the following lemma shows its appearance. duces then to knowing how to evaluate F(k,j)[jl]. Let 

Lemma: jl = (/I, ... ,IN), i.e., the number of nonzero coordinates l; in 
k (3.30) isN. Viewed as a Young diagram,jl has Nrows. One 

a(k) (jl) = I Orbit jl I L {-I)j-1 
can readily show the following lemma. j=1 

(j - 1)1{n - j)l F{k .) [ ] 
Lemma: If m1l' is a symmetric monomial in N>k vari-

X I ,j jl. (3.45 ) ables, then 
n. 

TABLE II. The coefficients ak forsu(5) weights (d,). The orbit size (O.S.) 
F{k,j) =jf (_I)p(N-j+P) 

of this weight and the dimension (DIM) of the corresponding highest p=o P 

weight representation and its congruence class are also given. 

XL {XI + ... +Xj_p)k. (3.47) 
d. d3 d2 d. DIM O.S. Class a2 a3 a4 as 

0 0 0 1 5 5 1 1 1 1 1 Corollary: We have 
0 0 1 0 10 10 2 3 1 -3 -11 
0 0 0 2 15 5 2 4 8 16 32 k-I (N-k+ P -l) 
1 0 0 1 24 20 0 10 0 10 0 (XI + ... + XN)k = L {- 1)P 

0 0 0 3 35 5 -2 9 27 81 243 p=o P 
0 0 1 1 40 20 -2 16 18 4 -78 
0 1 0 1 45 30 -1 21 9 -9 69 XL {XI + ... +Xk_p)k. (3.48 ) 
0 0 2 0 50 10 -1 12 8 -48 - 352 
0 0 0 4 70 5 -1 16 64 256 1024 
1 0 0 2 70 20 1 24 34 84 154 Here (3.48) follows from (3.47) by summing overjfrom 1 
0 1 1 0 75 30 0 30 0 -90 0 
0 0 1 2 105 20 -1 34 76 154 196 to k. The second summations in (3.47) and (3.48) are un-
O 0 0 5 126 5 0 25 125 625 3125 derstood to be over all distinct permutations ofj - p or k - P 
0 1 0 2 126 30 0 45 75 135 375 variables. 
1 0 0 3 160 20 2 46 122 394 1178 Our second lemma means the evaluation of (3.45) is 0 0 2 1 175 20 0 40 50 - 140 - 1750 
0 0 3 0 175 10 1 27 27 - 243 - 2673 straightforward. First, homogeneity means that if 
1 0 1 1 175 60 2 78 36 -18 - 516 (ajl) = (a/l, ... ,aIN ), then 
2 0 0 2 200 20 0 40 0 160 0 
0 0 0 6 210 5 1 36 216 1296 7776 a(k) (ajl) = aka(k) (jl). (3.49) 
0 2 0 1 210 30 2 54 - 12 - 234 1692 

We have, for example, 
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(i) a(k) (/1) = 1 ~, 

(ii) a(k) (/1,/2) = XI"I, [n(/} + 1 ~) - (/1 + 12)k l, 
(iii) a(k) (/1'/2,/3) = XI"I"I, [n2(/ ~ + 1 ~ + 1 ~) 

( 3.50) 

(3.51) 

- n[ (/1 + 12)k + (/1 + 13)k + (/2 + 13)k + I~ + I~ + In + 2(/1 + 12 + 13)k l, (3.52) 

(iV) a(k) (11,12'/3,/4) = XI"I"I,,!. [n
3 (~/7) - n

2 (~ (II + 12)k + 3 L 17) 

+ n (2 L (II + 12 + 13)k + L (II + 12)k + 2 L 1 ~ ) - 6(11 + 12 + 13 + 14)k ] . (3.53 ) 

The coefficients X (1) in the above are defined as follows: 

1 Orbit (11'''''/, ) 1 = Xu" .... I,) IOrbit(r,r - 1, ... ,1) I· 

That is, X accounts for the reduction in the orbit of p.. when 
several of the Ii coincide. For example, XI,I =!, XI"I"I, 

= XI"I,,!, = !,XI"I"I, = i, and so on. Clearly ifp.. = (l1'''''/N) 

= (q1', ... ,q:'), then X(p..) = lIg(p..), where g(p..) was de
fined in (2.5). 

We now will calculate a(k) (1 N), where p.. = (IN) is the 
totally antisymmetric representation on N indices. Substitu
tion in (3.47) yields 

F(k,j)(l') =j!(;)S(k,j). (3.54) 

Here the S(k,j) are the ubiquitous Stirling numbers of the 
second kind, these being the number of ways of putting k 
distinct objects into j identical boxes allowing no box to be 
empty. 16 These numbers may be viewed as given by the de
fining relation 

xn = L S(n,/)(x)I' (3.55) 
1=0 

where (x) I is the falling factorial. In obtaining (3.54) we 
have used the identity 

1 j ( .) S(k,j) = it L (- 1)P(j - p)k ] . 
J. p=o P 

(3.56) 

[NotethatS(O,O) = 1 andS(k,O) = Ofork>O.] Alternate
ly (3.54) follows directly from (3.44) using the number of 
terms appearing in the symmetric monomial mrr ( 1 N), 

mrr(lN) = ( N) l(tT)! . (3.57) 
l(tT) tTl!" ·tT,! 

In this case 

(3.58a) 

I(rr) =j 

k! 
= L 

Irrl =k YI!" ·Yj!tTl !·· ·tT,! 
(3.58b) 

I(rr) =j 

Using (3.56) we may express a(k) (IN) in the following 
equivalent forms: 

(3.59a) 
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k-I ~-I-/) = L (- 1)1- II! S(k - 1,/) 
1=0 - 1-1 

(3.59b) 

= L (_I)N+I-I(N_/)k-l(n) 
1=0 1 

(3.59c) 

( n -k ) 
= s~o ( - 1)s \..N _ 1 _ s ak_I,s' (3.59d) 

In going from (3.59a) to (3.59b) we use the recurrence rela
tion of the binomial coefficients and 

S(k,j) = S(k - l,j - 1) + jS(k - l,j). (3.60) 

Using the identity (3.55) we may readily show the equiv
alence of (3.59c) and (3.59b). In (3.59d) the numbers 
a k _ I,s are the Eulerian numbers 17 given by 

an,l = ~ ( - 1)k-1 e) (n - k)!S(n,n - k). (3.61) 

Using this identity (3.59d) follows simply from (3.59b). 
[Be careful. The Eulerian numbers are variously tabulated 
as either a n,l or A (n,/), where A n,l = A (n,1 + I).] Expres
sion (3.59c) is that given by Okubo and Patera lO and 
(3.59c) and (3.59d) are given by Frampton and Kephart l8

; 

the others are new. 

E. Examples 

We have shown thus far that the anomaly coefficient 
may be written as 

Arr(A) = k mA. (p..)arr(p..), 
iU=rr (A.) 

(3.62) 

and we have given a formula (3.37) for arr(p..) valid for 
su(n) when ItTl<n. Further, we have given simple expres
sions for the coefficients a(k) (p..). We will now focus on the 
leading anomaly coefficient setA k (p..) =A(k) (p..) and ak (p..) 

=a(k) (p..). Because we will later be interested in congruence 
propertiesoftheak (p..) andA k (p..) we have tabulated ak (p..), 

k = 2, ... ,6, for the 20 lowest-dimensional representations of 
su ( 4 ), su (5), and su (6). These are given in Tables I, II, and 
III, respectively. [More extensive tables including also 
su(7) to sue 10) have been constructed but only mention of 
these will be made later. ] 

In calculating with (3.62) we mention the following 
useful result. Let Ii be the weight obtained from p.. by the 
Dynkin diagram automorphism; viewed as representations 
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Ii gives the complex conjugate representation to p. Then 

ak(Ji) = (- l)kak (p). (3.63) 

An analogous result obviously holds for Ak (p). 
We further observe that the weights summed over in 

(3.62) belong to the same congruence class. As the diagram 
automorphism sends the class m to - m for su(n) we only 
need to keep track of this when k is odd. We have included 
this class label on our tables. Also we give the orbit size 
(O.S.) of the highest weight for the representation under 
consideration, the dimension of this representation and the 
coordinates of the weight following Ref. 8. 

Let us compute some examples. 

(a) We calculateAk (If) for sueS). Herep = (0101). 

We note Ii is in the same class as O. Further m Ef (Eh = 3, 
m Ef ( If) = 1. Thus 

Az( If) = az(lf) + 3a2(0) = 21 + 3 = 24, 

A 3(W) = +a3(W) -3a3 (0) = +6, 

A4(Ef) = -9+3= -6, As(W) =66. 

These agree with the known results. 19 

(b) We will now calculate Ak (p) for various low-di
mensional representations using (3.S0)-( 3.S3). Further we 
will need 

(3.64) 

Ak(CO) =ak(CO) +ak( 8 ), (3.6S) 

Ak (ITIJ ) = ak (ITIJ) + ak ([jJ) + ak ( § ), (3.66) 

Ak(EE) =ak(EE) +ak(lf) +2ad ~), (3.67) 

AdEfD) = adEfD) + ak(EE) + 2ak(W) 

+3ak( ~), (3.68) 

Ak(§3) =ak(§3) +2ak(f) +Sak( ~ ). (3.69) 

Here the multiplicities are easily obtained directly or from 
Ref. 12. 

We have then 

ak(O) =Ak(O) = 1; 

ak ( 8 ) =A k ( 8) =n_2k
-

l
; 

(3.70) 

(3.71) 

ak(CO) = 2k, Adco) = n + 2k
-

l
; (3.72) 

ak ( § ) = Ak ( § ) = 1I2n2 - 1I2n( t + 2k) + 3k- l
; 

(3.73) 

(3.74) 

(3.7S) 
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ak(~)=Ak(~) 
= - 2Zk - Z + (n/6) [nZ - 3n(1 + 2k - l ) 

+2(1+3k+2k- I »); (3.76) 

ak(Er) = nZ [1 + 2k I] _ n[l + 2k+ 3k ] + 22k, 

Ak(Er) = 1I2n(n-2k- I )[n2-n-2k ]; (3.77) 

ak(EE) 2k(n - 2k 1), 

A k(EE)=(n/3) (n2 _[1+3k _3'2k I]); (3.78) 

a k (EfD) = n(1 + 3k
) - 22k, 

AdEfD) = 1I2n(n+2k- l )[n2 +n-2k ]; (3.79) 

ak ( OIIIJ ) = Sk, 

Ak(OIIIJ) = (n/24) [n3 +nz'2(2k+3) 

+ n( 11 + 3'2k+ 1 + 4'3k) + 6(1 + 2k) 

+4(3k+2k)] +Sk-l; (3.81) 

ak( f) = (n/6) [n2(3 + 2k) - n3(3 + 2k+ 1 + 3k) 

+ 6( t + 22k) + S (2k + 3k)] - sk, 

Ak (f) = (n/6) [n 3 - n2 (3 + 2k) + n(2 + 3k) 

+ 2k + 3k ] - Sk-I; (3.82) 

ak(EfITI) = n(t + 22k) - S\ 

Ak(EfITI) = (n/6) [n3 + n2 (3 + 2k) + n(2 + 3k) 

_2k_3k] _Sk-,; (3.83) 

ak (§3) = (nz/2) (1 + 2k+ I) 

- (n/2) (1 + 2k+ 1 + 22k + 2'3k) + Sk, 

Ak(EP) = (n/24) [Sn3 -n2 '2(3+2k) 

- n(4'3k _ 3'2k+ 1 + S) 

+ 6(1 + 22k) _ 4(2k + 3k)]; 

ak ( EtP) = n(3k + 2k) - Sk, 

Ak (EtP) = (n/24) [Sn3 + nZ '2(3 + 2k) 

- n(4'3k - 3·2k+ 1 + S) 
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ak ( EfD) = (nI2) [n2(2 + 3k) 

_ n(22k + 1+ 2k + 2 + 3k)] + 5k, 

Ad EfD ) = 1/4n2(n2 - 1 - 2k+ I) + 5k
-

l
• (3.86) 

Here we have written explicitly the leading anomaly co
efficients of su (n) for Young diagrams of length 5 or less. 
Several of these results may be found in Ref. 10; many, how
ever, are generalizations or new. 

IV. ANOMALOUS CONGRUENCES 

A.General 

We now have several explicit expressions for the anoma
ly coefficients, leading anomaly coefficients, and the asso
ciated polynomials ak (Il). The latter have been evaluated 
for su(4), su(5), and su(6) in Tables I, II, and III, respec
tively for several weights Il corresponding to low-dimension
al representations. These tables show several unexpected 
congruences. In particular, these tables [and the analogous 
ones for su (7) to su ( 10) not included here] show that, for 
all of the weights examined, 

a2=a4 mod 6, su(n) n:4-1O, 

a3 =a5 mod 12, su(n) n:5-1O, 

a2=a6 mod 30, su(n) n:6-1O, 

(4.1 ) 

(4.2) 

(4.3) 

a4=a6 mod 24, su(n) n:6-1O, (4.4) 

a2=a3 mod 2, su(n) n:4-1O, (4.5) 

together with mod 2 congruences between those pairs not 
included in (4.1)-(4.5). We will show in this section that 
these congruences hold generally and show how to construct 
further ones. 

These congruences also hold with ak replaced by A k • In 
fact, we have the following lemma. 

Lemma: A1T (Il) =A.".. (Il) mod q('t/IlEA +) ifand only if 
a1T (Il) = a.".. (Il) mod q('t/IlEA +). 

Proof: This is obvious upon setting 

A 1T (Il) = k m A (ll)a1T (Il). 
pE1T (A) 

(4.6) 

Here we have mA (A) = 1 and (4.6) may be viewed as a 
change of basis with mA (Il) being a lower triangular matrix 
with integer entries 1 on the diagonal. This may be inverted 
over Z so that 

(4.7) 

Now the lemma is obvious. 
We remark that there is a dependence of q on 1T and 1T'. 

Further, to establish these congruences it is often easier to 
work with the polynomials a1T (Il) than A1T (Il); this will be 
apparent from the su(2) example to be considered next. 

In this section we will establish the identities (4.1)
(4.5) and the analogous identities 
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a2=0(22) mod 12, su(2), su(3), 

a2=0(22) mod 6, G 2, 

a2=a4 mod 3, so(7). 
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(4.8) 

(4.9) 

(4.10) 

Note that in (4.8) and (4.9) there is no fourth-order 
Casimir in U(L) and we define the coefficient 0 for these 
groups by 

TrA X4 = 0(22) TrA X4. (4.11) 
gcn 

The fact there is no fourth-order Casimir means Tr A X4 
gcn 

= c(TrA X2)2, where c is a constant. We will be interested .en 
in the integers 0. 

We shall use several of these identities when we consider 
global anomalies in the next section. To establish these con
gruences it is helpful to consider su(2) first. This example 
will give us an upper bound on the q that appears in the 
leading anomaly congruences. After considering this exam
ple we will then establish the remaining congruences needed. 

B. The su(2) example 

Although this is the simplest possible example we will 
obtain some useful results by considering it in detail. Any 
ILEA + may be expressed as Il = nAJo neZ. The polynomial 
Ik(ll) [(2.22) or (3.32)] then becomes 

Ik(nA I ) = (nkI2)[1 + (-I)k]A~ =n"l"k(A I ), (4.12) 

which clearly vanishes unless k is even. In this case, we have 

Ik(nA I ) = nk [!z(AI) ]kl2, (4.13) 

and consequently [note that for su(2), O(2kl2) 

2k12 - 1 ] = a(2kl2) 

0(2k/2) (nA I ) = n\ (4.14) 

- 1 n • k 
A (2kl2) (nA I ) = - L (n - 2J) . (4.15) 

2 j=O 

Utilizing our lemma, if we can find q (depending on k and 
k ') such that all 

nk=nk' mod q, (4.16) 

then 0 (2k/2) (Il) =0(2k'/2) (Il) for all Il. As we remarked ear
lier, this is somewhat easier than dealing with the A(2k/2) 's 
directly, the first few of which are 

A(2) (nA I ) = in(n + l)(n + 2), (4.17) 
- 2 A(22) (nA I ) =3bn(n+ l)(n+2)[3n +6n-4], (4.18) 

A(23) (nA I ) = ;"n(n + l)(n + 2) 

X [3n4 + 12n3 
- 24n + 16]. ( 4.19) 

Given k and k 'eN (we assume k > k ') we are interested then 
in finding the largest integer q such that (4.16) is true for all 
integers. To find such a q first recall that the Euler-Fermat 
theorem tells us that given a prime p and a number a such 
that (a,p) = 1, then a<,6(pa) = 1 modpa, where tfJ(pa) 

= pa _ pa - I. The number tfJ(pa) need not be the least in-
teger8thata6 =1 modpawhen (a,p) = 1. This number 8 is 
called the order of a mod pa. Clearly 8ItfJ(pa). 

Now suppose q has the prime factorization 

q = pf'" 'p~l. If we consider n to be of the form n = mpI' 
where (m,PI) = 1, then from (4.16) we have that nk=nk' 

mod pf' and therefore k '>a for eachp;. On the other hand, if 
(n,PI) = 1 then we have nk- k' = 1 modpf' and so the expo
nent of n divides k - k '. Further, if r = 2, 4, pa, or 2p a (here 
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p is now an odd prime) then there exist ¢(¢(r») numbers 
whose exponent is l5(r).20 (Such a number is known as a 
primitive root.) Therefore, we can determine the odd prime 
content of q by findingpj and the maximum a j subject to 

(a) ¢(p~i) Ik - k', 

(b) k '>aj • 

( 4.20) 

( 4.21) 

For the two-prime content of q we have that if (2,a) = 1 
andp>3, then a2P-'=. 1 mod 2P,thatis, aIl2.,6(2

P
)=. 1 mod 2P• 

We then wish to solve for 

(a) ¢(2lZ) Ik - k' if a..;2, 

1!2¢(2a) Ik - k' if a>3, 

(b) k '>a. 

(4.22) 

(4.23) 

As examples of solving these equations we obtain 

n2=.n4 mod 12, n4 =.n6 mod 24, 

n2 =. n6 mod 60, 

nZ =. n8 mod 252, 

n4 =.n8 mod 240, 

n6 =.n8 mod 24. 

(4.24) 

Although not relevant for the su (2) example we note further 

n3 =. n5 mod 24, 

n=.n3 mod 6, 

nZ=.n3 mod 2, 

n=.n5 mod 30, 

n=.n4 mod 2, n=.nz mod 2, 

n3 =.n4 mod 2, nZ =.n5 mod 2. 

(4.25) 

At this stage we have shown how to obtain the congru
ences applicable to the su (2) theory. This analysis, however, 
is relevant to the leading anomalies of su(n). From Eq. 
(3.49) we see that a(k) (a) = a k, where this weight corre
sponds to a Young diagram with one row oflength a. Clearly 
then, if the congruence a(k) (Ii) =.a(k') (Ii) mod q holds for 
all weights Ii, it is true, in particular, for the restricted 
weights we have just mentioned and so q divides that number 
obtained from (4.20)-(4.23). Therefore, we have obtained 
an upper bound on the leading anomaly congruences. In the 
next subsection we will show how to reduce this upper bound 
to obtain (4.1)-(4.5). 

C.SU(n)congruences 
Our consideration of su (2) has given an upper bound on 

the congruences that appear for su(n). In turning now to 
higher su(n) we shall see how this number is reduced. Con
sider su( 4) for definiteness. We have, from (3.50)-(3.52), 

737 

a(k) (r) = r'<, 

_ {4(r'< + Sk) - (r + s)\ r:j:.s, 
a(k) (r,s) - _k _k. k-I _ 

4r- - r 2 ,r - s, 

a(k) (r,s,t) = 16(r'< + Sk + t k) 

(4.26) 

(4.27) 

-4([r+s]k+ [S+t]k+ [t+r]k 

+ r'< +Sk + t k) + 2(r'< + Sk + tk), 

a(k) (r,r,t) = a(k) (t,r,r) (4.28) 

= 8(2r'< + t k) - 2 (2kr'< + 2[r + t]k 

+2r'<+t k) + (2r+t)k, 

a(k) (r,r,r) = 8r'< + 3k- Ir'< - 2(2k + 1 )r'<. 
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As we have mentioned already, a necessary condition 
for a(k) (Ii) =.a(k') (Ii) mod q for all Ii is that mk=.mk' 
mod q for all m. From (4.27) and (4.28) we see further that 
we require 2k- I =.2k'-1 and 3k-I=.3k'-1 modq. These 
conditions modify the constraints (4.21) and (4.23) to give 

(b ') k' - l>a. (4.29) 

The effect of these constraints alters only the two-prime 
content of q in this example and we obtain (4.1), 

These constraints are clearly sufficient for the su( 4) 
case. In general, by considering a(k) ( 1 N) we require N k - 1 

=.N k
' -I mod q, and so for su(n) we get the constraint 

( 4.29) for those primes p < n. These additional constraints 
actually yield the congruences (4.1)-(4.5). These condi
tions can, in fact, be shown to be sufficient although this will 
be proved elsewhere. We note in passing that extra con
straints can only arise from those representations Ii that have 
rows of equal lengths appearing. We have then the following 
theorem. 

Theorem: Necessary and sufficient conditions to find 
the largest q such that a(k) (Ii) =.a(k') (Ii) mod qfor all rep
resentations Ii of su(n) and k,k'..;n are 

(i) mk=.mk' mod q, for all mEZ, 

(ii)pk-I=.pk'-I modq, for p<n. 

Remark: We have shown how to construct this number 
q in Sec. IV B. 

We conclude our considerations of su (n) congruences 
by proving the su (3) identity (4.8). Because our restriction 
of 11T1 < n is violated, we must use a different approach. We 
note that if A. = (m 1 ,m2 ) is a highest weight vector for su ( 3 ) 
then 

d(A.) =.dim V(A.) 

= !(m l + 1 )(mz + 1 )(m l + mz + 2), (4.30) 

c(A.) = ~(mf + m~ + m1mz + 3m l + 3m2), (4.31) 

lz(A.)/2 = -.p,(m l + l)(m2 + l)(m l + mz + 2) 

X (mf + m~ + m1mz + 3m l + 3m2)' (4.32) 

where c(A.) is the eigenvalue of the quadratic Casimir on 
V(A.) and 12(A.)/2 is the second Dynkin index. With 

TrA. x 2 = a2 (A.)Tr x2, (4.33) 

TrA. X4 = 0(22) (A.)Tr X4, (4.34) 

we see a2(A.) = 12(A.)/2 and may compute9 

0(22) (A.) =-?o[/2(A.)ld(A.)][412(A.) -d(A.)]. (4.35) 

In particular 0(22) (A.) - a(2) (A.) = 12a(m l + 1, 
m2 + 1)/6!, where 

a(a,b) = ab(a + b)(a2 + b 2 + ab - 3) 

X (a2 + b 2 + ab - 7). (4.36) 

Thus if 6!/a(a,b) for all integers a and b, then the con
gruence (4.8) holds. To see this holds we note 

a(a,b) = a(a + l,b - 1) 

+ (a - 2)(a - 1)a(a + l)(a + 2)(a + 3) 

- (b - 3)(b - 2)(b - 1)b(b + l)(b + 2). 
(4.37) 
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Here each of the additional terms appearing is the product of 
six consecutive integers and so divisible by 61. By induction 
the result follows as .:1(a,O) = O. We have then proved 

a(2) (A) =0(2') (A) mod 12 su(3). (4.38) 

D.Othercongruences 
We now tum to establishing the congruences (4.9) and 

(4.10) for G2 and SO(7). Although the general method we 
have outlined in Sec. II would work for these groups, we will 
not develop this here. Rather, we will work from some exist
ing results of Okub09 to show these congruences. 

First, consider G2. Let A = (m l ,m2 ) be a highest 
weight. It is then straightforward to show 

d(A) = dim V(A) 

= (1/5!)(m , + 1 )(m2 + 1) 

X (m l + m2 + 2)(2m, + m2 + 3) 

X (3m , + m 2 + 4)(3m , + 2m2 + 5), (4.39) 

C(A) = 2mi + 2m l m 2 + 6m , + .lfm2 + ~mL (4.40) 

12(A)/2 = [d(A)/21] 

X [3mi + m~ + 3m l m2 + 9m , + 5m2], 
(4.41 ) 

Here C(A) is the eigenvalue of the quadratic Casimir of V(A) 
and 12 (A) 1 r the second Dynkin index. Our conventions have 
d(O,I) = 7, d(1,O) = 14,12(0,1)12 = 2, and 12(1,0)12 = 8. 

Now let us write 

( 4.42) 

Tr,t X4 = 0(2') (A)Tr7 X4. (4.43) 

Clearly a2(A) = 12 (A )/4. Because Tr 7X4 = c(Tr7 X2)2 we 
have a(2') (A) = 0(2') (A)C; we choose to work with the in
teger 0(2') (A) in what follows. Utilizing the results of Ref. 9 
it is not difficult to show 

0(2') (A) = 1a(2) (A) (3mi + m~ + 3m,m2 

+ 9m , + 5m2 - 2] (4.44) 

and in particular 0(2') (A) - a(2) (A) = .:1(A)/(4X7!), 
where 

.:1(a - l,b - 1) 

= ab(a + b)(2a + b)(3a + b)(3a + 2b) 

X [3a2 + b 2 + 3ab - 7] [3a2 + b 2 + 3ab - 13]. 
(4.45) 

Therefore, to show 0(2') (A) =a(2) (A) mod 6 we must show 
3 X 8'1.:1 (a,b) for all integers a and b. We verify this by 
checking that the prime powers of 27.33. 5·7 = 3 X 8! divide 
.:1(a,b). For example, 

.:1 (a,b) = - 5ab 7 + 2ab 9 + 6a2b 8 + 6a3b 7 

( 4.46) 

Upon using the Euler-Fermat theorem [Le., a6= 1 mod 7 if 
(a,7) = 1] we then see .:1(a,b) =0 mod 7 for all integers a 
and b. The other divisors may be checked similarly, and thus 
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(4.47) 

Finally for (1.9) we begin by observing the general 
SO(2n + 1) result: 

Trspinor X4 = - r - 4 Trvector X4 + lower traces. (4.48) 

Thus for SO(7) the spinor representation is the appropriate 
representation to consider the generating representation. As 
we mentioned in Sec. II both the vector and spinor of SO (7) 
have the same second Dynkin index. Therefore, we have 

a(2) (Aspinor) = a(2) (Avector) = a(4) (Aspinor) = 1, 

a(4) (Avector) = - 2. 

These two representations show the equivalence (4.9) holds 
at most modulo 3. Using Okubo's results for the eigenvalues 
of the fourth-order index one may show this holds in general 
using techniques similar to those above. 

v. APPLICATIONS 

We will now apply the congruences as we have de
scribed in the previous section. The congruences obviously 
serve as a useful check when calculating higher-order anom
aly coefficients. A further application we will make is to 
show the absence of G 2' su (2), and su ( 3) global gauge 
anomalies in six dimensions.21 For simplicity we will work 
with a (d = 2n)-dimensional Euclidean space-time topolo
gically equivalent to a sphere, M ~S 2n. The gauge groups G 
and H in the ensuing discussion are taken to be compact, 
semisimple Lie groups. 

Let us consider an H gauge theory free of perturbative 
anomalies. Witten's arguments22 alert us to the possibility of 
global anomalies if 1T2n (H) #0. Assume further that 
1T2n (H) ~Zl with generator h. For many cases of interest 
this assumption is not too restrictive and we note 
1T6(SU(2»~ZI2' 1T6(SU(3»~Z6' 1T6(G2) ~Z3 are the only 
nontrivial six-dimensional homotopy groups for the H we 
are considering. The question at issue with global anomalies 
is whether the fermionic determinants [det iD(A,..)] 1/2 and 
[det iD(A!)] 1/2 are identical foranH gauge connection A,.. 
and its gauge transform A ~. General arguments show these 
differ by, at most, a phase.23 

To investigate these global anomalies we use a technique 
frequently employed when studying topological field config
urations: we embed the theory under consideration into a 
larger theory that can interpolate between the various topo
logical sectors of the original theory. Questions previously 
not amenable to a perturbative study can now be examined 
within the perturbative framework of the larger theory. 24 In 
the present context Elitzur and Nair made early use of this 
approach.25 We wish then a larger group G into which we 
may embed H such that 1T 2n (G) = 0, this condition allowing 
us to interpolate between h and the identity of 1T2" (H). The 
difference in phase between the above determinants is then 
given by the Wess-Zumino term ofthe G theory. In order 
that we may evaluate this most simply in terms of differential 
forms we further assume that 1T 2n + I (G) ~Z with generator 
g. 

Under a finite gauge transformation geG we have the 
fermionic measure in the path integral transforming as 
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dp,(g\)l) = dp,(\)I)exp[ irA (g,A,F) ], (5.1 ) 

where r A (g,A,F) is the Wess-Zumino action for fermions in 
a G-representation A. Expressing rAin terms of an integral 
over a (2n + 1) -dimensional disk D with boundary aD = M 
we have 1 

r A (g,A,F) = 2TT L yA(g,A,F) , 

where 

yA (g,A,F) = U)~n + 1 (A g,F g) U)~n + 1 (A,F) 

(5.2) 

= CZn TrA (g-l dg)2n+ 1 + da2n , (5.3) 

TrA F n+ 1 = dU)~n+ 1 (A,F). (5.4) 

We are now interested in evaluating r A (k,A,F) for 
fixed, H-valued 1. and F and for some interpolating field k 
taking the value h on aD and the identity at the origin of D. 
Our assumption of the absence of any perturbative H-anom
alies means yA(g,A,F) = 0 whenever geH. In particular, this 
means kETT 2n + 1 (G I H). Further, consideration of the exact 
sequence 

yields 

IT. a 
-+TT2n + 1 (G) -+TT2n+ 1 (G IH) -+TT2n (H) -+TT2n (G)-+ 

-+ 

III 
z 
g 

III III 

(5.5) 

From (5.5) weseekisageneratorofTT2n+l (GIH) (when
ever this has a single generator) and that the image of k I in 
TT2n + 1 (G) [which exists as ak I = OETT2n (H)] isg. [Strictly 
speaking, the image of k I in Il2n + 1 (G) has the form g' for 
some integer p, not necessarily 1. However, when 
TT2n + 1 (G I H) = Z, then p = 1 by injectivity. For the later 
su(2) example we calculate p = 2.] As these two gauge 
fields on S 2n + 1 only possibly differ by terms in H we have 

yA(g,A,F) = yA(k I,A,F). (5.6) 

To complete the evaluation ofr A (k,A,F) we must now 
discuss the representation dependence A implicit in the 
above. By De Rham's theorem and our assumption 
TT2n + 1 (G) ~Z we have for the generating representation 
(defined in Sec. II B) that 

1 = r l'''''(g,A,F). (5.7) 
Js2n+ 1 

In particular, the additive properties of the Wess-Zumino 
term yieldZ5 

r A (k,A,F) = 2TTAn+ 1(A)/I. (5.S) 

Actually, when TTln + 1 (G IH) has more than one generator 
this discussion needs to be somewhat modified with I re
placed by lip. We will return to this point later in this sec
tion; for the moment we will assume this is not the case. 

The existence of global anomalies depends, therefore, on 
the divisibility properties of the leading anomaly coefficient 
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An + 1 (A) by I ITT2n (H) I. To check whether global anom
alies exist, the procedure is as follows. Given an H-gauge 
theory with fermion content A H we embed H in G so that a 
representation A G branches to A H up to possible singlets 
(which have vanishing global and local anomaly). Actually, 
a judicious use of vectorlike representations (with vanishing 
local anomaly) is also frequently required. We then calcu
late An + 1 (A G) and see if it is divisible by I; if it is not, we 
have a global anomaly. The approach of Elitzur and Nair has 
reduced the problem to an algebraic one in determining 
An+ 1 (A G) and then a number-theoretic one in checking its 
divisors. Before using our earlier results on An + 1 and its 
properties, two comments on this procedure are in order. 
First, there are potential embeddings of H in G and choices 
of A H for which no A G exists such that it branches to A Hand 
singlets. If we are to show a general H theory free of global 
anomalies, we must ensure such a branching always exists. 
Second, because we only require A G to branch to A H up to 
singlets, the choice of A G need not be unique. [For example, 
in SO(7) ::JGz we have 7 = 7 and 8 = 7 + 1.] Again, we 
must check that this ambiguity does not lead to differing 
results. 

We may now use our earlier results to show the absence 
ofsu(3) or G z anomlies in six dimensions. First, recall the 
additive property (2.7) of the second Dynkin index. For the 
standard embedding of su (n ) in su (n + 1) as well as 
so (7) ::J Gz the constant p appearing in this equation is unity. 
For sue 3) the fact that we have a perturbative anomaly free 
theory yields 

0= L .4(22) (A ~u(3» (5.9) 

= L A (A su(3» - (2) j mod 12 (5.10) 

== L A(2) (A ~U(4» mod 12 (5.11 ) 

= L A (A su(4» - (4) i mod 6. (5.12) 

Here .4(22) is the analog of 0(22) [see the discussion after 
(4.10)]. The sum over su(3) representations in (5.9) in
cludes a sum over fermion chiralities as well, both being 
needed in six dimensions to get a vanishing perturbative 
anomaly. In going from (5.9) to (5.1O) we have used (4.8); 
the sum in (5.11) is over those su ( 4) representations that 
branch to the su(3) representations and we have used (2.7) 
in obtaining this. Finally, to obtain (5.12) we use (4.1). 
Now we are done, because, since TT6(SU( 3» ~Z6' our analysis 
(5.8) shows there is no anomaly. 

The absence of Gz anomalies is proved analogously. We 
have 
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This, together with 1T6 (G2 ) ~Z3' shows there are no six-di
mensional G2 anomalies. 

We will now consider SU(2) anomalies in six dimen
sions and argue that none such exist. Let us note 
1T6(SU(2»)=ZI2 and we consider the standard embeddings 
SU(4) ::)SU(3) ::)SU(2). This yields SUe 4 )/SU(2) 
=S5 XS7 and thus 1T7(SU(4)/SU(2»)=Z E&Z2' In this case 
1T7(SU ( 4 ) /SU (2») has more than one generator and we will 
need to modify our calculation as we earlier cautioned. To 
see why this arises the following example is illustrative of our 
discussion. Consider the two SU ( 4) representations 

AI = 6L + 4R + 4R = 3L + 3L + 3R + 3R + 2X 1 

= 2X2L + 2X2R + 6X 1, 

A2 = 4 L + 4 L + 4 R + 4 R = 3 L + 3 L + 3 R + 3 R + 4 X 1 

= 2x2L + 2x2R + 8x 1. 

These have SU(4) anomalies a(A~U(4» = - 4 - 1 - 1 
= - 6 and a ( A~u (4» = 0, the latter being vectorlike. This 

ambiguity on the choice of A does not affect the SU ( 3 ) theo
ry as we are only interested in the anomaly coefficient modu
lo 6. Without modifying this treatment for SU(2), however, 
we would be considering these coefficients modulo 12. 
Clearly, if this were the case, we would be faced with a Z2 
ambiguity. (Note our analysis has shown there is at most a 
Z2 anomaly and thus the ambiguity here is the only one pos
sible.) The resolution of this dilemma is, in fact, the addi
tional Z2 piece of 1T7(SU(4)/SU(2»). The exact sequence 
(5.5) shows the Z part of 1T7(SU(4)/SU(2») has a mod 6 
periodicity. In particular we see (without loss of generality) 

--1T7(SU( 4») --1T7(SU( 4 )/su(2») -- 1T6( su(2»)--

III III 
Z ZE& Z 2 

(6,1 ) 

( 5.16) 

In particular we have 1m 1T.lz = 6Z. As it is, the Z piece 
yields the form content of yA; it is this congruence that is 
important. This last statement may be verified by use of the 
Hurewicz homomorphism. Alternately we are interested in 
the divisibility properties of the anomaly coefficient 
mod l/p, which here is 12/2 = 6. We argue then that there 
are no SU(2) anomalies in six dimensions contrary to Ref. 
26. 

VI. DISCUSSION 

To conclude let us review some of the results obtained 
and the ground covered. We began by giving a new proce
dure for expanding the trace polynomials 

TrA Xk= :L AfT (A)PfT (x), 
fT 

where PfT (x) is a Wey1-invariant polynomial expressed in a 
given basisofP(H)w. For each partition 11T1 = kwe have the 
anomaly coefficient AfT (A); these we expressed in the form 

AfT(A)= ~ mA(j.l)afT(j.l)· 
!'EfT (A) 
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For su(n) we gave a general expression (3.37) for afT(j.l) 

subject only to 11T1 <no In particular, various closed expres
sions were given for a(k) (j.l) in Sec. III D. To illustrate these 
results we calculated both A(k) (j.l) and a(k) (j.l) for repre
sentations whose Young diagrams had five or fewer boxes in 
Sec. III E. 

A consequence of having tractable expressions for 
afT (j.l) at hand led us to observe a variety of congruences 
amongst these coefficients. In particular, we noted 

AfT (j.l) =A" (j.l) mod q, for all j.lEA + 

~afT(j.l)=a,,(j.l) modq, for all j.lEA+. 

This meant we could prove congruences among the anomaly 
coefficients by working with the (often) simpler afT (j.l). In 
particular, for su (n) we showed (for k,k I < n) 

a(k) (j.l) =a(k') (j.l) mod q, for all j.lEA + 

~ mk=mk' mod q, for all mEZ, 

pk-I=pk'-I modq, for p<n. 

Further, we showed how to construct the maximum q sub
ject to these conditions. 

The congruences we have discovered can often be quite 
helpful. We mentioned their use in checking anomaly calcu
lations as well as utilizing them to prove that there were no 
global gauge anomalies in six dimensions. In doing this cal
culation we believe several assumptions often made when 
applying the work of Elitzur and Nair have been clarified. 
The case of su (2) in six dimensions was particularly interest
ing. 

Several extensions of this work ought now to be consid
ered. Obviously, the extension to arbitrary L and the general 
congruences for afT are called for. Another question raised 
but left unanswered was the nature of the set F( L) defined in 
Sec. II B. Further, one can use this approach to examine 
higher-dimensional global anomalies. In particular, it is well 
suited to studying su (2) anomalies; this line of investigation 
will be presented elsewhere. 
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The tensor operators that transform under subrepresentations of the symmetrized Kronecker 
square of the adjoint representation for the classical semisimple Lie algebras have been 
determined. All irreducible representations that satisfy the identities obtained by the vanishing 
of these tensor operators have been deduced. The pairs of irreducible representations of 
nonexceptional semisimple Lie algebras, the Kronecker product of which decomposes into two 
irreducible components, have been pointed out. As a consequence of this result, a comparison 
of the identities, derived in the way indicated before, with those resulting by the application of 
a method due to Hannabuss, Kostant, and Okubo, has been obtained. Connections between 
these results and those obtained by Drinfeld, concerning the solutions of quantum Yang
Baxter equations, have been established. 

I. INTRODUCTION 

A classical (or Poisson bracket) realization of a Lie al
gebra L is a realization of L as an algebra of differentiable 
functions defined on a classical phase space M, i.e., on a 
symplectic manifold M, with the Poisson bracket on M 
playing the role of Lie bracket; a quantum realization is a 
realization of L as an algebra of linear operators on a vector 
space V (the space of quantum states); the Lie bracket on 
End V is the commutator. 

The properties of many physical systems (quantum or 
classical) can be described by a dynamical Lie algebra L: in 
the quantum case, the Hamiltonian and other important ob
servables are realizations of elements of the enveloping alge
bra VeL); in the classical case, they are realizations of ele
ments in the algebra peL *) of all polynomial functions on 
thevectorspaceL * dual toL. [peL *) is isomorphic with the 
symmetric algebra S (L) of L. ] 

From the point of view of physical applications the most 
interesting realizations are those determined by the smallest 
number of observables, i.e., by the smallest number of de
grees of freedom. Realizations of this type are characterized 
by relations between their generators, i.e., by polynomial 
identities; otherwise stated, elements of V (L) [of peL *) ] 
vanish when realized in End V [in C"" (M)]. 

It has indeed long been known (cf., e.g., Refs. 1-12) 
that the generators of classical and of quantum realizations 
of Lie algebras satisfy, besides the Lie relations, a set of spe
cific polynomial identities. A number of papers have been 
devoted to the derivation of such identities and to the expla
nation of their origin 13-26; in several cases the identities have 
been used to construct6 or to classify9 representations of par
ticular Lie algebras. 

The ideology of the present paper has its origin in the 
observation22 that the polynomial identities (discovered by 
Gyorgyf) satisfied by the classical realization of the confor
mal algebra so(4,2) -su(2,2) as a dynamical algebra of the 
Kepler Hamiltonian have definite tensorial character with 
respect to the extension of the adjoint representation of 
so(4,2) to P(so(4,2)*). 

Simple arguments allowed to conclude23
•
25 that this re

sult is general: polynomial identities satisfied by classical 
(quantum) realizations can be generated by decomposing 
peL *) [V(L)] in irreducible modules, called elementary 
tensors, and by solving the equations-"tensorial identi
ties" ~btained by requiring that the elementary tensors 
vanish in a given but unknown realization. Thus candidates 
for polynomial identities have to be found out first, and only 
subsequently must the realizations which satisfy them be 
determined; these are the nontrivial solutions of the tensorial 
identities. In particular, candidates for homogeneous tensor
ial identities of degree k for a Lie algebra L are obtained by 
equating to zero the tensors transforming under subrepre
sentations of the symmetric component of the k th Kron
ecker power (ad" k) s of the adjoint representation of L. 

In the present paper we determine the second-degree 
tensors which transform under subrepresentations of 
( ad ® ad) s for the classical Lie algebras 

An (n>3), Bn (n>2), Cn (n>2), Dn (n>5), 
(1.1 ) 

and deduce all representations on which these tensors van
ish. In other terms, we determine all second-degree tensorial 
identities for the algebras (1.1) and find their solutions. 

These second-degree tensorial identities are listed in 
Sec. II. They can be transformed into equations for the Dyn
kin indices which characterize the highest weights of the 
finite-dimensional irreducible representations of semisimple 
Lie algebras. The equations are solved in Sec. III; their solu
tions are listed in Table I and rederived in Appendix B by 
using the Wigner-Eckart theorem. These solutions are rep
resentations with maximal degeneracy, i.e., with all Dynkin 
indices but one equal to zero. 

The representations which satisfy the second-degree 
tensorial identities for the Lie algebras oftypes B n, Cn' and 
Dn can be characterized in the following way: for a given 
simple root a; the representation with the highest weight 
mA; occurs in Table I for all integers m if the coefficient C; of 
a; in the decomposition of the maximal root a max js equal to 
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TABLE I. Second-degree tensor operators T L,A that transform under irre
ducible components with highest weight A of the representation (ad 8 ad), 
of the nondegenerate semisimple Lie algebraL (column 3). Irreducible rep
resentations on which these tensor operators vanish (column 4). For the 
Lie algebras of types B2 and B3 column 3 has to be replaced as follows: for 
B2, read AI (4A2) instead of A4(2A2); for B3, read 2A3 instead of A4. 

Highest weight A of Highest weight of 
Lie the representation representation P 

algebra Proposition under which TL.A for which 
L number transforms TL,A(P) =0 

A. 
AI +A. mA(.+ 1)/2 (m = 1,2, ... ) 

2 A2 + A._I mAI,mA. (m = 1,2, ... ) 
n>3 3 2AI +2A. Ak (k = }, ... ,n) 

4 2AI A. 
B. 5 A4 mAl (m = 1,2, ... ) 

n>2 6 2A2 AI,A. 

7 A2 mAn (m = 1,2, ... ) 
C. 8 4AI Ak (k = I, ... ,n) 

n>2 9 2A2 AI 

10 2AI mA._I,mA. (m = 1,2, ... ) 
D. 11 A4 mAl (m = 1,2, ... ) 
n>5 12 2A2 A"A._"A. 

1; it occurs only for m = 1 if Cj = (amax,amax )/(a;,aj ). 

This property shows that the representations which appear 
in Table I as solutions of the second-degree tensorial identi
ties for the Lie algebras oftypes B n' Cn , and D n are precisely 
those for which there exist solutions for the quantum Yang
Baxter equations, as pointed out recently by Drinfeld27 (cf. 
Appendix D). 

A method due mainly to Hannabuss,16 Kostant,28 and 
Okubo,19 and which we shall call in the following the HKO 
method, allows one to construct, in principle, for a given 

representation p, polynomial identities satisfied by p. This 
method is based on the determination of the Kronecker 
products of p with auxiliary representations 1T' which are 
chosen such that the corresponding Clebsch-Gordan series 
are multiplicity-free. The degree of the polynomial identity 
associated with a given auxiliary representation 1T' is then 
equal to the number of terms in the Clebsch-Gordan series 
ofp ® 1T'. 

Hence in order to obtain, by the HKO method, the sec
ond-degree polynomial identities satisfied by a given repre
sentation p of the Lie algebra L we must find all auxiliary 
representations 1T' of L such thatp ® 1T'decomposes in precise
ly two terms p ® 1T' = e ED (J). We shall call an auxiliary repre
sentation 1T' with this property an Okubo partner. We deter
mined the Okubo partners for the representations from 
Table I and found (Sec. IV) that for the Lie algebras of types 
B n , Cn , and D n these partners exist only for those representa
tions with highest weights oftypes kA; (k = 1,2, ... ) which 
appear in Table I (see Table II). 

These representations are those for which there exist 
classical limits, i.e., classical realizations which satisfy in 
peL *) polynomial identities corresponding to the same ten
sor. This correspondence between the classical and quantum 
realizations has in fact been employed by Reshetikhin in his 
construction of the solutions for classical and quantum 
Yang-Baxter equations29,30 (cf. also Ref. 31). These solu
tions are classified by the compact Hermitian symmetric 
spaces which are the coadjoint orbits described by the poly
nomial identities in peL *).30 

In Sec. IV we derive the second-degree polynomial iden
tities satisfied by the representations p for which Okubo 
partners exist and observe that, for algebras of types B nand 
Dn, they coincide with the identities considered in Secs. II 
and III. Complete proofs for this coincidence are provided 
for the algebras of type D n • 

TABLE II. Elements that characterize the second-degree minimal polynomials satisfied by HKO operators of non exceptional semisimple Lie algebras ( 1.1 ). 
The highest weights of the fundamental representations are denoted by Ai (i = 1,2, ... ,n). 

Pairs of weights A., /l 
for which the product 

Lie decomposes into a 
algebra direct sum of two The weights /l} that appear in the The roots of the second-degree 

L irreducible representations decomposition of the productpA 8pp. minimal polynomial (4.6) 

H (s + 28,s) - (A. + 28,..t) 
A. /l A. + /l s (A., /l) - (/l + 2c5, /l) J 

mAl Ak mAl +Ak (m - I)A , + Ak+' m(1 - kl(n + 1)) - k(1 + ml(n + 1)) 

A. 
AI mAk AI +mAk (m-1)Ak +Ak+1 m(1 - kl(n + 1)) - k(1 + ml(n + 1)) 

mAn A._k+1 mAn +A._ k+ 1 (m -1)A. + A._k m(l- kl(n + 1)) - k(1 + ml(n + 1)) 

A. mA._ k+1 A. + mA._ k+1 (m-1)A._ k+1 +A._k m(l- kl(n + I») - k(1 + ml(n + 1)) 

B. mAl A. mAl +A. (m-1)A, +A. m/2 (-m-2n+ 1)/2 

C. AI mAR A,+mA. A._ I + (m - 1)A. m - (m+ n+ 1) 

mAl A._I mAl +A._I (m-1)A, +A. m/2 ( - m - 2n + 2)/2 

D. 
mAl A. mAl +A. (m-1)A I +A,_, ml2 ( - m - 2n + 2)/2 

AI mA._ , AI+mA._ , (m-1)A._ 1 +A. ml2 ( - m - 2n + 2)/2 

AI mAn AI +mA. A._,+(m-l)A. m/2 ( - m - 2n - 2)/2 
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For the algebras of types Cn and An' several differences 
between our results and those obtained by the HKO method 
have to be noted. For the Lie algebras of type Cn , the repre
sentations A2,A3, ••• ,An _ 1 satisfy second-degree polynomial 
identities, which cannot be obtained by the HKO method 
because these representations have no Okubo partners. On 
the other side, for the Lie algebras of type An' there exist 
identities obtained by the HKO method which can be de
rived by our method only if we allow the adjoint tensors to be 
written as linear combinations between tensors of second 
and first degrees. 

As physical applications are concerned, our results may 
offer a unification of many disparate results, casting in a 
purely algebraic framework physical systems with the same 
dynamical Lie algebra which satisfy the same kinematical 
constraints. 

The kinematical constraints may be viewed as con
straints imposed to a dynamical system by its symmetry 
properties. So far, kinematical constraints were obtained by 
direct inspection from the algebraic peculiarities of the var
ious concrete realizations. The most notable compact Her
mitian symmetric spaces which appear in several physical 
models in field theory or in nuclear physics are the spaces 
SO(2n)!U(n), considered by Berezin32 and Papanicolaou33 

in connection with the Gross-Neveu model and by Yama
mura34 and Nishiyama35 in connection with the theory of 
nuclear collective motion. The noncom pact Hermitian 
spaces Sp(2n,R)!U(n) appear in the papers of Mlodinow 
and Papanicolaou36 and of Deenen and Quesne37 again in 
connection with the theory of collective motion in atoms and 
nuclei, respectively. 

An immediate application of the second-degree kinema
tical constraints is the derivation ofthe Holstein-Primakoff 
realizations33

•
37 by using a purely algebraic method that 

takes advantage of these constraints.38 

A new field of possible applications of the tensorial iden
tities is the characterization of "models" of representations, 
defined by Bernstein, Gelfand, and Gelfand39 and discov
ered by Biedenharn and Flath for su (3).40 Indeed, Bracken 
pointed out41 that the infinite-dimensional representations 
of so (6,2), which he introduced as a model for su (3) repre
sentations, satisfies second-degree polynomial identities. It 
is easy to prove that these identities, which characterize this 
model of su (3), are equations of the type (2.15) derived and 
studied in the present paper. 

It is evident that the second-degree tensorial identities 
do not exhaust the functionally independent identities satis
fied by representations of the Lie algebras (1.1). The num
ber of functionally independent tensors which vanish on a 
fixed representation is, however, finite. 

The determination of all independent tensorial identi
ties for a given semisimple Lie algebra is a problem comple
mentary to the determination of the integrity basis in its de
generate enveloping algebras.42

-44 The set of independent 
tensorial identities satisfied by a given representation p may 
be viewed as a set of conditions which characterize p; their 
complete determination could provide an alternative for the 
identification of linear representations of semisimple Lie al
gebras. 
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II. TENSORIAL IDENTITIES 

A. The existence of tensorlalldentities 

Let us denote by A an associative algebra endowed also 
with a Lie product denoted by [ , ] and which has the fol
lowing derivation property with respect to the associative 
product: 

[a,be] = [a,b]e + b [a,e]. (2.1) 

A realization of a Lie algebra L in A is a Lie algebra homo
morphism h: L - A. Any such realization can be extended in 
a unique way to a homomorphism of associative algebras h: 
V (L) -A with the property h (1) = lA' where 1A is the unit 
element of A and V (L) is the enveloping algebra of L. 

Iffor an element ueV(L) we have h(u) = 0 then we 
shall say that the realization h: L - A satisfies the polynomial 
identity corresponding to the element ueV(L). The set 

ker h = {ueU(L); lieu) = o} (2.2) 

is then the set of all polynomial identities satisfied by the 
realization h: L-A. Because hCab) = h(a)h(b) (h is a ho
momorphism of associative algebras) it follows that ker h is 
a two-sided ideal of V (L) and hence that it is an invariant 
subspace with respect to the unique extension of the adjoint 
representation of L on V (L) defined by 

ad(x)u=:xu - ux. (2.3) 

This representation is completely reducible (Ref. 45, 
§2.3.3). 

The decomposition of this representation into irreduci
ble components has been described by Kostant.28 A given 
representation with the highest weight A (:;60) appears as a 
subrepresentation in ad as many times as the multiplicity of 
the zero weight in the representation A. Also, among these 
subrepresentations of type A there exists one of the highest 
degree hd(A) equal with the sum of the coefficients of the 
decomposition of A as a linear combination of simple roots. 
All representations of type A of higher degrees are obtained 
from the representations of type A of degree at most equal 
with hd(A) by multiplication with elements from the sub
representations of ~ with zero highest weight, i.e., with in
variant elements or Casimir elements (Ref. 45, §8.3.1l). 
The adjoint representation ad of L can be also extended in a 
unique way to a representation ~ of L on the symmetric 
algebra S(L) of L. The symmetrization map u: 
S (L) - V (L) intertwines the two adjoint representations ad 
and ia, i.e., S(L) and VeL) are equivalent as L modules 
(Ref. 45, §2.4.1O). From this equivalence it follows that the 
restriction of aa to the subspace V (L h of homogeneous 
elements of V (L) of degree k is equivalent with the symmet
ric part of the Kronecker power k of ad, denoted by (ad" k) s • 

Let us denote by L * the dual of the vectorial space Land 
by P(L) the associative commutative algebra of all polyno
mials on L *. The algebra peL *) is generated by 1 and the 
first-degree polynomialsx(/) defined by x(/) = I(x) for any 
xeL and any leL *; as a vectorial space peL *) is isomorphic 
with S(L). It follows thatthe Lie bracket {,} defined for the 
zero and first-degree polynomials by {l,x(/)} = 0 and 
{x,y} = I( [x,y]) can be extended to all polynomials from 
peL *). The adjoint representation of Lon peL *) defined by 

M. losifescu and H. Scutaru 744 



                                                                                                                                    

(ad(x)p)(l) = {x,p}(/) is also equivalent with the adjoint 
representation of L on S(L); the intertwining operator is 
precisely the map (x®y®'" ®z)s ..... x(/)y(/) .. ·z(/) which 
associates with any element of S(L) a polynomial on L *. 

In the present work, we study the decomposition of the 
second-degree homogeneous component of the two-sided 
ideal ker h. This amounts to determining the irreducible sub
representations of (ad ® ad) •. The irreducible tensors which 
transform under these representations have been determined 
in Ref. 24 for the semisimple nonexceptional Lie algebras 
( 1.1 ), using a projection method. The algebras ( 1.1 ) have in 
common the property that, for each of them, the Clebsch
Gordan series for (ad ® ad) s is multiplicity-free and con
tains precisely four terms.46,47 For reasons of convenience, 
the calculations have been performed in P(L *). 

To each irreducible tensor TLA in P(L *) [in U(L)], 
transforming under a representation PA C (ad ® ad) s of 
highest weight A, a tensorial identity can be associated by 
equating T LA to zero in a classical (quantum) realization to 
be determined. Nontrivial realizations on which all compo
nents of TLA vanish will be called "solutions" of the tensorial 
identity TLA = O. As already stated, our aim is to determine 
the quantum tensorial identities (Sec. II B) and to solve 
them (Sec. III). 

B. The expressions of the second-degree tensorlal 
Identities 

In this section we list the second-degree classical tensor
ial identities for all semisimple Lie algebras ( 1.1 ). Quantum 

I 

Til., + A. (p,q) = .!if pq (n + 1) = ° (p,q = 1,2, ... ,n + 1), 

TAz +A._, (p,q,r,s) = ApqA,. -ApsArq 

tensorial identities are obtained from classical ones by re
placing in Eqs. (2.8)-(2.10), (2.14)-(2.16), and (2.21)
(2.23) each product of two generators by their anticommu
tator, e.g., 

ApqA,. ..... [Apq.A,. ] + ==ApqA,.. + A,.Apq . (2.4) 

Tensor components are identified by four labels since each 
component is projected from a generic second-degree mono
mial of the symmetric algebra. For particular tensors, how
ever, two labels suffice. We denote by AJoA2, ... ,An the high
est weights of the fundamental representations of a 
semisimple Lie algebra of rank n and by Aad the highest 
weight of the adjoint representation. 

t. Algebras of type An 

The generators Aij (i,j = 1,2, ... ,n + 1) of the algebra 
sl(n + I,C) satisfy the structure relations 

[Au.Akd = c5jkAu - c5uAk}' (2.5) 

For algebras of type An' Aad = AI + An and we have 
(PAesj==ad) 

(ad®ad). =p(O) EIlPA,+A. EIlPAz+A._, EIlP2A,+2A.' 
(2.6) 

where PAis a representation with highest weight A. Denot
ing 

n+1 c5 n+1 
.!if pq (A.) == L ApiAiq _.2!!.... L A;jAji' (2.7) 

;=1 A. i,j=1 

we obtain the classical tensorial identities 

(2.8) 

+ [1!(n-1)]{-c5qrAps(2n) -c5ps.!ifrq(2n) +c5pq .!if,..(2n) +c5,...!ifpq (2n)} =0, 

T2A , + 211.. (p,q,r,s) = ApqA,.. + ApsArq - [l!(n + 3) ] {c5q,.!if ps(2(n + 2») + c5ps.!if rq(2(n + 2») 

(2.9) 

+ c5pq .!if ,..(2(n + 2») + c5,...!if pq(2(n + 2»)} = 0 (p,q,r,s, = 1,2, ... ,n + 1). (2.10) 
n+1 

Let us mention that T(o) = L AUAji' 
i,j=1 

2. Algebras of types Bn and On 

The generators Mij (i,j = 1,2, ... ,N) of the algebras 
so(N,C) (N = 2n + 1 for the type Bn and N = 2n for the 
type Dn) satisfy the structure relations 

[Mii'Mkd = c5U~k + c5jkMU - c5ik~/ - c5j /Mik 
(2.11) 

with~i = -Mij andi,j,k,i= 1,2, ... ,N. 
For the algebras of type B2, Aad = 2A2; for the algebras 

oftypes Bn (n>3) and Dn (n>4), Aad = A2. The symmet
ric part of the Kronecker square of the adjoint representa
tion, (ad ® ad) s' decomposes into four irreducible compo
nents in the following cases: 

type B2: (P2Az ® P2Az ) s = p(O) Ell P2A, Ell P4Az Ell PA,' 
(2.12a) 
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type B3: (PAz ®PAz)' =p(O) EIlP2A, EIlP2Az EIlP2A,' (2.12b) 

types Bn (n>3) and Dn (n>5): 

(2.12c) 

We shall give the expressions of the tensorial identities asso
ciated with the nontrivial representations in the decomposi
tion (2.12c). The results for the algebras of type B2 will be 
obtained by replacing A4 by AI and 2A2 by 4A2; the results 
for the type B3 are obtained replacing in the generic case A4 
by 2A3 • 

Denoting 

(2.13 ) 
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we obtain the following identities associated with irreducible 
subrepresentations of (p Aad ® P Aad ) • : 

T2A,(P,q) =vlipq(N) =0 (p,q= 1,2, ... ,N), (2.14) 

T A.. (p,q,r,s) = MpqMrs + MpsMqr 

+ MprMsq = 0 (p,q,r,s, = 1, ... ,N), 
(2.15 ) 

T2A, (p,q,r,s) = i (2MpqM,.. - Mp.Mqr - MprMsq) 

+ [l/(N-2)1[ -8qrvlips(2(N-I») 

- l)p.vIi qr(2(N - I») 

+ 8prvliq.(2(N - I») 

+ l)q.vlipr(2(N - I»)] = O. (2.16) 

We have T(o) = ~f.j= I MiJMji . Let us obseve that the ten
sor (2.15) can be also expressed as 

(2.15') 
p,q,T,S 

where Eij pqrs is the six-dimensional antisymmetric tensor.7
•
48 

3. Algebras of type en 
Letgij =l)i.i+n -l)i+n.j (i,j= 1,00.,2n) and let 

2n 

Sij = L (gikekj - gkjeki) (i,j = 1,00.,2n) 
k=1 

(2.17) 

be the generators of the algebra sp(2n,C) (Sij =Sji) with 
the structure relations49 

[Sij,skd = gkjSi/ - gi/Skj - gikSj/ + g/jSki' (2.18) 

For algebras of type Cn (n>2) we have Aad = 2AI and 

(ad®ad). =p(o) fIJPA, fIJP4A, fIJP2A,' 

Denoting 

(2.19) 

we obtain the following identities associated with subrepre
sentations of (ad ® ad).: 

TAl (p,q) = Y pq (2n) = 0 (p,q = 1,2,00.,2n), 

T4A, (p,q,r,s) = SpqSrs + SpsSrq + SprSq. = 0, 

T2A, (p,q,r,s) = i (2SpqSrs - SpsSrq - SprSq.) 

(2.21) 

(2.22) 

+ [l/2(n + 1) 1[gpsY qr(2(2n + I») 

+gprY q.(2(2n + 1)) 

+ gqrY ps(2(2n + 1)) 

+ gq.Ypr(2(2n + I»)] = 0 

(p,q,r,s, = 1,2,00.,2n). 

We have also T(o) = ~tj.k./= Igijgk/Si/Sjk' 

(2.23) 

The expressions of the tensors in Eqs. (2.10), (2.14), 
and (2.21) have been obtained also by JarviS.47 
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III. DETERMINATION OF THE FINITE-DIMENSIONAL 
IRREDUCIBLE REPRESENTATIONS THAT SATISFY 
THE QUANTUM TENSORIAL IDENTITIES 

As already mentioned, the quantum tensorial identities 
are obtained from the classical ones by symmetrizing each 
product of generators with respect to order [cf. (2.41) ]. We 
shall refer, in the following, only to quantum identities, with
out further specification, quoting them by the same numbers 
as the corresponding classical ones. 

The quantum tensorial identities (2.8)-(2.10), (2.14)
(2.16), and (2.21)-(2.23) contain information about the 
representations which satisfy them. To extract part of this 
information is the aim of the present section in which we 
shall determine the weights of the finite-dimensional irredu
cible representations for which the tensor operators vanish. 
The results of this analysis are summarized by the theorem 
that follows. 

Theorem 1: Let L be one of the nonexceptional semisim
pIe Lie algebras (1.1); let TL •A (x\,oo"Xdim L)EU(L) 
(Xi = generators of L) be the second-degree tensor operator 
which transforms under the subrepresentation of (ad ® ad). 
with the highest weight A of the Lie algebraL, and letp(x i ) 

(i = I,oo.,dim L) be the generators of the representationp of 
L. 

The finite-dimensional irreducible representations P of 
the Lie algebras (1.1) for which 

are those listed in Table I. 
The theorem stated above is composed of 12 proposi

tions (labeled from 1 to 12); the meaning of proposition 
number p is: "In line number p of Table I column 3 implies 
column 4." 

Remark 1: We read from Table I that all second-degree 
tensorial identities of the Lie algebras (1.1) admit solutions 
which are representations with maximum degeneracy. This 
is not surprising: Okubo pointed outl8 that the degree of the 
identity satisfied by a representation P of su(n) decreases 
with the increase of the degeneracy of p. 

Remark 2: A number of solutions of the tensorial identi
ties present themselves as a series of representations, the 
highest weights of which are all integer mUltiples of the high
est weight of a given fundamental representation (e.g., mAl; 
m = 1,2,00')' Solutions ofthis type ofthe quantum identities 
admit classical limits; the identity satisfied by the classical 
limit corresponds to the same tensor as the quantum identi
ty. 

Remark 3: A synthetic characterization of the solutions 
contained in column 4 of Table I can be obtained by giving an 
explicit formulation to a result obtained by Drinfeld.27 For 
details, see Appendix D. 

The proof of the theorem-which is based on Remark 
5-ronsists in the straightforward determination of the 
highest weights of the solutions of the tensorial identities. 

Remark 4: The solutions of the tensorial identities have 
been reobtained by a proof which makes use ofthe Wigner
Eckart theorem and which is to be found in Appendix B. 

Remark 5: Let P be a finite-dimensional irreducible rep-
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resentation of the semisimple Lie algebra L, acting on the L 
module Vp. Let TL•A (p) be a tensor operator, the compo
nents 

TL,A,j(P(Xl),p(X2), ... ,p(XdimL») (j = 1, ... ,dim L) 
(3.1 ) 

of which are polynomials of the generators p(x;) of p and 
which, under the extension of the adjoint action, transform 
by a representation a A of the highest weight A (label L omit
ted): 

[p(x j ),TA.j ( P(Xl),,,,,P(XdimL»)] 
dimuA 

= ~ (aA)JkTA.dp(xj),,,,,P(XdimL») (3.2) 
k=l 

where (a A ) j k are matrix elements of representation a A' To 
prove 

TA,j(P(XI),,,,,P(XdimL»=O (j= 1, ... ,dimaA ) 

(3.3) 

it is sufficient to prove that 

TA,Ap(xl), ... ,p(XdimL »)vp = 0, 

for any j= 1, ... ,dimaA , (3.4) 

where v p E Vp is the highest-weight vector of representation 
p. Indeed, if the operators (3.1) vanish on vp they vanish on 
any vector of Vp; this results by induction using (3.2) and 

TA,iP(xj )vp = - [p(x; },TA.j ] vp + p(xj ) TA,jVp. (3.5) 

Let us now prove the 12 propositions which compose 
Theorem 1. The propositions will be proved in the following 
order: 10, 7, 11, 8, 12, 9, 4, 5, 6, 1, 2, 3. For the sake of 
concision we sketch only the proofs which give the highest 
weights. 

Proolol the theorem: Algebras 01 types Cn and D n' 

Propositions 7 and 10 [L = sp(2n,C), A = A2; 

L = so(2n,C), A = 2Ad: We shall treat these two cases si
multaneously, using unifying expressions for the structure 
relations of the two algebras as well as for their tensor opera
tors. 

Let us characterize the algebras so(2n,C) and sp(2n,C) 
by means of the values taken by a parameter E, 

E = { + 1, for so(2n,C), (3.6) 
- 1, for sp(2n,C). 

The structure relations of the two algebras, expressed in Car
tan-Weyl bases, are then (cf. Appendix A) 

[Aij,Ak/] = OJ kAi/ - oi/Akj , 

[Aij,Bk/] = OjkBi/ - eOjlBik , 

[Aij>Ckd =eoi/Cjk -O;kCj/' 

(3.7) 

(3.8) 

(3.9) 

(3.11) 

The identities (2.14) forso(2n,C) and (2.21) forsp(2n,C), 
expressed in the Cartan-Weyl bases, become 

AB - BAt = - e(AB - BAt)t, 

CA - AtC = - e(CA - AtC)', 
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(3.12) 

(3.13) 

A2 + (At)2)' - BC _ (CB)t 

= (l/n)Tr{A2 + «At)2)t - BC - (CD)tI}, (3.14) 

where X denotes the matrix (Xij ), X t the transpose of X, and 
1= (Ojj)' 

Let us make these remarks for both algebras under con
sideration. 

(i) The operators Ajj • i = 1, ... ,n, are generators of the 
Cartan subalgebra; hence, denoting by v p the highest-weight 
vector of representation p. 

p(Ajj)vp =/jvp, (3.15) 

where/; denotes the ith component of the highest weight. 
(ii) The operators A jj , withkjandBjj with arbitrary i 

andj, are raising operators, i.e., 

p(Ajj)vp = 0, for kj, (3.16) 

p(Bk/)vp = 0, for any k,l. (3.17) 

(iii) The operators A jJ , with i>j and Ckl with arbitrary 
k and I, are lowering operators. 

We shall examine successively the effect of applying the 
relations (3.12), (3.14), and (3.13) satisfied by the genera
tors of a representation P to the highest-weight vector vp of 
this representation. To avoid cumbersome expressions, we 
shall write A jj • B jj • Cij instead ofp(Aij),p(Bij).p(Cij), 
respectively. 

Both sides ofEq. (3.12) applied to vp vanish as a conse
quenceofEqs. (3.8) and (3.17). Equation (3.12) thus gives 
no information. 

Let us considerEq. (3.14). Theactionofthe (i,j) ma
trixelementofthelhsofEq. (3.14) uponvp may be written 

[A2 + «At)2)' _ BC - (CD)' L,jvp 

= 2[A2 + (Tr A)I - EA]ijvp' (3.18) 

Applying to vp the operators in both membersofEq. (3.14) 
and taking (3.18) into account leads to the relation 

(3.19) 

valid for any i,j = 1 .... ,n. We shall examine separately the 
cases i = j, i <j, and i > j. 

Let i = j and denote 

(l/n)Tr(A2 
- EA)vp = cVp. (3.20) 

Taking into account Eqs. (3.7), (3.15), and (3.16). the 
equality (3.19) becomes 

(/7 + (n - i - E)h - i fi)Vp = cVp, 
l=j+1 

(3.21) 

whence 

ift-h+l)ift+h+1 +n-i-E)=O 

(i = 1, ... ,n - 1). (3.22) 

We shall solve the system (3.22) imposing the conditions 

11>};>'''>ln>0, for sp(2n,C), (3.23) 

and 

It>};> ... >In - 1 > Vn I, for so(2n,C). (3.24) 

A solution of Eq. (3.22) admissible for both cases 
e= ± 1 is 
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II =1; = '" =In = k (k = integer). (3.25) 

It results from the vanishing of the first factor in (3.22) for 
all values of i = 1, ... ,n - 1. 

Let us admit now that for a given i 

/; + /; + I + n - i - E = O. (3.26) 

Now we must distinguish between the two cases E = ± 1. 
(1) IfE = - 1, then for any i = 1,2, ... ,n - I,Eq. (3.26) 

leads to /; + /; + I < 0, in contradiction with condition 
(3.23): for sp(2n,C), the solution (3.25) is the only admis
sible. 

(2) If E = + 1, then for any i = 1,2, ... ,n - 2, we get 
from (3.26) /; + /; + I < 0, a relation incompatible with 
(3.24). However, for i = n - 1, we obtain In + In-I = 0 
which is an admissible solution: for the algebra so(2n,C) a 
second solution 

11=/2= '" =In-I = -In =m 

(m = positive integer) 

exists. 

(3.27) 

Thus written in terms of fundamental weights Aj and 
Dynkin indices, the highest weights of the representations 
for which the components ofthe tensor operator TSP(2n,C),A, 
vanish have the expression mAn (m = 1,2, ... ); the highest 
weights of the representations for which the components of 
T so(2n,C),2A, vanish have the expressions mAn _ I and mAn 
(m = 1,2, ... ). 

Proposition 11 [L = so(2n,C); A = A4 ]: To get infor
mation about the components of the highest weight we shall 
consider the component p = 2i, q = 2i - 1, r = 2j, 
s = 2j - 1 of the tensor operator T A4 and express it in the 
Cartan-Weyl basis 

TA• (2i,2i - 1,2j,2j - 1) 

= - 2AuAjj - [Bjj,Cij] + + [Aij,Ajj] +. (3.28) 

Recalling Eqs. (3.15)-(3.17) and using condition (3.4) we 
get 

TA.(2i,2i-l,2j,2j-1)vp = -2}j(/; + l)vp =0, 
(3.29) 

whence, assuming 1 = i <j, the Cartan-Weyl components of 
the highest weight of representation pare 

T2A, (2i,2i - 1,2i,2i - 1)vp 

(3.30) 

i.e., the highest weight of P is mA I (m = positive integer). 
Proposition 8 [L = sp(2n,C); A = 4A I ]: Expressed in 

the Cartan-Weyl basis, the components ofthe tensor opera
tor T4A , (p,q,r,s) have no longer a unique expression. We 
have to consider separately the cases 

p,q,r,s < n; p,q,r < n, s> n; p,q < n, r,s> n, 

p < n, q,r,s, > n; p,q,r,s> n. 

(3.31 ) 

(3.32) 

The last two cases lead to operators which vanish if applied 
to the highest-weight vector vp and are therefore irrelevant. 
The three tensor operators (3.31) lead to the equations 

([Cpq,Crs] + + [CpS,Crq] + + [Cp"Cqs]+)vp =0, (3.33) 

([ Cpq.As_ n,r] + + [As_ n,p,Crq ] + 

+ [Cpr.As_n,q]+)vp =0, 

([ Cpq,Br_ n,s- n ] + + [As_ n,p,Ar- n,q] + 

+ [Ar_n,p.As_n,q] +)vp = o. 

(3.34) 

(3.35 ) 

The information about the highest weight of representation 
P is provided by Eq. (3.35) which becomes 

for p=q=r-n=s-n=i: /;(/;-I)vp=O, (3.36) 

for p=q=r=i<j=s-n: (/; -1)Ajj vp =0, (3.37) 

for p = i=/=j = q = r - n = s - n: }jAjjvp = O. (3.38) 

Equation (3.36) implies that the components/; U= 1, ... ,n) 
of the highest weight can take only the values 0 or 1. 
Hence recalling condition (3.23), only the fundamental rep
resentations PA k <!t = '" =Ik = 1, Ik +1 = '" =In = 0; 
k = 1,2, ... ,n) are allowed as solutions. Let us prove that for 
any k Eqs. (3.37)-(3.38) are verified. The highest-weight 
vector of representation P Ak is of the form 
vp = vi /\ v2/\ ., . /\ Vk [where VI,,,,,V2n is a basis of the repre
sentation space of PAl in which PAl (Ajj)vp 
=oj/vj -OJ+n,IVi ], We have PAk(Au)vp =vp if i<k; 

PAk (Au )vp = 0 if i> k and PAk (Ajj )vp = 0 if k <i<n and 
1 <J<k or if 1 <i<k and 1 <J<k. In the remaining case 
(1 <i<kandj> k), Eqs. (3.37)-(3.38) are verified as, in this 
case,/; = 1 and}j = O. 

Proposition 12 [L = so(2n,C), A = 2A2 ]: In the Car
tan-Weyl basis 

= [ -A ~ - 2(n ~ 1) k,t I (Oil + 2n ~ 1 ) ([Bkl,Ck/ ] + + [Akl.Alk] +) ]vp 

[ 
1 { j I (n n - I )}] 

= -I; + -- /;2 + (n - i-I)/; + L Ik - -- LI7 + 2 L (n - 1)J; vp = O. 
n-l k=1 2n-l I 1=1 

Subtracting from each other the expressions (3.39) written 
for two consecutive values i and i + 1 leads to the system 

U;+I -/;)[(/;+1 +/;)(n-2) 

II = h. = .,. = In = k, 

11 = 12 = ... = In - I = -In = k, 

11 = 1, 1; =/3'" =In =0. 

(3.39) 

(3.41 ) 

(3.42) 

(3.43 ) 
- (n-i+ 1)] =0 U= 1,2, ... ,n-l), 

which admits as solutions 

(3.40) The solution (3.42) is obtained from the vanishing of the 
second factor in the (n - 1) th equation of the system 
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(3.40). [Solution (3.43) verifies also Eq. (3.39)]. We get 
k = ! by solving 

T2A2 (2,1,2,1 )up = (n - 1 )k( - 2k + 1 )up = o. (3.44) 

The highest weight of representation p is thus one of the 
fundamental weights A I' An _ I , and An· 

Proposition 9 [L = sp(2n,C), A = 2A2 ]: We have 

[T2A2 (p + 1 + n,p + l,p + 1 + n,p + 1) 

- T2A2 (p + n,p,p + n,p) ]up 

=(1;,+I-1;,)[(n-2)(1;,+1 +1;,) 

- (n - 3p + 1) ]up = O. (3.45) 

The only nontrivial solution of the system (3.45) is 

It = 1, fz =13 = ... =In = 0, (3.46) 

i.e., the fundamental representation of highest weight AI' 
Algebras oltype Bn. 

Proposition 4 [L = so(2n + I,C), A = 2AI]: The con
dition T2At (2n + 1,2n + 1 )up = 0, written in the Cartan
Weyl basis, becomes 

(3.47) 

Equation (3.47) admits the only solution 
II = fz = .,. = In = p.e., the representationp has the high
est weight An. 

Proposition 5 [L = so (2n + 1 ,C), A = A4]: In this case, 
the information given by the relations TA• (p,q,r,s) = 0 with 
1 <p,q,r,s<;.2n (cf. proof of Proposition 11) has to be com
pleted with information provided by the relations in which 
the labels can take the value 2n + 1. The relations informing 
about the weight of representation p are those with 
p = q = 2n + 1. These relations are identically satisfied; 
hence for algebras of type B n the identities TA • (p) = 0 have 
the same solution as for algebras of type Dn: the highest 
weight ofrepresentationp is mAl (m = 1,2, ... ). 

Proposition 6 [L = so(2n + I,C), A = 2A2 ]: We have 

T2A2 (2i,2i - 1,2i,2i - 1 )up 

= { - 17 + _1_ (2/7 + (2n - 2i - 1)/; 
2n - 1 

;) 1 
+2Ilk ----

k= I n(2n - 1) 

X ktl [/~ + (2n - 2k + 1)lk] }up = 0, 

whence the following system is obtained: 

[T2A. (2i + 2,2i + 1,2i + 2,2i + 1) 

- T2A2 (2i,2i - 1,2i,2i - 1)] up 

(3.48) 

= [1/ (2n - 1)]( /; + I-/; ) [ (2n - 3)( /; + I + /; ) 
- 1 ]up = 0, (3.49) 

which admits the solutions II = fz = ... = In = k and 
II = 1, fz = 13 = ... = In = O. The second solution satisfies 
also Eq. (3.48). This equation gives also the value of k which 
is k = !. The highest weight ofrepresentationp is thus Al or 
An' 
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Algebras oltype An. 

Let us express in Eqs. (2.8)-(2.10) the generators of the 
algebra sl(n + I,C) in terms of the generators of 
glen + I,C), 

8 n+1 
A ;} ~ 

;j = e;j - -- £..- ekk . 
n + I k= I 

(3.50) 

Let up be the highest-weight vector of the representationp of 
glen + I,C). We have 

euup = /;up' i = 1,2, ... ,n + 1, (3.51) 

e;jup = 0, for any kj, (3.52) 

where/; are the components of the highest weight, satisfying 
the inequalities 

It>fz>'" >In >In + I' (3.53) 

Let us denote 
n+1 

(71 = I/; 
i=1 

and 
n+1 

(72 = I [I; + (n + 2 - 2i)/;], 
i=1 

where 
n+1 

I eijej;up = (72Up' 
ij= 1 

(3.54) 

Proposition 1 [L = sl(n + I,C), A = Al + An]: From 

(
n+ 1 2 n+ I ) 

TAt+An(P,P)Up= I [Ap;.A;p] + ---1 I A;jAj; Up 
i=1 n+ ;,j=1 

= [21; + (n - 2p + 2)1;, 

p-I n+1 4 
+ I/;- I/;+-

i=1 i=p+1 n+l 

we obtain 

[TAt+An(P+ l,p+ 1) - TAt+An(P'P)]up 

= (1;,+1 -1;,)[2(1;,+1 +1;,) 

+ (n - 2p + 1) - 4CT1 ]up = O. 
n+l 

(3.56) 

Assuming that the second factor in (3.56) vanishes for two 
distinct valuesp> r, we get1;, +1;,+ 1 >h + h+ 1 in contra
diction with Eq. (3.53): the highest weight has maximum 
degeneracy 

It =fz = ... =1;, >1;,+ 1 = '" =In+ 1 =1;, - k. (3.57) 

From the vanishing ofthe second factor in (3.56), we get 

(1 + 2k I(n + 1))(P - (n + 1)/2) = o. (3.58) 
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The weight (3.57) verifies Eq. (3.58) for any k iff 
P = (n + 1)/2. This solution verifiesalsoEq. (3.55), which 
thus admits a solution only for odd values of n; this solution 
is the representation with highest weight mA(" + 1)/2 

(m = 1,2, ... ). 
The apparition of this rather strange solution will obtain 

an explanation in Sec. IV. 
Proposition 2 [L = sl(n + I,C), A = A2 + A,,_ d: It 

can be proved that the components of the highest weight 
satisfy the relations II = ... = /p > /p + I = ... = I" + I . 
From 

TA,+An_,(P=q<p+ 1 =r=s)vp 

= -2(p-l)(n-p)(/p+, -/P)(/P+I 

-/P + l)vp =0 (3.59) 

and from the impossibility to vanish of the last parenthesis in 
Eq. (3.59) [cf.Eq. (3.53)] we get that the only admissible 
highest weights are 

I,>h= ... =1"+1 (3.60) 

and 

(3.61) 

i.e., the representationp has the highest weight mAl or mA" 
(m = 1,2, ... ). 

Proposition 3 [L = sl(n + I,C), A = 2A, + 2A,,]: 
Taking into account Eqs. (3.50), (3.52), and (3.54), the 
equality T2A , + 2An (p = q = r = s) v p = 0 leads to the system 

2 [P-I 2 ( n + 3 ) I! --- L /; +Ip + 0"1 +-2--P /P 
n+3 ;=1 

- 1 (ui + 0"2 + (n + 2)0"1)] = 0, 
2(n + 2) 

(p = 1,2, ... ,n + 1). (3.62) 

The difference between the (p + 1 )th and the pth equations 
(3.62) is 

(/P+I -/P)(/P+I +/p-l 

- [(20"1 - 2p)/(n + 1)]) = O. (3.63) 

The second factor in Eq. (3.63) cannot vanish for two values 
of p simultaneously: suppose /P > /P + I = ... = /q > Iq + I ; 

we get from (3.63) J. - /q + I < 2 which contradicts the as-
p • 

sumption. Putting /P+ I - /P = k, we get k = 1, I.e., 
T2A , + 2An vanishes on any fundamental rep. 

IV. COMPARISON WITH THE HANNABUS8-KOSTANT
OKUBO METHOD 

In the present section we shall compare the results ob
tained so far with those which will be deduced by applying 
the HKO method. 

A. The Hannabuss-Kostant-okubo operator 

Let P..t be a finite-dimensional representation of highest 
weight A of an n-dimensional semisimple Lie algebra Land 
let V..t be the corresponding L module; let C2 (A) be the sec
ond-degree Casimir operator associated with representation 
P..t: 
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" 
C2(A) = L P..t (e;)p..t (ei

). (4.1) 
;=1 

In Eq. (4.1) {e;, i = 1, ... ,n} is a basis in Land 
{i, i = 1, ... ,n} is the basis of L dual to {e;} with respect to 
the Cartan-Killing bilinear form: (e;,ej ) = EJij' 

Definition: We shall call Hannabuss-Kostant-Okubo 
(HKO) operator associated with the pair of representations 
P..t andpp. of the semisimple Lie algebraL the operator tJ ..t.p. 
defined by 

" tJ..t.p.= L p..t(e;) ®pp.(e;). (4.2) 
;= 1 

The HKO operator tJ ).,p. has the following properties. 
(1) Itcommuteswithp..t ®Pp.: 

[tJ..t.p.'P..t ®Pp.] =0. (4.3) 

(2) It is expressible as a function ofthe Casimir opera-
tors C2 (P..t ® Pp.), C2 (P..t ), and c2(Pp.): 

tJ ..t.p. = H c2(P..t ®Pp.) - c2(P..t) ® 1 - 1 ® c2(Pp.)]· 
(4.4) 

(3) The expression of the minimal polynomial satisfied 
by tJ ..t.p. is 

IT [ tJ ..t.p. - !( ((i) + 2EJ,{i) 
rueif(tp.) 

- (A + 2EJ,A) - (Il + 2EJ,Il»)I] = 0, (4.5) 

where fl(A,Il) is the set of distinct weights in the Clebsch
Gordan series of the product P..t ® P p.' 2EJ is the sum of the 
positive roots of L, and the formula C2 (A) = (A + 2EJ,A) for 
the Casimir operator of the representation P..t has been used. 

The HKO method '6,'9,28 for the determination of the 
polynomial relations satisfied by a representation P..t of L 
consists in taking the matrix elements of the polynomial rela
tion (4.5) between basis vectors of the representation P p.' 

Thus in order to obtain second-degree polynomial rela
tions satisfied by P..t it is necessary to determine those repre
sentationspp. for which the Kronecker productp..t ®Pp. de
composes into only two terms, i.e., for which the set of 
weights fl(A,Il) contains only two elements. 

B. Representations for which the HKO operator 
satisfies an equation of second degree (Ref. 26) 

The following theorem determines the pairs of represen
tations {P..t,p p.} of nonexceptional semisimple Lie algebras 
for which relation (4.5) is of second degree, i.e., has the 
expression 

(tJ ..t.p. - (A,Il»)( tJ ..t.p. - H (s + 28,s) 

- (A + 28,A) - (Il + 28"u»)1) = O. (4.6) 

Theorem 2: For the semisimple Lie algebras (1.1) the 
only Kronecker products P..t ® P p. of irreducible representa
tions which decompose into a direct sum of two inequivalent 
irreducible representations are those in columns 2 and 3 of 
Table II. (The representations into which P..t ®Pp. decom
poses are indicated in columns 4 and 5. The roots of the 
corresponding minimal polynomials satisfied by the HKO 
operator are given in columns 6 and 7.) 
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The proof of this proposition is based on a dimensional 
calculation and on the following result due to Dynkin. so 

Let L be a semisimple Lie algebra and let P). and PI' be 
two irreducible representations of L labeled by their highest 
weights A. and It. Let a l ,a2, .•. ,ak be a minimal chain ofsim
pIe roots connecting the weights A. and It, i.e., a set of simple 
roots such that 

(A.,a l ) #0 (ak,p,) #0, 
(4.7) 

(a;.a i + l) #0 (i = 1,2, ... ,k - 1), 

and such that no proper subset of {a l, ••• ,ak } having the same 
properties exists. Then 

S(a l ,a2,···,ak ) ==A. + It - (a l + a2 + ... + a k ) (4.8) 

is the maximum weight for one and only one of the irreduci
ble components in the decomposition of the Kronecker 
productp). ®P,.. 

Candidates for the factors P). and PI' are the representa
tions contained in column 4 of Table I. We know now two 
irreducible components of the product P). ®P,., namely, 
P). +,. (of highest weight A. + It) and P s [of highest weight 
(4.~)] and may thus write 

P). ®p,. =P).+,. ffJps ffJ'" . (4.9) 

A dimensional calculation based on Weyl's dimension for
mula allows one to conclude that in all the cases included in 
Table II we have precisely 

P). ®p,. =P).+,. ffJps' (4.10) 

Details of the calculation are given in Ref. 25. 
The unicity of the decompositions (4.10) listed in Table 

II results from the Kronecker products pointed out in Ap
pendix C. 

C. Comparison for the Lie algebras of type Dn 

Perfect coincidence between the results of the two meth
ods is obtained for the algebras of types B" and D". We shall 
give, in the following, complete proofs of this statement for 
the algebras of type D" . 

For these algebras, the only second-degree quantum 
tensorial identities are Eqs. (2.14)-(2.16) (symmetrized I). 
Theorem 1 points out that the irreducible representations 
labeled by the highest weights listed in column 4 of Table I 
are the only solutions of these identities. 

What we have to prove is that, for algebras of type D II' 
the identities obtained by applying the HKO method to the 
pairs of representations listed in columns 2 and 3 of Table II 
exhaust the quantum tensorial identities (2.14 )-( 2.16). 
More explicitly, we shall prove the following. 

(i) Taking the matrix elements, with respect to P A, ' of 
the equation satisfied by the HKO operator associated with 
PmA. ® PA, we obtain the quantum tensorial identities 
(2.14), 

211 

L [PmA. (Mij ),pmA. (~l) ] + 
j=l 

_ m(m + 2n - 2) I fJ 
- 2 mAn if' 

(4.11) 
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(ii) Similarly, applying the HKO method to the pair of 
representations PmA, and PA._

1 
ffJPA. we obtain the quan

tum tensorial identities (2.15), 

[PmA, (Mij),PmA, (Mk1 )] + 

+ [PmA, (Mil)' PmA, (~k)] + 

+ [PmA, (M1k),PmA, (Mlj)] + = O. (4.12) 

(iii) Applying the HKO method to the pair of represen
tationspA" andp2A, we obtain the quantum tensorialidenti
ties (2.16), 

H2 [ PAn (Mij)' PAn (Mkl )] + - [PAn (Mil ),pA. (~k)] + 

- [PA.(Mik),PA.(Mlj)]+} 

= !(c5ilc5jk - c5ikc5jl)IA. . (4.13) 

Proof of (i): The HKO operator tJ mA .. A, has the expres-
sion 

211 

tJ mA",A, == L PmA. (Mij) ® (eji - eij) 
1 =i<j 

2" 

= - L PmA.(Mij) ®eij' 
i,j= 1 

Introducing this expression in the equation 

(tJ mA .. A, - (mI2)ImA• ®IA,)(tJ mA.,A, 

+ [(m + 2n - 2)/2] I mA• ®IA,) = 0 

satisfied by tJ mA ... A, ' we get the equation 
2,. 2,. 

i'~lj~1 PmA. (Mij) PmA. (Mjl ) ®eil 

2,. 

- (n -1) i,~/mA.(Mil) ®ej/ 

- m(m+2n-2) I ®I =0. 
4 mAn A, 

Observing that 
2,. 

L PmA. (Mij) PmA. (~I ) 
j=1 

1 2,. 

= -2 L [PmA. (Mij),PmA. (~I)] + 
j= I 

+ (n -1)PmA.(Mil ), 

we obtain 
2,. 

2 L [PmA.<Mij),PmA.<MjI)]+®eil 
i,I,j= I 

= m(m + 2n - 2) ImA• ®IA, ' 

(4.14) 

(4.15 ) 

(4.16) 

( 4.17) 

( 4.18) 

whence, taking the matrix elements of PA" we obtain Eq. 
(4.11). To compare Eq. (4.11) withEqs. (2.13) and (2.14) 
let us recall that 

211 

L [PmA. (Mij),PmA. (~i)] + 
i,j= I 

= mn(m + 2n - 2) ImA•. (4.19) 

Proof of (ii): From Table II we read that each of the 
products PmA, ®PA._

1 
and PmA, ®PA. decomposes into a 

direct sum of two irreducible representations and that the 
HKO operators tJ mA"A. _ I and tJ mA"A. satisfy an equation 
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similar to Eq. (4.15). This equation will be satisfied also by 
the HKO operator associated with the pair of representa
tions {PmA, ,PA._

1 
EflPA); we shall denote (abusively) this 

operator by & mA"A. _ I Ell A.' 
Taking into account that the generators ofthe spinorial 

representation PA._
1 

EflPA. of so(2n,C) can be written as 
functions of the generators riO i = 1, ... ,2n, 

[r;,rj] + = 'Mij 1
2

• , (4.20) 

of the Clifford algebra C2n , 

(4.21) 

we obtain, observing that Mj; = - M ij' the expression of the 
HKO operator 

1 2n 
& A A A =- L P A (M .. ) ®r.r.. (4.22) 

rn l' n - 1 EB n 4 i,j = 1 mil} ) I 

Equation (4.15) satisfied by & mA"A. _ I Ell A. becomes 

1 2n 

'4. ~ PmA, (Mij) PmA, (Mkl ) 
/,}.t.r= I 

2n 
®rjr;r1r k +(n-l) L PmA,(Mij)®rjr; 

;,j= I 

- m(m + 2n - 2) I mA , ®I2• = O. (4.23) 

Taking into account Eq. (4.20), it can be proved that 

2n 

- (n -1) L PmA, (Mij) ®rjr; 
;,j= I 

and Eq. (4.23) becomes 

1 2n - L [PmA,(Mij),PmA,(Mkl)]+®rjr;rlrk 
8 i,j,k,l= I 

= m(m + 2n - 2) I mA , ®I2 •. 

(4.24) 

(4.25) 

In order to prove the equivalence of this equation with Eq. 
(2.15) we shall use the following slightly modified form of 
Lemma 6.4 from Ref. 51. 

Lemma: Let {Rijkl' 1 <.i,j,k,I<.2n} be a set of operators 
with the properties 

(1) Rijkl = R k1ij , (4.26) 

(2) Rijkl = - Rj;kl , (4.27) 

and let {r;, i = 1, ... ,2n} satisfying Eq. (4.20) be the genera
tors of a Clifford algebra. Then 

2n 

.2. Rijkl ® r;rjr krl 
;,j,k,I= I 

2n 

=8 L (Rijkl+R;ljk+R;klj)®r;rjrkrl 
1=i<j<k<1 

2n 

+2 L RijJ;®I2•· 
;,j= I 

Let now [cf. Table I and Eq. (2.15)] 

(4.28) 

Rijkl == [PmA, (Mij)' PmA, (Mkl )] + . (4.29) 

Taking into account Eqs. (4.28) and (4.29) and recalling 
that 

2n 

L PmA, (Mij) PmA, (~;) = m(m + 2n - 2) I mA, ' 
I =;<j 

(4.30) 

Eq. (4.25) becomes 

L {[ PmA, (Mij),PmA, (Mkl )] + 
i<j<k<1 

+ [ PmA, (Mil), PmA, (~k) ] + 

+ [PmA,(M;k),PmA,(Mlj)]+}®rjr;r1rk =0. 

(4.31) 

The equivalence between the HKO equation and Eq. (2.15) 
is evident. 

Proof of (iii): To prove that the HKO polynomial rela
tions for the representations PA._

1 
and PAn are precisely the 

quantum tensorial identities (2.16) we consider the prod
ucts PAn _ I ® P2A, and PAn ® P2A,; the equation satisfied by 
the HKO operator is (cf. Table II) 

(&A.,2A,>2+ (n-l)&A.,2A, -nIA.®I2A, =0. (4.32) 

Let us introduce in the representation space VA, of PA, 
an orthonormal basis {v;, i = 1, ... ,2n} on which the action of 
PA, (Mkl ) is 

PA, (Mkl )vi ==8/iVk - 8k;vI . 

We have 

PA, ®PA1 =:=P2A, Eflp(O); 

the vectors transforming under P2A, are 

8.. 2n 
V; V Vj - --L L Vs V Vs , 

2n s= I 

where we denoted 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

To determine the matrix elements of the HKO operator be
tween states of the representation P2A, we first calculate 

2 ( 8·. 2n ) 
{(& A.,2A,) + (n -1)& A",2A, - nIA• ®I2A ,} V; VVj - 2~ i~1 Vs VVs 

752 

= ~ h PAn (Mk;),PA.<Mlj)] + + [PA.(Mkj),PA. (M/i)] + + 8ljC~/A'<Mkr) PAn (Mr;) + (n - 1) PA.<Mk;») 

+ 8liC~/A'<Mkr) PA.<Mrj) + (n - 1) PA.(Mkj ») + 8kiC~/A.(Mlr) PA.<Mrj ) + (n - 1) PA.<Mlj») 

(4.37) 
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Observing that, for m = 1, Eq. (4.11) becomes 
2n 

L PA.<M;r)PA.(Mrl ) - (n-1)PA.<Mj/) 
r= I 

2n -1 
--4-8j/IA. =0, (4.38) 

the scalar product of the lhs of Eq. (4.37) with Vk V VI be
comes 

[PA.(Mk;),PA.(Mlj)] + - [pA.(Mkl)'PA.(~;)]+ 

+ 1 (8lj8k; +8kj8/i -28ij8kl )IA• =0, (4.39) 

whence 

H2 [ PAn (Mk; ),pA. (Mlj)] + 

- [PA.<Mkj),PA.(Mj/)]+ 

- [PA.<Mkl ),PA. (Mij)] +} = 1(8k}8j/ - 8kI8ij)IA• ' 
(4.40) 

which is precisely the result obtained from the symmetrized 
equations (2.16) and (2.14) (both satisfied by the represen
tation P A. ) • 

D. Comparison for the Lie algebras of type en 
The inspection of Tables I and II shows that the deriva

tion of the quantum polynomial identities, outlined in Sec. 
II, followed by the determination of their solutions leads, for 
the algebras of type Cn , to results which cannot be obtained 
directly using the HKO method. Indeed, the representations 
P Ak (k = 2, ... ,n - 1) which are solutions of the quantum 
tensorial identity (2.22) [cf. also Eq. (B 10) ] have no Okubo 
partners. The only HKO operators which satisfy equations 
of second degree are & mA •• A, • 

Let us mention that the equation satisfied by this opera· 
tor leads to polynomial identities for the representations 
PmA. of sp(2n,C) which coincide with the quantum ten
sorial identity (2.21). 

Indeed, the HKO operator & mA.,A, for the algebra 
sp(2n,C) has the expression 

2n 

& mA.,A, = L gjs PmAn (S;r ) ® ers (4.41) 
;,r,s= 1 

(where gij = 8;,1+ n - 8j + n,j) and satisfies the equation 

(& mA.,A,)2 + (n + 1)& mAn,A, 

- m(m + n + 1) ImAn ®IA, = 0, (4.42) 

which, using the expression (4.41) of the operator, becomes 

2n {2n . L g;s . L gjk PmA. (Sjr) PmAn (S;k) 
1,',S= 1 },k= 1 

+ (n + 1) PmAn (S;r) - m(m + n + 1) gsJmA.} 

®ers = 0, (4.43) 

whence, by symmetrization, we get the quantum identities 
(2.21 ). 

E. The comparison for the Lie algebras An 

For Lie algebras oftypeA n the correspondence between 
the tensorial identities derived using our method and those 
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obtained by the HKO method becomes more involved, due 
to the fact that Lie algebras of type An admit second-degree 
adjoint tensors. This property allows the existence of inho
mogeneous second-degree tensorial identities, which appear 
as linear combinations between adjoint tensors of second and 
first degrees. 

Such identities can be obtained by the HKO method 
starting from the equation satisified by the HKO operator 
associated with the pairs of representations {PmAk'PA)' 
where k = 1, ... ,n (or with the conjugate pairs 
{PmAn_k+ "PA)' The HKO operator 

n+1 

& rnAk ,A, = L PmA. (Ars) ® PA, (Asr) (4.44) 
r.S= I 

satisfies the identity (cf. Table II) 

(& mAk,A, - m(1 - kl(n + l))/mA. ®IA,) 

X (& mAk,A, + k(l + ml(n + I»ImAk ®IA,) = O. 

(4.45) 

Taking, in Eq. (4.45), the matrix elements of representation 
P A, we obtain the identity 

n+1 

L [PmA. (Ajs ), PmAk (As;)] + 
s= 1 

2 n+l 
- n + 1 8ij r,~ I PmAk (Ars) PmA. (Asr) 

= 2(m _ k + n + 1 _ 2mk) P (A .. ) . 
2 n + 1 mAo )1 

(4.46) 

The equality (4.46) expresses the following remarkable 
property: the second-degree adjoint tensors in the Ihs are
in the representation PmAk -proportional with the first-de
gree adjoint tensors PmAk (Ajj ). 

Identities of this kind have not been obtained using our 
procedure because we restricted our search to homogeneous 
polynomials of second degree. 

There is, however, one particular case in which the iden
tities (4.46) coincide with those obtained by the method 
pointed out in Sec. II. Let us take, indeed, in Eq. (4.46) 

k = (n + 1)/2. (4.47) 

In this case, for any m (positive, integer), the numerical 
factor of the first-degree polynomial vanishes and the identi
ty (4.46) obtained by the HKO method reduces to a homo
geneous second-degree polynomial relation, which is pre
cisely the quantum tensorial identity (2.8). As stated by 
Theorem 1 (Proposition 1), the representations which satis
fy this identity are PmA ,m = 1,2, ... , in good agreement 

(n+ 1)/2 

with the result just obtained. 
The quantum tensorial identities (2.9) and (2.10) 

satisfied by the representations mAl' mAn' and Ak 
(k = 1, ... ,n) of the algebras of type An can be obtained by the 
HKO method, provided Eq. (4.46) is taken into account. 

Note added in proof After this paper was submitted, we 
realizedS2 that our results can be systematized completely by 
using the coefficients Co do c/, d;v (iEN'={1,2, ... ,n}) in the 
expressions of the highest long root (amax = a hl 

= l:7= I c;a;), of the highest short root (ahs = l:7= I d;a j ), 

andoftheirdualsa~ =l:7=lc;vajv anda~ =l:7=ld;va / 
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in terms of the simple roots a; and coroots a/ . Let us consid
er the sets of natural numbers Nc = {iEN; C; = n, Ndv 
= {iEN; d;v = n, and Ncv = {iEN; c/ = n. The pairs 

{;t, IL} of highest weights possessing the property defined in 
Theorem 2 are then of the form {A;,mAj } with iENdV and 
jENc • The highest weights A; with iENdV are called minus
cule weights, and the corresponding finite-dimensional irre
ducible representations have remarkable properties (cf. Ref. 
53); the highest weights mAj withjENc have been obtained 
by Cavalli, D' Ariano, and Michels4 from the condition that 
the orbits generated from the corresponding highest-weight 
vectors be Hermitian symmetric spaces. The fact that these 
spaces are classified by the set Nc is known.5S The condition 
(D2) that determines the labels i ofthe A;'s that appear in 
Table I is equivalent with the condition iEN v. We remark c 
that Ndv ~Ncv. Let us recall that the representations of the 
Yangians that appear in Theorem 7 of Ref. 27 are classified 
by the set Nc U Nc v • As the set Nc classifies the Hermitian 
symmetric spaces, it classifies also a part of the representa
tions of the Y angians. 56 

APPENDIX A: TRANSFORMATIONS TO THE CARTAN
WEYLBASES 

Let Mij (i,j = l, ... ,2n) be the generators of the algebra 
so (2n, C), satisfying the structure relations (2.11) . The 
transformation from the basis M ij to the Cartan-Weyl basis, 
defined by the structure relations (3.7)-(3.11) with 

E= + 1, is U=..r=T) 
M 2Ic,21-1 = - (i/2)(BkJ + Ckl - Akl - A 1k ), (AI) 

M lk - I ,21 = - (i/2)(Bkl + Ckl +Akl +A1k ), (A2) 

M2k - I ,21-1 = - !(Bkl - Ckl - Akl + A 1k ) , (A3) 

M1k,21 = - !(Bk1 - Ckl +Akl -Alk) . (A4) 

1. Algebras of type An 

We have 

I 

In particular, M2k - I ,2k = - tAu; Au (k = 1, ... ,n) are 
generators of the Cartan subalgebra; Aij (i < j) and Bij (any 
i,j) are raising operators; Aij (i>j) and Cij (any i,j) are 
lowering operators. 

For algebras so(2n + I,C) one has to consider also the 
transformations 

M2k,ln+ I = - (i/v2)(ak + bk ) , 

M2k - l ,ln+ I = - (lIt'2)(ak - bk ) , 

(A5) 

(A6) 

in which ak (bk ) (k = 1, ... ,n) are raising (lowering) opera
tors. 

Let Sij (i,j = l, ... ,2n) be the generators of the algebra 
sp(2n,C), which satisfy the structure relations (2.1S). The 
transformations to the Cartan-Weyl basis, defined by the 
structure relations (3.7)-(3.11) with E = - 1, are 

Aij =SI+n,j' BIj =SI+n,j+n' Cij =SIj' (A7) 

APPENDIX B: DERIVATION OF THE SOLUTIONS OF 
THE SECOND-DEGREE TENSORIAL IDENTITIES USING 
THE WIGNER-ECKART THEOREM 

The results of Table I can be rederived using the 
Wigner-Eckart theorem. To prove that a tensor operator TA 
vanishes in a representation Po [denoted, in the following, 
only by its highest weight (0) ] it is sufficient to prove that in 
the Clebsch-Gordan series of the Kronecker product 
(A) ® (0) the representation (0) does not appear. This 
condition is, however, not necessary: the vanishing of the 
tensor TAl + A. in the representation (mAn + t/2) (cf. Table 
I) is not a consequence of the Wigner-Eckart theorem; this 
phenomenon has been discussed in Sec. IV E. 

In the following, we list, for each line of Table I, the 
Clebsch-Gordan series for the product of pairs of represen
tations (A) and (0) belonging to columns 3 and 4 of Table 
I, respectively. 

(AI + An) ® (mA(n+ 1)/2) = (AI + mA(n+ 1)/2 + An) e(AI + A(n-O/2 + (m - l)A(n+ 1)/2) 

e (m - I)A(n+ 0/2 + A(n+ 3)/2 + An) e (mA(n+ 1)/2) 

e(A(n_0/2 + (m-2)A(n+t)/2 +A(n+3)/2)' (Bl) 

(Az + A n- t ) ® (mAt) = (mAl + Al + An_I) e(m - l)At + A3 + An I) 

e(m -1)At + Az + An)e«m - 2)A1 + A3 + An), (B2) 

(Az + An_I) ® (mAn) = (Az + An_I + mAn) e(Az + An_ 2 + (m - 1)An) 

e(At+An t+(m-1)An)e(AI+An_2+(m-2)An), (B3) 

(2At + 2An) ® (Ak ) = (2AI + Ak + 2An) e (AI + A k+ I + 2An) e (2AI + A k_ 1 + An) e (AI + Ak + An) . 
(B4) 

2. Algebras of type Bn 
We have 

754 

(2At) ® (An) = (2AI + All) e (AI + An), 

(A4) ® (mAt) = (mAt + A4) e(m -1)A t + As)e«m - l)A. + A3)e(m - 2)AI + A4)' 

(2A2 ) ® (AI) = (AI + 2A2 ) e (Az + A3) e (AI + Az) , 

(2Az) ® (An) = (2Az + An) e (AI + Az + An) e (Az + An) . 
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3. Algebras of type Cn 

We have 

(A2) ® (mAn) = (A2 + mAn) $(AI + A n_ 1 + (m - l)An)$ (An_2 + (m - I)An), 

(4AI ) ® (Ak ) = (4AI + Ak ) $ (3AI + Ak + I) $ (3AI + A k _ l ) Ell (2AI + Ak ), 

(2A2) ® (AI) = (AI + 2A2) Ell (A2 + A 3 ) $ (AI + A 2) . 

4. Algebras of type On 

We have 

(2AI ) ® (mAn_I) = (2AI + mAn_I) Ell (AI + (m - l)An_ 1 + An) Ell (m - 2)An_ 1 + 2An), 

(2AI ) ® (mAn) = (2AI + mAn) Ell (AI + A n_ 1 + (m - 1)An) EIl(2An_ 1 + (m - 2)An), 

(A4) ® (mAl) = (mAl + A4) Ell (m - 1)AI + A5) Ell «m - 1)AI + A 3 ) Ell (m - 2)AI + A4), 

(2A2) ® (AI) = (AI + 2A2 ) Ell (A2 + A 3 ) Ell (AI + A 3 ) , 

(2A2) ® (An_I) = (2A2 + An_I) Ell (AI + A2 + An) $ (A2 + An_I) , 

(2A2) ® (An) = (2A2 + An) Ell (AI + A2 + An_I) Ell (A2 + An) . 

k min(q,;) 

(B9) 

(BlO) 

(Btl) 

(Bt2) 

(B13) 

(BI4) 

(BI5) 

(BI6) 

(BI7) 

APPENDIX C: KRONECKER PRODUCTS OF 
REPRESENTATIONS THAT SATISFY THE SECOND
DEGREE QUANTUM TENSORIAL IDENTITIES 

(Ak)®(An_ q )= Ell $ (A k -;+An_ q _;+2j)' 
;=0 j=O 

As pointed out by Theorem 2, the pairs of representa
tions belonging to the same line of Table II and to columns 2 
and 3 are the only pairs of which the Kronecker products 
decompose into precisely two irreducible components. 

The proof of the unicity is provided by this Appendix, in 
which the products of the other representations contained in 
columns 2 and 3 of Table II are listed. The representations 
are labeled by their highest weights in parentheses. The sym
bol (Ao) denotes the zero weight. 

For algebras of type An' the proof of the unicity results 
from the rules for Kronecker products of representations 
labeled by Young tableaux. 

1. Algebras of type Bn 

Forn = 2, 

(m +p)AI)® (mAl) 
m j 

= $ Ell (2j-2k+p)AI +2kA2). 
j=Ok=O 

For n;>3, 

(m +p)AI)® (mAl) 

m j 

= Ell Ell (2j-2k+p)AI +kA2 ), 
j=Ok=O 

(An)®(An) 
n 

= Ell (An _ k ) $ (2An)' 
k=1 

2. Algebras of type Cn 

We have 

(CIa) 

(Clb) 

(C2) 

(m +p)An)® (mAn) = :1:7='~i=0 ttl 2k;A; +PAn) , 

(C3) 
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(C4) 
k 

(Ak ) ® (mAn) = Ell (A; + An-k+; + (m - I)An). 
;=0 

3. Algebras of type On 

We have 

(pAl) ® (qA I ) 

min(p,q) k 

(C5) 

= Ell Ell (p + q - 2k) A I + (k - i) A 2) , (C6) 
k=O ;=0 

(pAl) ® (qAn) 
min(p,q) 

= Ell (p - i)AI + iAn_ 1 + (q - i)An) , (C7) 
;=0 

( 
[n12] ) ) 

+ P + q - 2 k~1 ik An , (C8) 

(pAl) ® (qAn _ l ) 

(C9) 

( 
[n12])) 

+ p+q-2 k~1 ik An_I' 

min(p,q) 

Ell 
1=0 

( 

[(n-3)/2]-I) 
+ p -/- L ik An _ 1 

k=O 

( 
[(n-3)/2]-I)) 

+ q - / - L ik An . 
k=O 
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TABLE III. Solutions (A) of Drinfeld's equations (column 8); the proofs (column 7) are based on formulas (D 1)-( D3 ). Bourbaki's conventions are used 
for the simple roots a l of the semisimple Lie algebras; theirlabel i, ranging from 1 to n, is indicated in column 4 in order to label the coefficients CI' the ratios ro 
and the fundamental highest weights A,. 

Lie . 
algebra a max = r Cia; (am .. ,amax ) 

;=1 

2 . 
B. a l +2 L a, 2 

;=2 n-l 
n 

.-1 
C. 2 L a l +a. 4 

i=l n-l 

n 

.-2 2 

D. a l + 2 L a, + a._I + an 2 
;=2 n-2 

n-l 

n 

. 
A. La, 2 

;=1 n 

APPENDIX D: COMPARISON BETWEEN DRINFELD'S 
SOLUTIONS AND THE SOLUTIONS OF THE SECOND· 
DEGREE QUANTUM TENSORIAL IDENTITIES 

In this appendix we show that the representations ob
tained by Orinfeld (Ref. 27, Theorem 7) from the condition 
that a set of third-degree polynomials in the enveloping alge
bra vanish are exactly the representations listed in column 4 
of Table I, deduced in Sec. III from the condition that sec
ond-degree polynomials in the enveloping algebra vanish. 

The coincidence is perfect only for Lie algebras of types 
Bn , Dn , and en. For Lie algebras of type An , as explained in 
Sec. IV E and in Ref. 27 (Theorem 9), the existence of sec
ond-degree adjoint tensors gives rise to new identities in our 
case and to new solutions in Orinfeld's case. 

The representation (rnA;) is a solution of Orinfeld's 
equations if the coefficient Ci of the simple root a j in the 
expression of the highest root a max as a linear combination of 
simple roots is 

Cj = 1. (01) 

The representation (Ai) is a solution ofOrinfeld's equations 
if 

Cj =r;, (02) 

where 

(03) 
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(aoa,) r, c, Proof (A) 

2 
cl =: 1 mAl 
cl =: rl AI 

2 2 
C, =F 1 

c,=F r, 

2 2 en ='" A. 

A, 
2 2 2 c j = 'j 

(i =: 1, ... ,n) 

4 
en ='n 

mAn 
c. =: 1 

2 
CI =: 1 mAl 
cl =: rl AI 

2 2 
C,=F 1 

C,=F r, 

2 
c. _ I =: 1 mAn_I 

cn _ 1 =r
ll

_ 1 An_I 

2 
C. = 1 rnA. 

en = rn An 

2 
c, = 1 rnA, 

Cj =rj (i = 1, ... ,n) 

A, 

(i = 1, ... ,n) 

Table III presents the values of the coefficients ci,ri as 
well as (in column 7) Orinfeld's solutions; the arguments for 
the presence of these solutions [Eqs. (02) or (03)] are 
indicated in column 8 of this table. 
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Irreducible representations of the real compact Lie algebrag2 are given ing2:::>so( 4) bases. All 
missing labels are accounted for by the explicit construction of ag2:::>so( 4) basis of vector 
holomorphic functions. The general problem of missing internal labels is also briefly discussed. 

I. INTRODUCTION 

The Lie algebra g2 presents many interesting features. 
First, it has found many physical applications, briefly re
viewed by Beckers, Russin, and Winternitz l who also exten
sively studied its various and numerous real forms. It is also a 
rank-2 Lie algebra of order 14 and its algebraic structure is 
therefore relatively easy to handle. 

Although the representation theory of g2 has received 
much attention,2-5 much remains to be done since any at
tempt to construct irreducible representations of g2 has to 
confront a recurring problem of representation theory, 
namely the appearance of missing labels. More precisely, 
when bases for its irreducible representations are decom
posed with respect to the subalgebra chains g2 :::>so( 4) and 
g2:::>su(3), one has to provide, respectively, 2 and 1 supple
mentary labels to obtain a complete basis specification. 

A widely used and convenient approach to the resolu
tion of the missing label problem is the introduction of an 
integrity basis6 for tensorial operators belonging to the enve
loping algebra of a Lie algebra g that are scalar in a subalge
bra h, the eigenvalues of which will provide the missing la
bels for the desired g:::> h basis. Alternative methods are the 
use of shift operators 7 or path labels.2 These methods are 
usually applicable to the most general cases but their imple
mentations are often complicated. 

In this paper, we successfully address the missing label 
problem for g2 by exploiting the versatility of vector coher
ent state (VCS) theory8.1l and give an explicit basis con
struction for all irreducible ladder representations of g2 
when these are reduced with respect tog2:::>so(4). We show 
that VCS theory naturally resolves the missing labels prob
lem in a manner that directly appeals to specific aspects of 
character theory. Finally, we discuss at some length the spe
cific nature and group-theoretical significance of the various 
internal labels introduced by VCS theory. 

II. THE 92 LIE ALGEBRA 

A. The Cartan baSis 

The complex extension~ of the Lie algebrag2 is a sim
plerank-2 Lie algebra of order 14. 1.2.12 Its root diagram (Fig. 
1) has the form of a "star of David." A possible choice of 
positive roots is given by the set 

a+ = {a l ,a2,al + a2,a l + 2a2,al + 3a2,2al + 3a2}' 
(2.1 ) 

where, using the Killing form, we give the following norma
lization: 

(a l ,a2) = 2, (a l ,a2) = - 1, (a2,a2) =~, (2.2) 

for the two fundamental simple roots a I and a 2• The set of all 
nonzero roots is then given by 

a = a+ EB a_, a_ = - a+. 
An alternative set of positive roots will also be used in this 
paper [cf. Eq. (3.6)]. 

Basis vectors for ~ are given by an orthonormal basis 
{h lh2 } for the Cartan subalgebra 

K = span{h lh2}, (2.3a) 

corresponding to a pair of null root vectors, and a set of 
vectors 

(2.3b) 

Elements of the Cartan subalgebra are put into one-to
one correspondence with the root vectors in the canonical 
way with 

The algebraic structure of ~ is then given by 

[hp,hl'] = 0, [hp,ll'] = (p,/-l)/I" 

[Ip.l_p] =hp' [lp,ll'] = Np.l'lp+I" p+wI=O. 
(2.4) 

We necessarily have 

Np.1' = - NI"p 

and also require 

Np.1' = - N _ p. _I' = Np. _I' _ P • 

With the normalization (2.2), we can set 

(2.5a) 

(2.5b) 

Na,.a, = 1, Na, + a,.a, = - 2YJ/3, Na, + 2a,.a, = - 1, 

Na, + 2a,.a, + a, = - 1, Na, + 3a,.a, = - 1. 

B. The 92:::> su(3):::> u(2) chain 

Defining 

and 

gl2 = la" g21 = 1_ a,' 

g23 = la, +3a,' g32 = l- a,-3a" 

g13 = 12a, +3a,' g31 = 1_ 2a, -3a,' 

(2.6) 

(2.7a) 
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FIG. 1. Root diagram for g2. 

gil - g22 = v'1h H gil + g22 - 2g33 = .j6h2, (2.7b) 

we easily verify, with restriction ofthe base field to a, that 
the long roots of 11 and Cartan subalgebra K define an su ( 3 ) 
real subalgebra with commutation relations inferred from 
the u ( 3) relations 

(2.8) 

Defining the tensor operators e and f with the remaining 
roots (see Fig. 2), 

e l = YJ/a, +a,' It = YJ/_a,_a" 

e2 = YJ/a" h = YJ/_ a" 

e3 = YJ/- a,-2a" h = YJ/a, +2a,' 

(2.9) 

we then find with the help ofEqs. (2.4)-(2.6) the following 
commutation relations (see also Humphreys, 12 Sec. 19.3): 

[gij,ek ] = 8jk ej> [gijJ"k] = - 8;Jj, (2. lOa) 

[ej>ej ] = - 2Eijklk, [/;,./j] = 2Eijkek, 

[ej>./j] = 3gij - 8ijgkk' 
(2. lOb) 

According to (2.10a), e and f transform, respectively, as 
{10} and {II} tensor operators under su(3). 

We require the Hermiticity conditions 

(2.11 ) 

in order that the Lie algebra representations exponentiate to 
unitary representations of the group. 

It will be useful for the following to consider the canoni-

FIG. 2. Su(3) structure of the root diagram for g2. 
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cal (Gel'fand) u(2) subalgebra ofsu(3) to be given by the 
set of generators: 

u(2) = span{ gI2,g21,g1l - g33,g22 - g33}' (2.12) 

where the last two weight operators are linear combinations 
oftheCartan weight operators hi andh2 [seeEq. (2.7b»). 

C. The 92::Jso(4)::Ju(2) chain 

It is well known that so ( 4) is a nonsimple Lie algebra 
isomorphic to the direct sum su (2) Ell su (2). Its root dia
gram is given by two orthogonal A I [the complexification of 
su (2») root diagrams. 

A Cartan basis for the complex extension of any so (2n) 
::Ju(n) Lie algebra chain is given by the set l

0-
13 

{cij,aij,bij; l<i,j<n}, 

where {cij} spans the u(n) subalgebra and 

aij = -aji' bij = -bj ;. 

(2.13a) 

(2.13b) 

The commutations relations for so(2n) are then given by 

[Cij,akl] = 8jkai/ + 8j1ak;, [cij,bkl ] = - 8;k bjl - 8i/bkj , 

[aij,akl ] = 0, [bij,bkl ] = 0, 
(2.14) 

[Cij'Ckl ] = 8jkci/ - 8i/Ckj" 

According to the above commutation relations, the Cartan 
raising and lowering operators {aij} and {bij} transform as 
{I t} and { - 1, - t} tensors, respectively, under transfor
mations generated by the u(n) subalgebra {cij}' 

It is easily verified that a possible embedding for the 
so ( 4) ::J u (2) subalgebra of g2, when expressed in the above 
so(2n) Cartan basis with n = 2 and in terms of the 
g2::Jsu(3) ::Ju(2) basis (2.7) and (2.9) is given by 

C12 = g12, C21 = g21' ClI = gil - g33' 

C22 = g22 - g33' a l2 = - h, b12 = - e3· 
(2.15 ) 

Note that the two chains have a u (2) subalgebra in com
mon. 

The above basis for the so ( 4) Lie algebra is isomorphic 
to the direct sum su (2) Ell su (2). Bases for the two commut
ing su (2) Lie algebras are given by 

U+,l-,lo} = {c 12,CW !(ClI - C22 )} 

and 

{S+,S_,So} = {a 12,b12,!(CIl + C22 )}, 

(2.16a) 

(2.16b) 

respectively, thereby defining the so ( 4 ) - su (2) Ell su ( 2) iso
morphism. We shall distinguish these two su (2) subalgebras 
by denoting them SUI (2) and sus (2). Irreps [A IA2 ) ofso( 4) 
will be labeled by the eigenvalues Al and A2 of the weight 
operators CII and C22 on their highest-weight state. The cor
responding SUI (2) Ell sus (2) labels are then clearly 

(l,S) = (!(A I -A2 ),!(A I +A2 »). (2.17) 

The basis (2.15) will be preferred for the branching rule 
discussion (Sec. III) while (2.16) will be preferred in com
putations (Sec. IV). 

The remaining 8 ( = 14 - 6) generators of g2 comple
mentary to the above so ( 4 ) ::J u (2) subalgebra are found to 
transform under so ( 4) as components of a single irreducible 
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[21] ((1,S) = (!,m tensor (Ref. 14) [see Eq. (2.23) and 
Fig. 3]. In both Gel'fand 

t [m12 m22] 
mil 

and angular momentum notation 

t 112MJ _ t MJ 
3/2Ms - Ms' 

(2.18a) 

(2.18b) 

we find the following correspondences [see Sec. III B for the 
soC 4) !u(2) branching rule]: 

2 
1] _ + 1/2 _ _ -t +3/2 -gl3- /2a,+3a2' 

0] _ +112 _ /.I'f-I -t +1/2 -el V.J- a,+a2' 
(2.19a) 

- 1] _ t + 112 _ ,,/.I'f -I - -112 -J2 V.J - -2a2' 

-1 
- 2] _ t + 112 - _ - 1 - -3/2 - g32- -a,-3a2' 

and 

1] -t -112 -g -I - +3/2 - 23 - a,+3a2' 

0] _ 112 . I'f 1 = t + 112 = e2/v.J = a 2 ' 

- 1] -1/2 .I'f = t -112 = - il/v.J = 
-1 

(2.19b) 

-2 
- 2] -112 = t _ 3/2 = g31 = 1_ 2a, - 3a2' 

For unitarity, we require 

(t~)t = (_ 1)1I2-1'( _ 1)3/2- Vt =~. (2.20) 

The transformation properties of the tensor t under 
soC 4) -su(2) Ell su(2) are conveniently expressed in tensor
ial form by 

[/a,tn = w!+ 1)]1/2qJL;lal!JL+a)t~+a, 

[Sp,t~] = n(~+ 1)r/2(~v;1.BI~v+.B)t~+p. 
(2.21 ) 

The commutation relations of its components are given 
by 

FIG. 3. So( 4) structure of the root diagram for g2' 
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[t +112t +112] = (_1)3/2- v8 / 
,." 'v Jl. - v +, 

[ t - 112 t - 112] = ( _ I) 3/2 -1'8 / 
I' ' v I'.-v -, (2.22) 

[t 1'+ 1/2,t v- 1I2 ] = (2$/3)qJL;~vllv + JL)SI' + v 

+81'.-v( -1)3/2-1'/0' 

For notational ease, it is useful to define the following 
sus (2) tensor operators {u} and {v}: 

u = t + 1/2 
I' I' ' 

V =t- 1I2 
I' I' ' 

(2.23a) 

(2.23b) 

both of which carry an irrep S = ~ of the sUs (2) Lie algebra. 
These tensors respectively raise and lower the /0 weight of 
basis states. 

III. THE STATE LABELING PROBLEM 

A. State labeling for the 92 ~ su(3) ~ u(2) chain 

A unitary irrep of g2 is labeled in the notation of King 
and QubanchP5 by [JLI,JL2]' whereJLI andJL2 are the respec
tive eigenvalues of the weight operators 

ha, + 3a2 = g22 - g33 and ha, = gIl - g22 

on the highest-weight state defined by 

Ip I[JLI JL2]hw) = 0, VpE!J.+. 

( 3.1a) 

(3.lb) 

The branching rule g2!su(3) has been derived by King 
and QubanchP5 and by Perroud.2 Curiously, it is related to 
the weight decomposition of an associated su (3) representa
tion; more precisely, we have 

g2!su(3): 

(3.2a) 

where M t~~'~!'.V2'I" + 1'2 _ v,) is the multiplicity of the weight 

(n l ,n2,n3) = (VI - V2,V2,JLI +JL2 - VI) 

in the u (3) irrep { JL I JL20}. The multiplicity M is easily ob
tained by using the well-known betweenness conditions of 
the associated Gel'fand pattern 

JL2 
(3.2b) 

and is given by the number of allowed values of {J in (3.2b). 
(For convenience, we reproduce the results of King and Qu
banchi l5 for irreps ofg2 with O<JLI + JL2<6 in Table I.) 

According to Racah, 16 the number of internal labels re
quired to specify the basis states of an irrep of a compact 
group is !(l- r), where I is the order of the group (number 
of generators) and r its rank (number of commuting weight 
operator). In the case of interest to us, the number of inter
nallabels is 6 = ~ ( 14 - 2). Since an su ( 3) basis provides us 
with five labels, one must therefore introduce an extra label 
({J) to completely specify ag2~su(3) basis corresponding 
to the branching rule (3.2a). It remains, however, to give an 
operational meaning to {J. As of now, the only satisfactory 
resolution to this missing label problem has been given by 
Perroud2 with the introduction of a "path label." 
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TABLE I. Branching multiplicities M {e:.';'tJ of the representations [#1 #2] 
ofg2 into representations {VI V2} ofsu(3) (King and QubanchP'). 

{VIV2} 11 22 32 33 43 44 53 54 55 64 65 66 
[#1#2] 00 10 21 20 31 30 42 41 40 52 51 50 63 62 61 60 

00 

10 

11 1 
20 1 1 

21 2 
30 1 

22 1 1 
31 2 2 
40 1 1 

32 1 2 2 1 
41 1 2 2 2 2 
50 1 1 1 1 1 1 

33 1 1 1 1 
42 1 2 3 2 2 1 
51 2 2 2 2 2 2 1 
60 1 1 1 1 1 1 1 1 

It has been repeatedly demonstrated (see the review of 
Rowe et al. lo ) that vector ves theory, when applicable, of
fers natural labeling schemes. Therefore since a ves expan
sion exists '7 for the Lie algebra chain g2::Jsu(3), it should 
provide an operational meaning for the label {}. However, 
the g2::J su (3) Lie algebra chain has a raising operator alge
bra that is nilpotent of order 3, i.e, 

n+ = a+/u(2) = n~ + n2+ + n3+ 

with 

[n+,ni+ ] C L n~, 
j<i 

(3.3a) 

(3.3b) 

and such a case has not yet been covered in applications of 
ves theory. We therefore postpone the uncovering of a 
meaning of {} to a subsequent publication. 17 It will neverthe
less be shown in Sec. IV that ves theory readily resolves ~he 
g 2 ::J so ( 4 ) basis construction since this Lie algebra chain has 
a nilpotent raising operator algebra n + of order 2, a case 
fully reviewed in Rowe et al. 10 

Because of the way we have embedded u(2) in su(3) 
[Eq. (2.12)], the su(3) ~u(2) branching rule is given by 

su(3Hu(2): 

{VIV2}~ L (ml2-n3,m22-n3)=(m;2m22)' 

(3.4a) 

where m l2 and m22 satisfy the usual betweenness conditions 

(3.4b) 

and 
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(3.4c) 

In Dirac notation, a g 2 ::J su ( 3 ) ::J u (2) basis will there
fore be denoted by 

1[J.t1 J.t2){}; {VI,v2}(mI2m22 )mll ), m22 <mil <mlz ' 
(3.5) 

B. State labeling for the 92:::> 80(4):::> u(2) chain 

To facilitate the construction of a gz::Jso( 4) basis, it is 
convenient to now define a highest-weight state by 

Ual[J.tIJ.tZ)hw)'=O, -~<a<~, 

1+ I [J.tl J.t2]hw)' = 0, 

S+ I [J.tl J.tz]hw)' = O. 

(3.6) 

One sees that the positive roots corresponding to the raising 
operators in this equation are obtained from those of Eq. 
(2.1) by rotation through an angle of - 1T 13. Hence it be
comes appropriate to define the representation labels J.t I and 
J.t2 as the eigenvalues of the rotated weight operators 

hZa ,+3a, =gll-g33 =Io+So 
and 

h _ a, _ 3a, = g33 - g22 = 10 - So· 

(3.7) 

We conclude from (2.15)-(2.17), (3.6) and (3.7) that ag2 
unirrep [J.t I J.t2] is characterized by the existence of subset of 
states with highest I angular momentum given by 

Imax = II' = !( J.tl + J.tz) (3.8) 

and with the corresponding S angular momentum given by 

(3.9) 

This subset will be referred to as the soC 4) [J.tl' - J.t2] [or 
su/(2) EBsus (2) Up"Sp,)] maximal subrepresentation. The 
existence of such a subrepresentation is of importance for the 
construction of a g 2 ::J so ( 4) basis. Note that we will use the 
labels II' and Sp, interchangeably with [J.tl J.t2) in the follow
ing. 

The branching rule 

g2lso(4): [J.t1J.t2)l[A IA2] (3.10) 

has been derived by Gaskell and Sharp.6 Unfortunately, it 
has not be given in simple analytical form. It has been tabu
lated for low-dimensional representations by McKay and 
Patera 18 and some of their results are reproduced in Table II. 

A basis for the so ( 4) irrep [A A2 ] is either labeled by the 
u (2) Gel'fand pattern 

I
AI - b A2 - b) O<b<A I + A2, 

mil - b ' AI<m ll <A2, 
(3.11 ) 

or by the angular momentum basis 

I
IM/) 
SMs 

(3.12a) 

with I and S given by (2.18) and 

Ms = !(A I +Az - 2b), M/ = !(2m ll -AI -A2). 
(3.12b) 

According to Racah,16 one must complement the 
g2lso(4) branching rule with two supplementary labels in 
order to have a complete basis specification. In the following 
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TABLE II. Branching multiplicities M ;.1's") (l,S) of the representations 
[1l,1l2] of g2 into representations (l,S) of so(4)-su/(2) EBsus (2) 
(McKay and Patera's). 

[10] 

[11] 

[20] 

[21] 
[30] 

[22] 
[31] 

[40] 

[32] 

[41] 

[50] 

(H),(0,1) 

(1,Q),(W,(O,I) 
(1,1 ),q,V,(H),(0,2),(0,0) 

(M)'( 1,2),( 1,1 ),(W,(~,V,(W,(0,2),(0, 1) 
(~,P,( 1,2),( 1,1),( 1,Q),(W (W,q,P,(0,3),(0,1) 

(2,0),(W,( 1,3 ),( 1, 1 ),(~,V,(W,(0,2) (0,0) 
(2,1 ),(~,V,(W,(W,( 1,3),2( 1,2),( 1,1 ),( 1,0), 

(W,(W,2(~,P,(W,(0,3 ),(0,2),(0,1) 
(2,2),q,V,(W,(M),( 1,3 ),( 1,2),2( 1,1), 
(W, (W, (~,~), (H), (0,4), (0,2), (0,0) 

(M),(2,2),(2,1 ),(W,(W,(W,(~,P,( 1,4 ),( 1,3), 
2( 1,2),( 1,1 ),(W,2(~,V,(W,(W,(0,3 ),(0,2),(0,1) 
(W,(2,3),(2,2),(2,1),(2,0),(W,2q,V,2(W,(M), 

(1,4 ),2( 1,3 ),2( 1,2),2( 1, 1 ),( 1,0),q,~),(~,i),2(W,2(W, 
(H),(0,4 ),(0,3 ),(0,2),(0,1) 
(W,(2,3),(2,2),(2,1),(M),(W,2(W,(M), 
(1,4 ),( 1,3 ),2( 1,2),( 1,1 ),( 1,0),(W,(W,(W,2q,V, 
(H),(0,5),(0,3),(0,1 ) 

section, we will give a "canonical" resolution for these two 
missing labels (which we will denote 'T and J) and provide an 
explicit construction of g2 :)su/ (2) E!) sus (2) basis of vector 
holomorphic functions. In Dirac notation, a g2 
:) SUI (2) E!) sus (2) basis state will then be labeled 

I 
If' IM/) 
Sf' TJ SMs ' 

(3.13) 

IV. MATRICREPRESENTATION OF92 IN AN so(4) BASIS 

A. Vector coherent state theory 

Vector coherent state (VCS) theory8-11 and the asso
ciated K -matrix techniques for computing inner products 9.10 

greatly simplify the construction of orthonormal bases for 
the ladder representations of a Lie algebra. In VCS theory, 
the familiar Cartan subalgebra k is extended to a larger non
Abelian stability algebra h that contains k as an Abelian 
subalgebra. The extension allows one to relate nontrivial sets 
of lowering (likewise raising) operators as components of 
irreducible tensors under the stability subalgebra. (For an 
Abelian stability algebra, the irreducible tensors are neces
sarily trivial; i.e., one dimensional.) As a result, one is able to 
tensorially couple polynomials in the lowering (raising) op
erators to highest- (lowest-) weight subrepresentations of 
the stability subalgebra b of a Lie algebra g and, thereby, 
construct an orthonormal basis for the irrep of g that reduces 
h. 

The construction is a refinement of the well-known Car
tan techniques of building up basis states ofladder represen
tations by the repeated actions of lowering (raising) opera
tors on highest- (lowest-) states. The difference is that VCS 
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theory exploits the strength of the Wigner-Echart theorem 
by making use of the existence of the tensor (Wigner-Ra
cah) calculus for the stability subalgebra. A valuable feature 
of the construction is that the basis states automatically re
flect the corresponding g~h branching rule. Furthermore, a 
set of missing labels, having a meaningful group theoretical 
interpretation, is naturally introduced in the process. 

The construction was originally introduced and applied 
to situations in which the algebras of raising operators are 
Abelian. Examples of such situations are the u(n + 1), 
sp(2n, R), and so(2n) albegras with u(n) a stability subal
gebra (see Rowe et al. 10 for references). In a recent develop
ment of K-matrix theory, Rowe et al. 1o demonstrated that 
the VCS construction can also be applied to situations with 
raising operator algebras that are nilpotent of order 2 [cf. 
Eq. (3.3)]. The generalized theory was used by them to 
compute the matrices for the so(2n + 1) representations in 
an so(2n + I) :)so(2n) :)u(n) basis. We shall show that 
this generalization also allows us to construct an orthonor
mal basis and determine the explicit matrices for the ladder 
representations ofg2 in ag2 :)so(4) :)u(2) basis. 

B. Application to the 92:Jso(4):Ju(2) chain 

The Cartan subalgebra u(1) E!) u(1) for g2 is identified 
with the subalgebra u/ ( 1) E!) Us ( 1) having generators 10 and 
So in the basis of Sec. II C. The highest-weight state for a g2 
irrep [,u 1 ,u2] is then the state with maximal (M/.Ms), and 
M/ and Ms are, respectively, the eigenvalues of 10 and So· 
For the highest-weight state, M/ and M s take the values giv
en by Eqs. (3.8) and (3.9); i.e., 

M/ = If' =!(,ul + ,u2)' Ms = Sf' =!(,ul - ,u2)' 

The highest-weight state for the g2 irrep [,ul ,u2] is clearly 
also a highest-weight state for a highest-weight subrepresen
tation of the u(2) -u/ (1) E!) sus (2) subalgebra. Conversely, 
u (2) is the stability algebra for the subspace of states carry
ing its highest-weight representation. We therefore adopt 
u(2) as the stability algebra for the VCS construction. 

The u (2) stability algebra contains the sus (2) and low
ering operators S ± as well as the Cartan subalgebra 
u/ (1) E!) Us (1). With respectto u(2) as stability algebra, the 
remaining generators of g2 are the four components (ua ; 

a = ±!, ±~) of an (M/ = !, S =~) raising tensor, four 
components (va; a = ±!, ±~) of an (M/ = -!, S =~) 
lowering tensor, and the components I ± of M/ = ± 1, 
S = 0) ofthe angular momentum algebra I, respectively. 

A set of raising operators of g2/u(2) is therefore given 
by 

(4.1 ) 

According to the commutation relations (2.22), D + is a non
Abelian subalgebra of 8i . In particular, we have the non van
ishing commutator 

[ua,up ] =oa._p( -1)3I2-PI+ 

and we determine that D+ is nilpotent of order 2. 
Let {117) } be an arbitrary orthonormal basis for a u (2 ) 

highest-weight subspace of a g2 irrep. The VCS representa
tion of a state I tP) is then defined by 
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where 

a 

(4.2) 

and wand Za are a set of five complex (Bargman) variables. 
The vector coherent state representation r (X) of an ar

bitrary generator XEg2 is defined by 

r(X)(w,zIt/r) = I 17J)(7JlexpZ(w,z)XIt/r) 
7J 

= I 7J)(7J I (X + [z,x] + UZ,[Z,X]] 

+ ·")expZ(w,z)It/r). (4.3) 

With 

a 
V=

aw' 
a 

a=
a a ' Za 

and the use of the identity 

aa exp(z'u) = (ua - ¥aI+)exp(z'u), 

aa = (_1)3/2- aa_ a, 

(4.4) 

(4.5) 

we find the following coherent state expansion for 
g2::>so(4): 

ru+) = V, 

r(ua ) =aa -¥aV, 

rcSm ) =§m +Ym, Y m = -v'5[zXa]~, 
ruo) = [0 - ¥a aa - wV, 

r(va ) =wa(j +za(Io-wV-!zpVp) 

(4.6a) 

(4.6b) 

(4.6c) 

( 4.6d) 

- (j) II2[ZXS]!12 + (5/2./3) [zX [ZXa] 1];:2 

- (5/12./3) [zX [zxz] 1];:2V, (4.6e) 

ru_) = 2w[0 - w2V - wZa aa 

- <j)1I2[[ZXZ]IXY]0 

+ (5/3./3) [[zxzj1 X [zXa] 1]0 

+ (5/12./3)[[zxz] 1 X [zXz] I]OV, (4.6f) 

where [0 and § are intrinsic operators acting only on a basis 
of states carrying an intrinsic (highest-weight) representa
tion {IJ.} X (Sp) of the stability algebra u/ (1) Ea sus (2) and 
the various square brackets stand for coupled operators, e.g., 

[ZXZ]~ = I (~a; ¥lljm)zazp. (4.7) 
ap 

From its definition, it is clear that a coherent state wave 
function (w,zl t/r) is a vector-valued holomorphic function of 
the variables (w,za ). The inner product for the yes Hilbert 
space of holomorphic functions has been given in integral 
form by Rowe et al. 11 For practical purposes, however, it is 
generally much simpler and more useful to determine the 
inner product, and hence calculate Lie algebra matrix ele
ments in an orthonormal Bargmann basis, by the K-matrix 
technique.9 ,10 
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C. Construction of an orthonormal 92::> so(4)::> u(2) 
basis 

We start by defining a basis of states that is orthonormal 
with respect to a Bargmann inner product. The transforma
tion K that maps this basis onto a basis that is orthonormal 
with respect to the yeS inner product is then determined by 
K-matrix theory and used to map the yes representation r 
of g2 to an equivalent representation r = K -I r K that is 
unitary with respect to the Bargmann inner product. Matrix 
elements for this unirrep are then easily evaluated. 

By Proposition 2 of Rowe et al.1O we known that the 
(za) variables transform under u(2) as components of an 
10 = !, S = ~ tensor. We can therefore construct a set of or
thogonal polynominals {p~J(z)}, whereP~J(z) is a polyno
mial of degree I in the (za ), of sus (2) spin J, and where T is a 
multiplicity index to distinguish distinct polynomials having 
the same values of I and J. We require the polynomials to be 
orthonormal with respect to the Bargmann measure so that 

(4.8) 

Since the 1= 1 polynomials carry the fundamental four-di
mensional spinor representation 10 of a suitably defined 
so(5) Lie algebra (in the notation of McKay and Patera I8

), 

it follows that the polynomials of degree I carry a symmetric 
spinor irrep [10] of so (5). The possible values of J and their 
multiplicity for a polynomial of degree I are therefore given 
by the branching of the so ( 5) representation [/0] on restric
tion to su(2), 

so(5) !su(2):[lO]! I M~ (J). (4.9) 
J 

For convenience, we reproduce part of the tabulation of 
McKay and Patera l8 in Table III, We also relate the multi
plicity of su(2) irreps to the concept of permissible dia
grams6 in the Appendix. 

Given a set of orthogonal polynomials, we can use them 
to construct the orthonormal Bargmann basis of holomor
phic vector-valued wave functions 

TABLE III. Branching multiplicities M~(J) of the symmetric spinor rep
resentations (10) ofso(5) into representations (J) ofsu(2) (McKay and 
Patera's). 

M~(J)(J) 

(!) 

2 (3,),(1) 
3 (~),q),(~) 

4 (6),(4),(3),(2),(0) 
5 (.if),(1}),q),q),(~),(!) 

6 (9),(7),( 6),(5 ),( 4 ),2(3 ),(1) 
7 (~),pt),(.if),(¥),(1} ),2(V,q>,(~),(!) 

8 (12), (10), (9), (8 ),(7 ),2( 6), (5 ),2( 4 ),( 3), (2), (0) 
9 (¥), (1/), (~), (11),( ¥),2( .if),( ¥) ,2( 1} ),2(~) ,q),(V, (!) 

10 (15 ),( 13 ),( 12),( 11 ),( 10),2(9),(8),2(7),2(6),2(5 ),( 4 ),2(3 ),( 1) 
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(
I

I IM[) 
w,z ~ 'IJ SMs 

= W[-M/ [p~J(Z) X III-' )]S , 
~(1-M[)! SI-' Ms 

(4. lOa) 

with I taking the value 

1=2(11-'-1). (4. lOb) 

We note that, with I fixed in this way, this basis is labeled by a 
total of six intemallabels in correspondence with the num
ber required to label a basis for the chain g 2 ::J so ( 4 ) . 

Now, a transformation K can be defined that maps the 
Bargmann basis onto a basis of states that are orthonormal 
with respect to the ves inner product 

IM[ ) 
'IJ SMs ves (w,zl~ 

=(w,zIKI~ 
conversely, the transformation K defines a representation 

reX) = K -lrcX)K, XEg2' 

which is equivalent to the ves representation r but which, 
unlike the ves representation, is unitary with respect to the 
Bargmann inner product. 

As shown by Rowe et al.1O the K transformation com
mutes with the stability subalgebra. ThusK is diagonal inM[ 
and S independent of Ms. Furthermore, it was shown that, 
since the matrix elements of the 

so(4)-su[(2) (Bsus (2) 

subalgebra are already well known, one needs only the sub-
matrices, 

{
II-' 

%(1S)r T rJ = S 
f"1' l' ) 

I-' 

IS,f\ 
'IjJj / 

I,ll III-' 
S K S 

I-' 
(4.11 ) 

to be able to infer all the matrix elements of the g2 algebra. 
The following linear recursion relation for % (IS) 2, ob

tained using Hermiticity arguments [cf. Eq. (2.20)] and the 
ves expansion r [i.e. (1.6)], is given by the adaptation to 
g2::J so ( 4) of the general relationship given by Rowe et al. 10 

(see also the Appendix of Ref. 17): 

x {[ n(1JjS) - n(I + ~ ,J1Sk)] X {~ 'IjJj 
I+V+~) 
Sk 

1 ( 5 )1/2 /1 
+ (21 + 2) 3 r~m \~ 'ImJm ~+I'/+ll1all~ I+V+~) 

Sk 

where 

n(1JS) = ((11-' + V -l(11-' - I) )2(11-' - I) 

- jS(S + 1) + iJ(J + 1) 

and where, e.g., 

(4.13 ) 

is an sus (2)-reduced matrix element. The latter is easily 
evaluated using standard su(2) recoupling techniques 

(~ 'Ij~ ~II H I~ 'IkJk ~: V +~) 
= U(SI-',Jk,S,~;Sk~) X (~j~ I HI ~:'kl) , (4.14 ) 

where the last term is an sus (2)-reduced matrix element ofz 
between the Bargmann basis polynomials 
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( 4.12) 

(4.15 ) 

As an example, consider theg2 irrep [21] corresponding 
to (11-"SI-') = (~,p. By Table II, one determines that this 
irrep decomposes into the sum of irreps 

(~,P, (1,2), (1,1), q,~), (!,~), q,!), (0,2), (0,1) 

under so(4) -su[(2) (Bsus (2). From Table III, we deter
mine that we have the Bargmann basis states 

I (J) (1,S) 

° (0) (~,P 
(~) (1,2),(1,1) 

2 (3),(1) (!,D, (!,~) ,q,~), (!,P 
3 (i),(~),(~) (0,5), (0,4), (0,3 ),2(0,2),(0, 1). 

Observe that this Bargmann space is larger than the re
quired ves irrep space, which means that the K operator 
must annihilate some Bargmann states. 
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Solving the recursion relation (4.12), we readily com
pute the following values for the one-dimensional %2 matri
ces: 

%q,p2 = 1, %(1,2)2 = 1, %(1,1)2 =~, 

%(!,D2 = 0, %(!,~)2 = j, 

%(!'l)2 = j, %(M)2 = JJ, 
%(0,5)2 = 0, %(0,4)2 = 0, %(0,3)2 = 0. 

For the single two-dimensional %(0,2)2 matrix, we find 

%(0,2)2 = 
( 

23'7 

3'5 

- 2'7,fPf 
32 '5 

- 2.7,fPf) 
32 '5 

72 ' 

2'32 '5 
which is observed to have one zero eigenvalue. It follows that 
the K operators maps both Bargmann (0,2) states onto a 
single yeS state and annihilates the Bargmann states q,D, 
(0,5), (0,4), and (0,3). Thus theK operatoris seen to define 
a "physical subspace" of Bargmann space in which the ex
traneous states in the null space of the K operator are ex
cluded. 

D. Calculation of matrix elements 

Having determined theK matrices, the matrix elements 
oftheg2 generators may be calculated in the unirrep y. Since 
matrix elements ofthe so( 4) -suI (2) EB sus (2) Lie algebra 
are already known, it remains to compute the reduced ma
trix elements for the so(4) tensor t ofEq. (2.19). 

We easily determine the particular MI = I sus (2)-re
duced matrix elements 

= L %(1 _..l,s') 
'".-I. 2 'T'J"'",J, 

'""" 

1,1\ 
'TJ s I 

~) 
(4.16) 

Hence we determine the SUI (2) EB sus (2)- (triple bar-) re
duced elements for t 

x «(I,I;!, - !II - V -!) )-1 

from which all other su (2) I EB SU (2) s can be obtained 
through Hermitian conjugation, 
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(Ip 
Sp 'T'J' ~', III y(t) III t 'TJ ~) 

= (_ 1)I+!-I'( _ OS+3/2-S-

X [( 2I + I )( 2S + 1 )] 112 
21'+1 2S'+1 

(p X s p 'TJ ~ IlIy(t) lilt 'T'J' 
1') S' . 

(4.18 ) 

V. DISCUSSION 

A major object for giving an explicit construction of the 
representations of g2 in a g2 ::>so( 4) ::>u(2) basis was to ob
tain a simple solution to the problem of missing labels for this 
chain. As we have shown, yeS theory automatically pro
vides both a complete set of labels and a group theoretical 
interpretation of their significance. The construction of basis 
states by tensorially coupling polynomials in tensor lowering 
operators to a highest-weight irrep gives rise to three distinct 
kinds of missing labels. 

( 1) Labels like J that define the tensor rank of a polyno
mial under the stability algebra. The polynomial tensors 
arise in the reduction of multiple products of elementary 
lowering operator tensors. For g2, the elementary lowering 
operators (va) comprise a (j =~) tensor under sus (2). The 
sus (2) irreps (J) of interest are therefore those that arise in 
the reduction of the symmetric su(2) plethysms 

(~)o{l}=~, q)O{2}= (3) + (1), 

(~)o{3} = (n + (~) + (~), etc., 

cf. Table III. These plethysms can also be expressed in terms 
of branching rules. Thus, for g2' the plethysms are related to 
the so(5)tsu(2) branching 

so(5) !su(2): [10] !(~)o{l}. 

The series of irreps that occur in such plethysms are often 
well known in character theory (King I9

). 

(2) Labels like 'T that distinguish multiply occurring 
irreps in the plethysm decomposition. By relating the pleth
ysm to a branching rule, it is clear that these labels are identi
fied with the missing labels of some other algebraic chain 
reduction. 

(3) Labels that arise from multiplicity in the coupling of 
the polynomial tensors to a highest-weight irrep. [These are 
not needed for g2 because the su(2) Kronecker products are 
multiplicity-free.] To date, all applications of yeS theory 
have chosen a stability algebra ofthe u (n) type and we note 
that a canonical resolution of the u(n) outer product has 
been given by Biedenharn and collaborators in terms of oper
ator patterns. 20 Thus all the missing labels have a meaningful 
group theoretical significance. 

Elsewhere,1O we have remarked on the wide range of 
problems in Lie algebra representation theory and its asso
ciated Wigner-Racah calculus that can be tackled with yeS 
theory. The application to so(2n + 1) ::>so(2n) ::>u(n) giv
en there and the present application to g2::>so(4) ::>u(2) 
adds a further dimension to the versatility of the theory. In a 
following publication,17 we shall investigate its application 
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with stability subalgebras for which the complementary low
ering and raising operator algebras are nilpotent of order 3 or 
more. This will enable us to treat, for example, g 2 in an su ( 3 ) 
basis. 

APPENDIX: THE POLYNOMIALS P ~"Jz) 

In this appendix, we show how to construct the Barg
mann polynomials P~JM)Z) introduced in Sec. IV C. We 
restrict the presentation to its main features and thus refer 
the reader to Sharp and Lam,21 Gaskell et al.6 and especially 
Dumitrescu 14 for details 

A nonorthonormal basis (lowercase P ) 

P~JMJ = J(Z)P~JMJ=J(Z) 
for the M J = J components of the polynomials is given by 
the stretched coupling oftheMJ = J component of the four 
elementary polynomials 

P~(3/2)a(Z) =Za' P~la(Z) = [zXz]~, 
P6(3l2)a (z) = [zX [zXz] 1]!,,2, 

pioo (z) = [[zXz] 1 X [zxzP]g, 

(AI) 

which compose an integrity basis (Gaskell et al.6
). More 

precisely, 

P~JJ = [P~(3/2) (3/2) ] a [P~II ] b [P6(312) (3/2) ] E [pioo ] T, 
(A2a) 

with 

E = 0, (3/- 2J)/2 even, 

E = 1, (3/- 2J)/2 odd, 

0<41'<1 - 3E, 

2a = (2J -I + 41'»0, 

2b = W -J - 3E- 61'»0. 

(A2b) 

Thus for given I, J, and consequently E, the nonorthonormal 
basis is parametrized bY1'andMj [Eq. (4.9)] is equalto the 
number of allowed values of l' in (A2b). 

The basis (A2a) is nonorthonormal with respect to the 
Bargmann scalar product 
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[ / /' ] PTlJ(a)(pT'J'J' (z») z=o' 

Defining the overlap matrix 

2 [/ /' ] OTT' = PTJJ(a)(PT'J'J' (z») z=o, 

we can define an orthonormal basis22 

p~JJ(z) = L 0 ;;lp~JJ(Z), 
T' 

which has the advantage of retaining the usefulness (if not 
the direct meaning) of the l' labeling scheme introduced in 
(A3). 
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Irreducible representations of the real compact Lie algebra g2 are given in g2::J su (3) bases. A 
missing label is accounted for by the explicit construction of a g2::J sue 3) basis of vector 
holomorphic functions. Analytical results are given for two multiplicity-free classes of irreps. It 
is also shown how vector coherent state (VeS) theory accommodates the decomposition of the 
nilpotent raising operator subalgebra of an arbitrary Lie algebra into a finite but arbitrary 
number of irreducible tensorial sets under transformations generated by a stability algebra. 

I. INTRODUCTION 

It has recently been shown in considerable detail l
-
3 how 

vector coherent state (ves) theory provides, under certain 
conditions, a means to construct the ladder representations 
of a Lie algebra in a basis that is symmetry adaplc:d to a 
subalgebra chain g::J h. The conditions are that the subalge
bra h contains a Cartan subalgebra and that the complex 
extension g: of g can be decomposed 

g=n+hc+n+, 

where n± are, respectively, nilpotent subalgebras of raising 
and lowering operators carrying (generally reducible) rep
resentations ofhc, i.e., [hC ,n± ] = n± . 

Now, while ves theory easily gives functional represen
tations of g, for practical applications one usually needs the 
explicit matrix forms of the representations in an orthonor
mal basis and, to this end, K-matrix theory2,3 was developed. 
As originally presented, K-matrix theory was restricted to 
situations in which n ± are Abelian. This condition covered 
a wide range of situations of interest but it did not include, 
for example, the cases so(2n + I) ::Ju(n) or g2::Jso(4) , the 
latter the subject of part I of this series.4 The theory was 
therefore developed and extended so that it would apply to 
these cases by Rowe et 01.3 

The situations in which n ± are Abelian are convenient
ly summarized by means of the following corollary, which 
follows immediately from Propositions 6 and 7 of Rowe et 
01.3 

Corollary: The subalgebras n ± of g: are Abelian if and 
only ifh is a maximal subalgebra of g. (Recall that a subalge
bra h egis said to be maximal if it is a proper subalgebra and 
if there exists no other proper subalgebra I such that 
g::Jl::Jh.) 

Thus the first applications ofVes theory and K-matrix 
theory were to g::Jh situations in which h was a maximal 
subalgebra such as, for example, sp(n) ::Ju(n), su(n + 1) 
::J u (n ), and so (2n) ::J u (n ). The developments of Rowe et 
01. 3 made it possible to apply the theory also to g::J I ::J h situa
tions such as so(2n + 1) ::Jo(2n) ::Ju(n) and 
g2::Jso(4) ::Ju(2). However, these are still special cases in 
that the raising operator algebra n+ is nilpotent of order 2; 
i.e., all double commutators vanish, 

[x,[y,z]] = 0 'o'x,y,zen+. 

It was not obvious therefore that the theory would work in 
higher-order situations. In particular, it was not obvious that 
the techniques would apply, for example, to the case 
g2 ::J SU (3) ::J u (2) for which the raising operator algebra is of 
order 3. This example is therefore of considerable interest 
both for its own sake and as a prototype of situations with an 
arbitrary order n of nilpotency. 

Thus after having successfully addressed the missing la
bel problem for g2::JSO( 4) in the first part4 oftbis series, we 
now address the parallel problem in a g2::Jsu(3) basis by 
exploiting once again the versatility of ves theory.1-3 We 
give an explicit basis construction for all irreducible ladder 
representations of g2 when these are reduced with respect to 
g2::Jsu(3). We also give analytical results for the two multi
plicity-free classes of g2::Jsu(3) classes. We demonstrate 
that the ves construction ofunirreps of g2::Jsu(3) ::Ju(2), 
which is a Lie algebra with a raising operator subalgebra 
nilpotent of order 3, does not differ substantially from the 
construction for Lie algebras with order of nilpotency n = 2 
developed by Rowe et aP 

We give in the Appendix a formal review of the most 
important structural properties of the K matrices. We show 
there that the details of application of ves theory are inde
pendent of the order n of nilpotency of the Lie algebra under 
study (except for the n = I case for which drastic simplifica
tions occur). These developments seem to lead the way to
ward a final and fully generalized formulation ofVes theory 
that should apply to all semisimple Lie algebras, classical 
and exceptional, with an arbitrary order of nilpotency for the 
raising operator algebra. 

II. THE g.::J8u(3)::Ju(2) LIE ALGEBRA CHAIN 

We recall4 that the g2 Lie algebra can be given as 

g2 = span{gij - i8ijgkk,e/,fj; l<i,j<3} (2.1) 

with the commutation relations 

[gq,gkl] = ~jkgil - ~lIgkj' [e/>ej ] = - 2Eqk ik' 

[gq - i8qg/l,ek] = ~jke/ - i8qek' [.t;,.Ij] = 2Eqkek, 

[go -i8qg/l,Jk] = -~/k.lj +i8qik' (2.2) 

[e/,.Ij] = 3gq - ~qgkk' 
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Note that, since u(3) ¢g2 andg2 is a Lie algebra of rank 
2, only two linear combinations of the three weight operators 
{g1l,g22,g33} ofu(3) are needed to define a u(1) Ell u(1) Car
tan subalgebra for g2' A careful determination of the weight 
structure of g2 [see Eqs. (2.3), (2.4), and (3.2) below] 
shows that the pair of weight operators 

(gil -g33) = [gl3,g3d, (g22 -g33) = [g23,g32] 

is, for our purposes, the appropriate basis for the Cartan 
subalgebra. 

Under su(3) = span{gij - !8ijgkk}' the vectors 
e( = e{!}) and f( = r ll

}) transform, respectively, as {t} 
and {I t} tensors. We shall require the Hermiticity condi
tions 

in order that the Lie algebra representations exponentiate to 
unitary representations of the group. 

It is convenient for the following to consider the canoni
cal (Gel'fand) u (2) subalgebra of su ( 3) to be given by 

u(2) = span{ga,B - 8a,Bg33; l.;;;a.p.;;;2}. (2.3) 

(We use Einstein's summation convention throughout. Fur
thermore, Roman indices run from 1 to 3 while Greek in
dices run from 1 to 2 only.) The Cartan subalgebra is then 
contained in the subalgebra chain 

g2::Jsu(3) ::Ju(2) ::Ju(1) Ell u(1) 

and the conditions for YCS theory are satisfied. Anticipating 
the terminology of YCS theory in the next section, we will 
refer to this u(2) subalgebra as the stability subalgebra. 

Under transformations generated by the stability alge
bra, the various generators t(a,a,) Eg2 have the following 
u(2) tensorial rank (a la2): 

g2 mod u(2) 
- span{g(21) f(lI) e(lO) f(O, - 1) e( - I, - I) g-I, - 2). 
- u3 , 3 'u 'C1 , 3 , 30' , 

(2.4) 

A unitary irrep of g2 is labeled in the notation of King 
and Qubanchis by [PJJL2]' whereJlI andJl2 are the respective 
eigenvalues of the weight operators g22 - g33 and gll - g22 
on the g2 highest-weight state defined by 

(gil -g33) 1 [PJJL2]hw) = (JlI +Jl2) 1 [PJJL2]hw), 

(g22 - g33) 1 [PJJL2]hw) = JldluJJL2]hw), 

gij 1 [PtJl2]hw) = 0, 1.;;;i<j.;;;3, 

eO' 1 [PtJl2]hw) =0, 1';;;0'.;;;2, 

f31 [P JJL2]hw) = 0, 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

(2.5e) 

where the generators gij (1.;;;i<j.;;;3), eO' (1';;;0'';;;2), andA 
span a set of positive roots4 for g2' 

The branching rule g2lsu (3), derived by King and Qu
banchis and by Perroud,6 is given by 

g2 lsu (3): [PJJL2]l L M~,~}v"v,,p'+I-',_v,){VIV2}' 
"'1>V2 >0 

(2.6) 

where M ~:~}v"v"I-" + 1-', _ v,) is the multiplicity of the weight 

(n l ,n2,n3) = (VI - V2,V2,JlI + Jl2 - VI) 
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in the u(3)irrep{uJJL20} and where an su(3) irrep{vlv2} is 
labeled by the highest weights of the weight operators 
gil -g33,g22 -g33 [seeEq. (2.9)]. 

With Jl(2) embedded in su(3) as in Eq. (2.3), the 
su(3) lu(2) branching rule is given by 

su(3Hu(2): {VIV2}~ L (m 12 - n3,m22 - n3) 

=(h l ,h2 ), 

where 

v l >ml2>v2 

(2.7a) 

n3 = VI + V2 - ml 2 - m22. (2.7b) 

According to Racah,7 the number of internal labels re
quired to specify the basis states of an irrep of a compact 
group is !(l- r), where I is the order of the group (number 
of generators) and r its rank (number of commuting weight 
operators). In the case of interest to us, the number of inter
nallabels is 6 = !( 14 - 2). Since an su(3) basis provides us 
with five labels, we need one extra label (b) to completely 
specify a g2::Jsu(3) basis corresponding to the branching 
rule (2.6). It will be shown in Sec. III how YCS theory 
assigns an operational meaning to this label. A 
g2 ::Jsu(3) ::Ju(2) ::Ju(1) basis will therefore be denoted, in 
Dirac notation, by 

1 [PtJl2]b{ v l v2}(h l h2)1l), h l >1l>h2· (2.8) 

Of particular importance for our purpose is the exis
tence, within a given g2 unirrep, of a subset of su (3) highest
weight states defined by the conditions 

(gil - g33) 1 [PJJL2]b{VIVI}( VIV2)VI) 

= VI 1 [PJJL2]b{vl vJ(VIV2)VI) , 

(g22 - g33) 1 [PtJl2]b{VIV2} ( VIV2)VI) 

= v21 [PJJL2]b{ VIV2} ( VIV2)VI), 

gij 1 [j.tJJL2]b{VIV2}(VIV2)VI) = 0, I.;;;; <j.;;;3, 

(2.9a) 

(2.9b) 

(2.9c) 

for each {VI V 2} contained in theg2 irrep[PJJL2]' Our goal is 
the construction of this subset of states and the determina
tion ofthe u(2)-reduced matrix elements of the tensors e{l} 

andf{!!} between these states. The full matrix representa
tions of g 2 ::J su ( 3) are then obtained by means of the cele
brated Wigner-Eckart theorem. 

III. MATRIX REPRESENTATION OF 9zlN AN su(3) BASIS 

A. Vector coherent state theory 

Vector coherent state (YCS) theoryl,2 and the associat
ed K-matrix techniques for computing inner products2,3 
greatly simplify the construction of orthonormal bases for 
the ladder representations of a Lie algebra. In YCS theory, 
the familiar Cartan subalgebra k is extended to a larger non
Abelian stability algebra h that contains k as an Abelian 
subalgebra. The construction is a refinement of the well
known Cartan technique of building up basis states for lad
der representations by the repeated actions oflowering (rais
ing) operators on highest (lowest) states. The difference is 
that YCS theory exploits the strength of the Wigner-Eckart 
theorem by making use of the fact that one can regroup in a 
very convenient way the numerous generators of a given Lie 
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algebra into a much smaller set of irreducible tensors under 
the stability algebra and, thus, take advantage of the exis
tence of the tensor (Wigner-Racah) calculus for the stabil
ity subalgebra. 

B. Application to the 92:J su(3):J u(2) chain 

A Cartan subalgebra u( 1) EB u( 1) for g2 is spanned by 
the set of weight operators {gIl - g33,g22 - g33}' The high
est-weight state for a g2 irrep IJtIJL2] is then the state with 
maximal eigenvalues III + 112 and III for gil - g33 and 
g22 - g33' respectively. This state is clearly also a highest
weight state for a highest-weight subrepresentation of the 
u(2) subalgebra (2.3), and hence, by definition, u(2) is the 
stability algebra for the corresponding subspace of states. 

A set of raising operators for g2 mod u(2) is given by 

0+ = span{(21),j<1l),e(lO)}. (3.1) 

According to the commutation relations (2.2),0+ is a non
Abelian nilpotent subalgebra of order 3, i.e., 

0+ = 01+ + 02+ + 03
+ , 

with 

and 

[O+,Oi+ ] C L o~ 
j>i 

[see Eqs. (3.7a)-(3.7c)]. 

(3.2a) 

(3.2b) 

(3.2c) 

Let {11J>} be an arbitrary orthonormal basis for a u(2) 
highest-weight subspace of a g2 irrep. The VCS representa
tion of a state If/!> is then defined by 

(y,zlf/!> = L I 1J)(1J I exp Z(y,z)If/!>, (3.3a) 

where 

Z(y,z) = z~ea + ~gP3 + Yh (3.3b) 

and wherey andzp, 1 <;.a,/3<;.2, is a set of five complex (Barg
mann) variables. 

The vector coherent state representation ru) of an ar-
bitrary generator teg2 is defined by . 

nt)(y,zlf/!> = L 11J> (1Jlexp Z(y,z)t If/!> 
n 

= 11J>(1JI(t + [Z,t] + (l/2!)[Z,[Z,t]] 

+ ... )exp Z(y,z) If/!>. (3.4) 

With 

J 
V=-, 

Jy 
(3.5) 

and with €ap the totally antisymmetric tensor in two dimen
sions 

€= (~1 ~), 
we determine the following commutators: 

[Z,gu3] = 0, 

[Z,f3] = 3z~ga3' 
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(3.6) 

(3.7a) 

(3.7b) 

[Z,eu ] =2€u/JZ!h-3ygu3' (3.7c) 

[Z,g/Jv -c5/Jvg33] = -z~e/J -r"g/J3 -c5/Jv(~gP3 +Yh), 
(3.7d) 

[Z,fu] = 3z~ (gau - c5aug33 ) 

-z~(glJlJ -2g33) -~uA+2Y€u/J€/J' 

[Z,e3] = 2z~€atJp + ~ep + y(guu - 2g33 ), 

[ Z,g3u] = - z~e3 + ~ (gpu - c5Pug33 ) + y/u' 

useful for the evaluation of the expansion (3.4). 
With the help of (3.7) and the identities 

gu3 expZ=J; expZ, 

h exp Z = (V - ~cl2)exp Z, 

(3.7e) 

(3.7f) 

(3.7g) 

(3.8) 

eu exp Z = (J ~ - €u/Jz! V + ~€u/JZ!CI2 + 3y J;)exp Z, 

where we have introduced the two mutually commuting 
u (2) algebras 

caP = -z<p J~, (3.9a) 

~ = z: J~, (3.9b) 

we find the following VCS expansions for the various u(2) 
tensors t(a ,

a2) eg2: 

ng~2l) = J;, 
nj<II) = V + ~CI2, 

r(e(lO»=J I +€ ZIV+l€ Z l c12 _ 3 yJ2 
U U "P P 2 up p 1 u' 

r(gaP - c5aPg33 ) = (~p - c5aP~3) 

+ CaP - c5ap (c22 + yV), 

r( /~o - I» = 3z! (t/.u - c5/Ju~3 ) 

- z~(t/./J - 2~3) - z~(!yV + Cll) 

(3.1Oa) 

(3.1Ob) 

(3.1Oc) 

(3.1Od) 

+ 2y€ap J! -Z;V - (~+ !yz~)CI2, 
(3.10e) 

r(e( -I-I» = y(.f1JlJ - 2~3) - y(yV + ~Cll + ~c22) 

+ 3€/Juz! z~ (.fvu - c5vu~3 ) 

+ C21 - zg V - (~g + ir)c12
, (3.1Of) 

ng~ - I - 2» = - yz~ (t/./J - 2~3 ) + ~ yz! (t/.u - c5/JU~3 ) 

+ ~yz~(yV + Cll ) + r€ap J! 

+ Z~€a!Jz!z1 (.fPa - c5Pa~3 ) 

+ Z; (t/.u - c5/Ju~3) - Z;(c22 + yV) 

- z~c21 + !rZ~CI2 + !Y€ap J! . (3.1Og) 

In (3.10), 

zg =€aPZ~ ~ = ,~ ~ " 

and ~aP - c5aP~3} are intrinsic operators acting specifical
lyon a basis of states carrying the intrinsic (highest-weight) 
representation of the u(2) stability algebra. 

From its definition, it is clear that a coherent state func
tion (y,zlf/!> is a vector-valued holomorphic function of the 
variables (Y,zp). The inner product for the ves Hilbert 
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space of holomorphic functions has been given in integral 
form by Rowe et 01. 8 For a practical purposes, however, it is 
generally much simpler and more useful to determine the 
inner product, and hence calculate Lie algebra matrix ele
ments in an orthonormal Bargmann basis, by the K-matrix 
technique.2

•
3 

C. Construction of an orthonormal 92 ~ su(3) ~ u(2) 
basis 

We start by defining [Eq. (3.11)] a basis of states that is 
orthonormal with respect to a Bargmann inner product. The 
transformation K that maps this basis onto a basis that is 
orthonormal with respect to the ves inner product is then 
determined by K-matrix theory and used to map the ves 
representation r of g2 to an equivalent representation 
r = K -I r K that is unitary with respect to the Bargmann 
inner product. Matrix elements for this unirrep are then easi
ly evaluated. 

By Proposition of 2 of Rowe et aU The Bargmann vari
ablesr,y, andz l transform, respectively, as the components 
of ( - 1, - 2), ( - 1, - 1), and (0, - 1) tensors under the 
Bargmann realization r(gaP - ~aP g33) of the u(2) stabil
ity algebra. An orthonormal basis of u(2)-coupled Barg
mann states is therefore conveniently defined by the u(2)
coupled polynomial states 

(y,zl,rl [utJL2Jb{VIV2} (h lh2)77) 

= [P (- W2• - 2w2 ) (r) X[(yb /..{bf) X [P (0. - WI) (Zl) 

X I (,ul + ,u2"u1» ] (v, + b.v2 + b)]<v,v2) 1., (h,h2), (3.11) 

where po. - w,) (Zl), e.g., is a polynomial of symmetric rank 
WI in the Bargmann spinor Zl having highest-weight compo
nent 

p~o.-W')(ZI) = (zDw'/~wl!' (3.12) 

where the set of states {I (,ul + ,u2"u1)77)} span an intrinsic 
u(2) Cg2 highest-weight subrepresentation acted upon spe
cifically by the intrinsic operators ~P - ~aPg;3}' and 
where the various square brackets represent u(2) coupling 
with the convention that all such couplings are sequentially 
ordered from right to left. 

A transformation K can now be defined that maps the 
Bargmann basis (3.11) onto a basis of states that are ortho
normal with respect to the ves inner product 

(y,zllP (LutJL2Jb{ v lv2}(h lh2)77) 

= (y,zIK I [,utJL2]b{VIV2}(h lh2 )77)· 

The ves representation r of g2' which is unitary with re
spect to the ves inner product, correspondingly maps to an 
equivalent representation r, which is unitary with respect to 
the Bargmann inner product 

r(t)-r(t) =K-lr(t)K, tEg2' 

rt(t) = r(t t) = Ktrt(t) (K -I) t. 

(3.13a) 

(3.13b) 

As shown in Rowe et aU (Proposition 5), a choice for 
the transformation K can be made such that the ves and 
Bargmann representations of g2 are identical when restricted 
to the stability algebra [in this case u(2)], i.e., 

r(gaP - ~apg33) = r(gaP - ~aPg33)' 
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That this is possible in the present case is easily verified by 
noting that the ves realization r of u(2) C g2 is already 
unitary with respect to the Bargmann inner product. Thus in 
orderthatr(t) = ret) fortEu(2), we simply requireK tobe 
diagonal in the u(2) representation labels (h l h2 ) and inde
pendent of 77, 

<LuJi{v'}(h ')77'IK I LuJj{v}(h)77) 

= ~hh'~71"I' < LuJi{ v'}(h) IK I LuJj{ v}(h». (3.14) 

As shown in Rowe et 01.,3 we can use the fact that the 
matrix elements for the su(3) subalgebra are already 
known9 to restrict the construction of a ves basis to that of a 
basis of sue 3) highest-weight states, 

(y,zI,rIK I LutJL2Jb{VIV2}(vlv2)77)· (3.15a) 

Since, by Eq. (3.lOa) a su(3) ves highest-weight state sat
isfies 

r(g~~I) (y,zI,rIK I LutJL2Jb{VIV2} ( v lv2)77) 

= a! (y,zI,rIK I LutJL2Jb{VIV2}(VIV2)77) = 0, (3.15b) 

it follows that the states (3.15a) must consist of a superposi
tionofr-independent (W2=0) states (3.11), 

(y,zll LutJL2Jb{VIV2} (vlv2)77) 

= [y b /..{bf X [P (0, - WI) (Zl) 

X I (,ul + ,u2"u1» ](v, +b,v2+b)]~V'V2) (3.16) 

and this implies (cf. Proposition 9 of Ref. 3) that 

< LutJL2Jb{VIV2} ( VIV2) IK I LutJL2Jb{VIV2}( VIV2» 

= ~v,v, ~V2V2 < LutJL2Jb{vIV2} ( VIV2) 

X IK I LutJL2Jb{VIV2}(VIV2»' (3.17a) 

Furthermore, the ves basis (3.15a) can be defined uniquely 
by choosing the submatrices 

%(VIV2)ij 

= < LutJL2]i{vIV2} ( VIV2) IK I LutJL2Jj{vIV2} ( VIV2» 
(3.17b) 

ofthe full (but generally non-Hermitian) K operator to be 
Hermitian; i.e., 

%(VIV2)ij = % (VIV2),t. 

Note that a multiplicity space is defined, for the su(3) 
highest-weight states (3.16) and for a given partition (VI V 2), 

by the condition 

2b + WI = 2,u1 +,u2 - VI - V2, (3.16') 

also taking into account of the usual selection (triangle) 
rules for the u(2) coupling. 

Once we have determined the % ( v) submatrices, we 
can infer all the relevantg2 mod su(3) matrix elements. In
deed, as shown in the Appendix, upon using the definition 
(3.13) for the unitary representation r, the Hermiticity con
dition 

r(t (-a 2,-a,» = rt(t (a,a2», (a la2) >0 (3.18) 

and the Bargmann expansion (3.16) for the su(3) highest
weight states, one finds the following expressions for matrix 
elements between su (3) highest-weight states of the various 
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su(2) tensors t(a .... ) belonging to g2 mod su(3): (1) for the 
u(2) scalars/(ll)ande(-I,-1) =e3 =/1 = (fll»t, 

(l}L]i( v') IIr(fIl)III}L]j{ v}( v» 

= (l}L]i{ v'}( v') IIff( v') -IVff( v) II 1}L]j{v} ( v», 
(3.19a) 

(l}L]i{v'}(v')lIr(e( -I,-I)III}L]j{v}(v» 

= (l}L]i{v'} ( v') IIff( v')yff( v) -11I1}L]j{v}( v», 
(3.19b) 

(2) for the u(2) spinors e(tO) and I (0, -1) = (e(tO»t, 

([P]i{ v'}( v') IIr(e(lO» 1I1}L]j{ v}( v» 

= (l}L]i{v'} ( v') IIff( v') -I (a I + zIV)ff( v) II 

xl}L]j{v}(v», (3.20a) 

(l}L]i{ v'}( v') IIr( fO, - I» 111}L]j{ v}( v» 

= (l}L]i{v'}( v') Ilff( V')(ZI + y a I)ff( v) -III 

X [p]j{v}(v» . (3.20b) 

When divided by the appropriate su(3) :Ju(2)-reduced 
Wigner coefficients,9 Eqs. (3.19) and (3.20) yield all the 
g2:J su (3) -reduced matrix elements needed to construct the 
full matrix representations of g2' 

Recursion formulas for the various ff ( v) matrices are 
derived in the Appendix. One finds the following pair of 
equations: 

(Lu]i{ v'}( v') Ilff (v,)2[r(0)( 1'11» PIII}L]j{ v}( v» 

= (l}L]i{ v'}( v') IIr(O)(e - I, - I)ff (v)2111}L]j{ v}( v» 

(l}L]i{ v'}( v') II r(O) (g( - I, - 2» II 1}L]/{v} (v) ) 

- I'~V (Lu]/{v} ( v') IIr(t)(g( - I, - 2» II 1}L]/{v} (v» 
X (1}L]/{V}(v')ljr(t)(e( -I,-I»ff(v)211 

XI}L]j{v}(v», (3.2Ia) 

([PJi{ v'}( v') Ilff (V')2 [r(O)(e(IO)]tIlI}LV{ v}( v» 

= (l}L]i{ v'}( v') IIr(O)( fO, - I)ff (v)2111}L]j{ v}( v» 

(l}L]i{ v'}( v') Ilr(O)(g- I, - 2» II 1}L]/{v} (v) ) 

- I'~V (1P]I{v}(v')ljr(l)(g( -I,-2»III}L]I{v}(v» 

X ([jl]l{v}( v') II r(l)( fO, - l)ff (v)211 

xl}L]j{v}(v», (3.2Ib) 

where the various restrictions r(O)(t) and r(1)(t), teg2' are 
given by 

[r(O) ( 1(11)]t = y, (3.22) 

(3.23 ) 

r(O) ( I~o, - 1) = 3z! (t>~ - t5~~3 ) - z~ (t>1'I' - 2~3 ) 

- z~(!yV + ell) + 2YEult a!, (3.24a) 

r(1)(/~o,-I» = -z; V, (3.24b) 

r(O)(e( - I, - I) = y(t>1'I' - 2~3 ) - y(yV + ¥II) 

+ 3EltuZ!Z~ (t>vu - t5vu~3 ), 
r(1)(e( - I, - I» = e21 - zg v, 
reo) (g~ - I, - 2» = _ yz~ (g~1t - 2~3 ) 

+ ~yz! (~u - t5ItU~3) 

+ !yz~ (yV + ell) + y2Eult a! 

(3.2Sa) 

(3.2Sb) 

+ Z~EaItZ!Z1 (g~ - t5pa~3)' (3.26a) 

r(t) (g~ - I, - 2» = z! (~u - t5ItU~3 ) - Z;yV - Z~ cl l
• 

(3.26b) 

Note that reO) (t) maps an su (3) highest-weight state to an
other such state while r(1) (t) maps an su (3) highest-weight 
statetoar-dependentstatewithw2 = 1 in (3.11). Together 
with ff(1L1 + 1L2,JLI) = 1, Eqs. (3.21) and (3.21b) are suf
ficient to determine all the needed ff submatrices. 

The Bargmann basis (3.16) of yes su(3) highest
weight irreps is, in general, overcomplete and this results in 
the appearance of zero eigenvalues for ff ( v) 2. The eigen
vectors associated with the zero eigenvalues clearly corre
spond to state vectors that are nonvanishing in the Barg
mann space but that map into null yeS vectors. We 
therefore retain only the subset of eigenvectors with nonvan
ishing ff ( v) 2 eigenvalues. The span ofthese non-null vec
tors defines the yeS space as a subspace of Bargmann space, 
sometimes referred to as the physical subspace. 

IV. EXAMPLES 

A. Theg21rrep [ .... 1'~=O] 

Theg2 irrep I}LIO] is multiplicity-free, i.e., the branching 
rule g2~su(3) [Eq. (2.6)] gives 

IPIOU L {VI V2} (4.1 ) 
O<VZ<VI<'I-'l 

with each su(3) irrep appearing only once. We parametrize 
the various su(3) partitions {VIV 2} appearing (4.1) by (see 
Table I) 

{VIV 2} = {PI - (),JLI - () - A}, O<()<ILI' O<A<ILI - (). 
(4.2) 

From a yeS point ofview, the irrep I}LIO] is particularly 

TABLE I. Parametrization {v.v2 } = {PI - 8,IJ.. - 8 - A}for the su(3) irreps belonging to theg2 irrep lP.O). 

A string ... 
8strings~ 

{P.,IJ..} 
{PI - I,IJ.. - t} 

{II} 
{oo} 
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{P\O~. - t} 
{PI - I,IJ.. - 2} 

{IO} 

{P.,~.- 2} 

.. ' 
{P.,O} 

{PI - I,O} 
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simple since it has a scalar intrinsic u(2) irrep. Its Hilbert 
subspace of su ( 3) highest states is spanned by 

(y,zll IPI0)O{ VIV2} ( VIV2)1]) 

= (ye /..j01)P ~o+ e ~/J' (Zl) I (J..lIJiI )J..lI)' (4.3) 

where there is an unambiguous one-to-one correspondence 
between the parameters 0, A in (4.2) and (4.3) and the rank 
parameters b = 0, WI = A in (3.16). Since the intrinsic u(2) 

which yields 

%(J..lI - 0-1,J..l1 - 0-1)2 _ (2J..lI - 0+ 4)(J..l1 - 0) 

or 

%(J..lI-0,J..l1-0)2 - (J..l1-0+2) 

%( _ 0 _ 0)2 = (2J..l1 + 4)! 
J..lI ,J..l1 (2J..lI + 4 - O)! 

. (J..lI +2-0)! 

(J..l1 + 2)! 

Similarly, Eq. (3.21b) yields 

(4.4b) 

(4.4c) 

%(J..lI - 0-1,J..l1 - O-A _1)2 = (J..lI _ O-A) 
%(J..l1 - O,J..lI - 0 - A)2 

(4.5a) 

or 

%(J..l1 - 0#1 - 0 - A)2 _ (J..lI - O)! 

%(J..l1-0#1-0)2 -(J..lI-O-A)! 
(4.5b) 

Thus 

%(J..l1 - 0#1 - 0 _A)2 

(J..l1 - O)! X%(J..l1 - O,J..lI - 0)2 (4.6a) 
(J..lI - 0 -A)! 

(2J..lI+4)!. J..l1! . (J..lI +2-0)! 

(2J..lI + 4 - O)! (J..l1 - 0 - A)! (J..l1 + 2)! 
(4.6b) 

or, using (4.2), 

I 

Note that Eqs. (4.4b) and (4.5a) clearly indicate that 
% (VIV2)2 will vanish beyond the edges of the triangle in 
Table 1. 

With the help of (3.19) and (3.20), we find 

(1/tIOJ{VI - 1,v2 - t}(VI - 1,v2 - 1) 

772 

X Ilr(e( - I, - I) II LuIO]{ VIV2} (VIV2» 

= [V2(J..lI- VI + 1)(J..l1 +v l +4) ]112, 
(VI + 2) 

J. Math. Phys., Vol. 29, No.4, April 1988 

(4.7a) 

irrep is one dimensional, theu(2) coupling in (4.3) is trivial. 
The space of su (3) highest-weight states is therefore, by con
struction, multiplicity-free. Furthermore, since the polyno
mials P(O, - w,) (Zl) are well known and their construction 
unambiguous [as opposed to their counterparts in the 
g2:Jso(4) case4

], we are able to derive fully analytical re
sults for the g2 irrep LuIO] as we now show. 

We first seek to compute %(J..l1 - 0#1 - 0)2. From 
(3.21a), we have 

j 

(LuIO]{VI - l,v2}(vI - l,v2) 

X Ilr( po, - I) II Lu l oHv1V2} (VIV2) ) 

= [(VI - V2 + 1)(J..l1 - VI + 1)(J..l1 + VI + 4) ]112, 
(v l +2) 

(4.7b) 

(I"J..l IO]{VI,V2 - t}(VI,V2 -1)lIr(/(O,-I» 

X II Lu lo]{VIV2}( V IV2» = [V2( VI - V2 + 1) p/2, 
(4.7c) 

which, when divided by the proper su(3) :Ju(2) reduced 
Wigner coefficients,9 yield the following g 2 :J su ( 3) (triple
bar) reduced matrix elements: for the su(3) tensor e{t} , 

(LuIOj{v1 -1,v2 - t}11 Ir(e{t}) I I Il"J..l loHvIV2}) 

= [ (v2 + l)(J..lI - VI + 1)(J..l1 + VI + 4) ]1/2, (4.8a) 
(VI + 1) 

([,uloHVI + 1,v2}lllr(e{t}) IIILu l o]{VIV2}) 

= [(VI - V2 + 1)(J..l1 - VI)(J..lI + VI + 5)], (4.8b) 
(VI + 3) 

(Lu IO]{VI,V2 + t}11 Ir(e{J}) IIILu I0]{VIV2}) 

= (- )[(v2 + l)(vI - V2 + 1)p/2, (4.8c) 

and, using the conjugation property9 

(IPIJi2]b '{vi v~ }lllr(t {a,a,}) III [J..LIJi2]b{ VIV2}) 

= ( _ 1 )4>({v,v,}) + 4>({a,a,}) - 4>({vi vi}) 

X [ dim{v l v2} ]112 
dim{v; v~} 

X (LuIJi2]b{vIV2}lllr(t {a"a, - a,}) III IPIJi2]b '{ V; v~}), 
(4.9) 

for the su ( 3) tensor/ {J t} , 

(IPIO]{v1 + 1,v2 + t}lllr(/{11}) IIILu I0J{VIV2}) 

= [(V2 + 1)(J..l1 - VI)(J..l1 + VI + 5) ]112, 
(VI + 3) 

(IPIOH VI - 1,v2}lllr(/{IJ}) IIILu I0]{VIV2}) 

(4. lOa) 

= [(VI - V2 + 1)(J..l1 - VI + 1)(J..l1 + VI + 4)], 
(VI + 1) 

([,uI0j{VI,V2 - t}lllr(/{II}) 1IIIJlIO]{VIV2}) 

= [( V2 + 1)( V I - V2 + 1)] 1/2 . 

R. Le Blanc and D. J. Rowe 
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With the normalization (2.2) for the g2::Jsu(3) Lie al
gebra, the g2 quadratic Casimir invariant is given by 

I~;)=I!~l3) +je'J, e'j=ej";, (4.11a) 

with eigenvalue10 

I ~~) (Iltll2) (4.11b) 

=~[(4t2 +llt)(4t2 +Ilt + 8) + (Ilt-1l2) 

X (Ilt -1l2 + 2) + (21lt + 1l2) (4tt + 112 + 10)] 

on the g2 irrep [Ptll2]' It is easy to verify, with 

I!~l3) (vtv2) = ~[vi - VtV2 + ~ + 3vt ] 

and 

< Lutll2]b{ v tv2}lllr(e-j) 1111Ittll2]b{ VtV2}) 

= ~ [d~m{i\V2}] 
bv,v, dlm{vtv2} 

( 4.12) 

X <lIttll2]b{vtv2}lllr(j{II}) 1IIIIttll2]b{vtV2})2, 
(4.13) 

that the su(3)-reduced matrix elements (4.8) and (4.9) 
obey the sum rule 

I~;)(lltO) = j!it(llt + 5) (4.14) 

in agreement with Eq. (4.11 b). 
We remark that theg2 irreps belonging to the lit to] class 

of irreps are, from a VCS point of view, the only genuine 
multiplicity-free irreps and therefore the only class of irreps 
for which one can expect to derive analytical results. Irreps 
of the lit tilt] kind belong to the only other class ofmultiplic
ity-free irreps but do so in a manner which, from a VCS point 
of view, is more characteristic of the generic situation as we 
now discuss. 

B. Thegzlrrep [~1'~Z=~1] 

The g2lsu(3) reduction for the irrep IItt,1l2 =#t] is 
multiplicity-free. But, whereas it was a priori obvious from 
the trivial nature oftheu(2) coupling in (4.3) thatthe lit to] 
irrep should be multiplicity-free, one might have expected 
exactly the opposite for a IIttllt] irrep. 

One recalls that the intrinsic (highest-weight) irrep for 
a generic g2 irrep IIttll2] carries a nonscalar u(2) irrep 

(#t + #2,#t) and, consequently, an intrinsic "angular mo
mentum" j = Y'2' Thus one might expect that, among the 
class of g2 irreps lit tIl2] with Il t + #2 = const = 21l, the mul
tiplicity would increase with increasing 1l2' Indeed, this hap
pens, as Table I of King and Qubanchi5 illustrates very 
graphically, untilllt = #2 when the irrep suddenly becomes 
multiplicity-free. It is therefore of considerable interest and a 
critical test of K-matrix theory to see how this comes about. 

The g2lsu (3) branching rule for the irrep lit tilt] is given 
by 

IIttllt]l ~ {vtvJ, (4.15) 
,u1<vl <2J.'1 

where each su(3) irrep appears only once. We parametrize 
the various su(3) partitions {VtV2} appearing in (4.15) by 
(see Table II) 

{vtv2 } = {21lt - A - O,Jlt - O}, 

( 4.16) 

The Bargmann subspace of su (3) highest-weight states 
is then spanned by the states 

(y,zlI IIttllt]i{ vtv2}( vtv2)1/) 

= [(/ / v'ii) [P 10, - (A+ 28 - 2i»)(zt) 

X I (2#t,llt»] (v, + i,v, + i)]~V,V,), 

O<i<min(O,llt - A), ( 4.17) 

i.e., we have set b = i and W t = A + 20 - 2i in (3.16). 
According to the branching rule (4.15), we expect each 

%2 matrix to have only one nonvanishing eigenvalue. Thus 
only one specific linear combination of Bargmann basis 
states belonging to the multiplicity space (4.17) will survive 
under the map K to the corresponding one-dimensional VCS 
space. 

Starting with the one-dimensional (0 = 0) matrices 

%(4t1 -A,Jlt)2 = (31lt + 3)!/(3llt + 3 -A)! (4.18) 

easily obtained from (3.21b), one proceeds to the right of 
Table II in a stepwise fashion by increasing the value of the 
parameter 0 in (4.16). Using simultaneously (3.21a) and 
(3.21b), one obtains in the i-ordered basis (4.17) (since % 
is Hermitian we give only its right upper elements): for 
0=1, 

TABLE II. Parametrization {v.v2 } = {21l. - A - (J,Il. - (J} for the su(3) irreps belonging to the g2 irrep (}till.). 

A strings< 

773 

{21l.,Il.} 
{21l. - I,ll.} 

Vt. +' 2,1l.} 
Vt. + I,ll.} 

Vt.,Il.} 

(Jstrings .... 

J. Math. Phys., Vol. 29, No.4, April 1988 

{4t. - 1.Jl. - l} 
{21l. - 2.Jl. - l} 

Vt. + l#.-l} 
Vt • .Jl. -l} 

{2J.t. - 2.Jl. - 2} 

.. ' 
Vt •. O} 
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%(2jl1 -A - I,JlI - 1)2 = (21'-1 + 2) . '%(21'-1 -A - I,JlI)2 
(I'-I + 1) (21'-1 + 2 -A) 

for 0= 2, 
%(2p, - A - 2,p, _ 2)2 

(2Jt, + 2) (2p, + I) 

X(A + 1)(1'-1 + 2) ~(A + 1)(1'-1 + 2)(1'-1 -A»), 
... (I'-I-A) 

I ~/ 2 
-,-:-------:------::-:-::---:---:--:-. Jl (2p, - A - 2,p,) 

(p, + I)(p,) (2p, +2-A)(2Jt, +2-A-1) 

(A+2)(A+ I)(p, +3)(p, +2)(p,-A)(p,-A-I) 

( 4.19) 

(

A + 2)(A + I) (p, + 3)(p, + 2) (A + I )(P2 + 2)~=2(;-p,------;A;-----'-I")(-'--A +-:-=2)-:-(p-, +-:-3"') 

x ... 2(p, - A -I)(A + I)(p, + 2) (p,-A-I)~2(A+ I)(p, +2)(p,-A) (4.20) 
... '" (p,-A)(p,-A-I) 

from which one can infer by induction that, for given A and 0, %2 is given by the (0 + 1) X (0 + 1) square matrix 

% (21'-1 - A - 0,1'-1 - O)~ 

= (2jl1 + 2)! . (I'-I + 1- O)! . (2jl1 + 2 -A - O)! . (31'-1 + 3)! !X~/3f'(AO)/3'j'(AO) (4.21) 
(2jl1 + 2 - O)! (I'-I + 1)! (2jl1 + 2 - A)! (31'-1 + 3 - A - 0) 

with 

/3/f'(AO) = (0) (I'-I - A - 0 + i)!. (I'-I + 0 + 1 - i)! . (A + 0 - O! . (4.21') 
I i (#1 - A - O)! (I'-I + 1) A! 

Note that only the right lower 0 xO submatrix survives when A =1'-1 - 0 and that this submatrix is proportional to 
(I'-I - A - 0 + 1), i.e., it vanishes identically, as it should, beyond the right edge of Table II. 

Since all rows of the Hermitian matrix ( 4.21 a) are proportional to each other, this matrix is singular and, as expected, has 
only one nonvanishing eigenvalue given by the trace tr %2. Its corresponding normalized eigenvector x = (Xi) has compo
nents 

(4.22) 

on the i-ordered basis (4.17). 
As expected for a generic mUltiplicity case, matrix elements in this example involve sums that are irreducible to simple 

monomials and thus can only give the following semianalytical results: using interchangeably VI,V2, or A,O through the 
parametrization (4.16), we have 

<IPIILIH VI - 1,v2 - 1}( VI - 1,v2 - 1) IIr(e( - I, - I) II LuIILI]{ VIV2} ( VIV2» 

= [tr%(VI - 1,v2 -; 1)2]112 L{( /3f'(A,O-1) )1I\IPIIL.J i{VI -1,v2 -1}(v
l
-1,v2 -1)llyll 

tr%(v l ,v2) Ii [l:k/3~I(A,O-1)] 

( 
/3/f' (AO) ) 112 

XIPIILI]j{VIV2}(VIV2» [l:I~rl(AO)] , ( 4.23a) 

<IPIILI]{v1-1,V2}(VI-1,V2)llr(po·-I)IIIPIILI]{VIV2}(VIV2» 

(4.23b) 

(4.23c) 
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which, with the help of the Wigner-Eckart theorem and of 
(4.9), would yield all desiredg2 ::Jsu(3 )-reduced matrix ele
ments. 

APPENDIX: STRUCTURAL PROPERTIES OF THE K 
MATRICES 

The purpose of this Appendix is to prove the equalities 
defining the matrix elements (3.19) and (3.20), and to de
rive the recursion formulas (3.21) for the restriction % ( v) 
defined by Eq. (3.17b). Most of the derivations to be given 
below depend on specific structural properties of the full 
transformation matrix K on which we first elaborate. 

First, we show that 

<IPJi{v'}(h) IK IIPJj{v}(h» = 0 for v' > v, (Al) 

i.e., the matrix K is lower triangular in the (h) blocks. 
To prove (AI), start with the equality 

p~~m.m)(y(g<21)))IIPJj{v}(h)7]) =0 for 3m>v-h, 
(A2) 

where 
v - h = (VI + v2) - (hi + h2) 

and where p~~m.m) (y(g<21») is a (symmetric) polynomial in 
the commuting raising operators y(g<21» of su(3) 
mod u(2). Equation (A2) states that there is a highest
weight state for the su ( 3 ) irrep { v} and that the various u (2) 
unirreps (h) lying in this unirrep can be ordered by the de
creasing eigenvalues of the u ( 1 ) C u (2) number operator 
gil + g22 - 2g33, where the former are integer mUltiples of3. 
Since y(g<2J) = K -I ng<21»K, we can rewrite (A2), 

p ~~m.m)(K -I a 2K) I IPJj{v}(h)7]) 

= K -12: p~~m.m)(a2) IIPJk{v}(h)7]) 
kv 

X <IPJk{v}(h) IK I IPJj{v} (h) ) 

=0, for 3m>v-h. (A3) 

Now, for the last equation to be satisfied, we must require 
(A 1) since, in general, 

p~~m.m)(a2)IIPJk{v}(h)7]h~0 for v>v and 3m<v-h. 

Note that Eq. (3.17a) is a special case of (Al). 
Equation (AI) implies that Kt is upper triangular in 

the (h) blocks; i.e., 

<(JLJi{v'}(h)IKtIIPJj{v}(h»=O for v' <v. (A4) 

The triangular structure of K and Kt furthermore implies 
that 

<IPJi{v'}(h)IK-IIIPJj{v}(h» =0, for v'>v (A5) 

and 

<IPJi{v'}(h)I(K-I)tIIPJj{v}(h» =0 for v'<v. 
(A6) 

It is convenient to require that the restriction (3 .17b) be 
Hermitian. This requirement and the triangular properties 
ofKimply 

<1P)j{v} ( v) IKtllPj{v'}( v»* 

= <IPJi{v'}(v)IKIIPJj{v}(v» 
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(A7a) 

(A7b) 

<IPJj{v}(v) I (K -1)tIIPJi{v'}(v»* 

= <IPJi{v'} (v) IK -I I IPJj{v} ( v» 

= 6vv'%(v)ij I. 

Now, using definition (3.13a), 

(A7c) 

(A7d) 

y(t (a,.a2 » = K -Ir(t (a,.a2»K (ASa) 

for the K transformation, the Hermiticity requirement 
(3.13b) 

y(t(a,.a,» =Kt[r(t(-a,.-a,»]t(K-I)t (ASb) 

the triangular properties of the K matrices, the Hermiticity 
properties of the restriction % ( v) and its inverse, and the:r 
independence ofthe su(3) highest-weight states (3.16a), it 
is easy to prove Eqs. (3.19) and (3.20). 

Note that Eq. (ASa) turns out to be the most useful one 
for tensors t(a,.a,) Cg2 with positive u(2) rank(a l ,a2 ) while 
(ASb) is the equation one should use when this rank is nega
tive. Note also thatthe various expansions [r(t(a,a,) ) P do 
not belong to the ves expansions (3.10) and, therefore, we 
are not guaranteed that application of a given Bargmann 
operator [r(t(a,a,» P to the ves (physical) space will 
leave it invariant. This precludes an arbitrary truncation 
scheme for a singular restriction % ( v) when one uses Eq. 
(ASb); the correct procedure then is to restrict considera
tion to the space of eigenvectors of % ( v) with correspond
ing non vanishing eigenvalues. 

To find the recursion formulas for %2, we start with the 
equality 

r(t (- a,. -a'»K = Ky(t (-a,.-a,», (A9) 

easily obtained from (ASa) and where, from now on, the 
partition (a la2) is strictly positive. Taking matrix elements 
ofEq. (A9) between the basis of su ( 3) highest-weight states 
(3.16), we have that 

<IPJi{v'}(v') IIr(t (-a,. -a,) )%(v) II IPJj{v} (v) ) 

= <IPJi{v'}(v') 1I%(v')y(t (- a2 • -a,» II IPJj{v} (v) ) 

+ 2: <IPJi{v'}(v')IK IIPJ1{v}(v'» 
l.v> " 

x <IPJ1{v} ( v') lIy(t (- a,. -a,» II IPJj{v} (v) ). 
(AIO) 

From 

ng( -1.-2»K = Ky(g( -1.-2», (All) 

we have 

< IPJi{v'} ( v') IIng( - I. - 2»%(V) II IPJ1{v} (v) ) 

= <IPJi{v'}(v')IKIIPJ1{v}(v'» 

X <IPJ1{v}(v')lIy(g( - I. - 2» II IPJ1{v} (v) ), (AI2) 

where we have used the fact that y(t), tESU (3), is diagonal in 
the su ( 3) label {v} and in the multiplicity label I. Thus 

< IPJi{v'} ( v') IK IIPJ1{v}( v'» 

_ <IPJi{v'}(v')lIng( -1.-2»%(v)IIIPJI{v}(v» 

- <IPJ/{v}(v')lIy(g(-I.-2»IIIPJI{v}(v» . 
. (A13) 
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Inserting (A13) into (AW), we obtain 

(LuJi{v'} ( v') 11%( v')r(t (- a,. - a,» II LuV{v }( v» 

= (Lu]i{v'} ( v') Ilr(t (- a,. - a,»% (v) II [Ji]j{v}( v» _ L (lJt]i{v'} ( v') Ilr(g( - I. - 2) )%(V) IILu]/{v}(v» 
I.v>v' ([Ji]/{v}(v')lIr(g( -1,-2»IILu]/{v}(v» 

x (!it]l{v} ( V') Ilr(t (- a" - a,» II [Ji]j{ V}( V» . (A14) 

Multiplying Eq. (A14) on the right by %(v) and using Eqs. (A7) and (A8), we obtain 

(Lu]i{ v'}( v') 11%( v,)2rt (t (a,a,» II Lu]j{v}( v» 

= (!itli{v'} ( v') l!r(t (- a" - a,) )%( v) 211 LuV{ V}( V» _ L ([P]i{v'} ( v') Ilr(g( - I, - 2»%(V) II [Ji]l{v} (V) ) 
I.V> v (fIL]l{v} ( v') Ilr(g( - I. - 2» IIIJt ]l{v}(v» 

From 

r(g(-I.-2»Kt=K tr t (g(2l) = Ktz2, (A16) 

we derive 

(IJtJi{v} (h) IK tl Lu]l{v}(h» 

= 8w (lJt]i{V}(h) Ilr(g( - I. - 2» II 1Jt]j{v} (v) ) 

X%(v)jl' (v), (v)E(h) X (21), (AI7) 

which implies 

(IJtJi{v}(h) IK I 1Jt]I{v} (h) ) 

= 8w (I",u]i{v}(h)llr(g( -I. -2»11 
X Lu]j{v}(v»*%(v)jl' (A18) 

From (AS), (A17), and (A18), we derive that 

L %( V)lm ([Ji]m{V}(h) IK -11[,u]n{v}(h» 
m 

81 8--
n vv • (A19) 

([,u]/{v} (h) Ilr(g( - I. - 2» II [,u]/{V} (v) ) * 
Finally, upon substitution of (A19) in (A1S), we find 

(lJt]i{v'}( v') 11%( v')2rt (t (a,a,» II LuY{v} ( v» 

= ([,u]i{v'} ( v') IIr(t (- a,. - a,) )%( v)211[Ji]j{ v}( v» 

_ L ([Ji]i{v'}(v')I!r(g( -1.-2»II[Ji]I{V}(v» 
I.V> v' (Lu]/{v}( v') l!r(g( - I. - 2» II [Ji ]l{v} (V» 

X ([Ji]l{v} ( V') Ilr(t (- a,. - a,) )%( v)211 
X [,uJj{v} ( V», (A20) 

where we have used the equality 

(Lu]/{v}( v') IIr(g( - I, - 2» II Lu]l{v}(v) ) 

= I ([,u]l{v} ( v') IIr(g( - I. - 2» II Lu]l{v} (v) ) 12, (A2l) 

which is easily verified by direct computation. Equation 
(A20) yields Eqs. (3.21a) and (3.21b) upon substituting 
(11) and (10), respectively, for (a 1a 2 ). It should be com
pared to Eqs. (3.S2) and (3.60) of Rowe et aC that were 
derived for the special case of nilpotent raising subalgebra of 
order 2. The final equations are in fact identical and this is 
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(A1S) 

I 
indicative that Eq. (A20) has a wide range of applicability as 
we now discuss. 

We conjecture that the derivation of the recursion for
mula (A20) for the restrictions % ( v) is general and is not 
restricted tog2 ::Jsu(3). The order of nil potency n ofa given 
Lie algebra chain is arbitrary as can easily be seen from the 
fact that the above derivation is independent of the number 
of ranks (a) of the various h tensors in g mod I. In fact, the 
formula should apply to every Lie algebra chain g::J 1::J h, 
where g is the Lie algebra and h is the stability subalgebra of 
the highest-weight representation, and I is the intermediate 
subalgebra [here su(3)] such that 1= h + n~ + n~ . 
When m = I, the raising subalgebra is Abelian, the second 
term in the right-hand side of Eq. (A20) vanishes and the 
evaluation of the various matrix elements in the recursion 
formula is then facilitated2

•
3 by the use of commutator meth

ods and the introduction of h invariants.2 

'J. Deenen and C. Quesne, J. Math. Phys. 25, 2354 (1984); 26, 2705 
(1985); C. Quesne, ibid. 27, 428,869 (1986). 

2D. J. Rowe, J. Math. Phys. 25, 2662 (1984); D. J. Rowe, G. Rosensteel, 
and R. Carr, J. Phys. A: Math. Gen. 17, L399 (1984); D. J. Rowe, "Co
herent states, contractions and classical limits of the non-compact sym
plectic groups," in Proceedings of the XIII International Colloquium on 
Group Theoretical Methods in Physics, edited by W. W. Zachary, College 
Park, Maryland (World Scientific, Singapore, 1984); D. J. Rowe, in Phase 
Space Approach to Nuclear Dynamics, edited by M di Toro, W. Norenberg, 
M. Rosina, and S. Stringari (World Scientific, Singapore, 1986), p. 546. 

3D. J. Rowe, R. Le Blanc, and K. T. Hecht, preprint, 1987. 
4R. Le Blanc and D. J. Rowe, J. Math. Phys. 29, 758 (1988). 
SR. C. King and A. H. A. Qubanchi, J. Phys. A: Math. Gen. 11, 1491 
(1978). 

6M. Perroud, J. Math. Phys. 17, 1998 (1976). 
7 G. Racah, Lectures notes on Group Theory and Spectroscopy (Institute of 
Advanced Study, Princeton, NJ, 1951). 

"D. J. Rowe, G. Rosensteel, and R. Gilmore, J. Math. Phys. 26, 2787 
( 1985). 

9K. T. Hecht, R. Le Blanc, and D. J. Rowe, J. Phys. A: Math. Gen. 20, 2241 
(1988); R. Le Blanc and K. T. Hecht, ibid. 20, 4613 (1988); 
L. C. Biedenham and J. D. Louck, Commun. Math. Phys. 8, 89 (1968); 
K. T. Hecht, Nucl. Phys. 62, 1 (1965). 

lOB. G. Wyboume, Classical Groups for Physicists (Wiley, New York, 
1974). 

R. Le Blanc and D. J. Rowe 776 



                                                                                                                                    

The Demazure-Tits subgroup of a simple Lie group 
L. Michel. J. Patera.a) and R. T. Sharpb) 
Institut des Rautes Etudes Scientifiques, Bures-sur-Yvette, France 

(Received 5 February 1987; accepted for publication 19 August 1987) 

The Demazure-Tits subgroup of a simple Lie group G is the group of invariance of Clebsch
Gordan coefficients tables (assuming an appropriate choice of basis). The structure of the 
Demazure-Tits subgroups of A". B". C". D". and G2 is described. Orbits of the permutation 
action of the DT group in any irreducible finite-dimensional representation space of A2• C2• 

and G2 are decomposed into the sum of irreducible representations of the DT group. 

I. INTRODUCTION 

The purpose of this paper is to study a certain finite 
subgroup of any simple compact Lie group G. We call the 
subgroup the Demazure1-Tits2 group and denoted it by DT 
or DT(G). 

The maximal tori (called the Cartan subgroups) of a 
compact semisimple Lie group G are all conjugate. They are 
isomorphic to V( 1)1. where I is the rank of G. The centra
lizer CG (g) of g in G contains a Cartan subgroup; the ele
ments geG, whose centralizer is exactly a Cartan subgroup, 
are called regular. They form an open dense set in G. 

Given a Cartan subgroup He G, one considers its nor
malizer NG (H) (the largest G subgroup containing H as an 
invariant subgroup). The quotient NG (H)IH = W(G) is 
the Weyl group of G. This is a finite group with a natural 
action on the Cartan subalgebra h (the Lie algebra of H) of 
G generated by reflections along the simple roots. The im
portance of the Weyl group in the theory of Lie algebras, Lie 
groups, and their representations is well recognized. How
ever, the exact sequence 

{J' 

I-+V(1)/-+NGV(1)/-+W(G)-+I, (1.1) 

in general does not split, so W is not a subgroup ofG, where 
G is simply connected compact. Among the finite subgroups 
of the normalizer NG (V ( 1 ) I) that are mapped by fJ onto W 
there is a natural one DT(G), defined by (2.15) below, that 
has been first pointed out by Demazure1 and Tits.2 Its inter
section with V ( 1 ) 1 is the group of square roots of 1, hence it 
is the extension 

{J 

I-+Z; -+DT(G)-+W(G)-+l, ( 1.2) 

which is naturally deduced from (1.1). 
Physicists' interest in the Demazure-Tits group DT (G) 

is most likely to originate either from the similarity of its 
action in representation space to the action of the Weyl 
group in weight space, or from the fact that it permutes 
(with some changes of sign) the physical states of a G-irre
ducible space, thus making it possible to keep the same states 
even without the full Lie group symmetry. It is a finite sub
group of G that preserves the root space decomposition 

.) Permanent address: Centre de Recherches Mathematiques, Universite de 
Montreal, Montreal, Quebec H3C 317, Canada. 

b) Permanent address: Department of Physics, McGill University, Mon
treal, Quebec H3A 2T8, Canada. 

(Cartan decomposition) of the Lie algebra ofG. The group 
DT(G) has occasionally appeared in mathematics litera
ture; however, recognition of its usefulness in applied prob
lems relevant to physics is quite recent (cf. Ref. 3, where the 
group DT is denoted by N). A systematic use of DT (G) has 
been made as the group of invariance of table of the Clebsch
Gordan coefficients (relative to an appropriate basis 
choice). In computing Clebsch-Gordan coefficients for 
G = SV(5), O( 10), andE6 (cf. Refs. 4-6) DTwas used as a 
group of transformations among CGC of the same values. 
Practically it allows a small fraction of nonzero CGC to rep
resent all. 

In this article we give in Sec. II the structure of DT ( G ) 
for the classical groups A1.B[,C[,D[, and for G2• Section III 
contains some examples of the DT group in lowest represen
tations. In general, it is very interesting to decompose an 
irreducible G-representation space VA (A is the highest 
weight) into a direct sum of subspaces irreducible with re
spect to DT(G). For groups G of rank 1=2 we describe 
DT(G) in detail in Sees. IV-VI. Namely, we find its charac
ter table, decompose any VA into DT-invariant subspaces, 
and identify each DT -conjugacy class as a G class of ele
ments of finite order (Sec. VII). The last step opens the 
possibility of using the powerful computing methods 7-10 

with elements of finite order in G for the study of conjugacy 
classes of DT in all representations of G. The simple Lie 
group G in this article is always the simply connected one. 
Section VIII contains a summary of our results and some 
open problems. The Appendix contains a summation for
mula, which, as far as we know, does not appear in literature. 

We denote a group (finite or continuous) by bold capi
tal letters; for a Lie algebra we use lowercase bold symbols 
except for groups or algebras of specific types like A2 or 
SV(3), etc. The symbols W(g) and W(G), DT(G) and 
DT(g), etc., where g is the Lie algebra of G, are used as 
synonyms. 

II. THE STRUCTURE OF THE DEMAZURE-TITS 
SUBGROUPS OF THE SIMPLE SIMPLY CONNECTED LIE 
GROUPS 

We denote by (A.,p,) the Cartan-Killing positive definite 
scalar product on the compact semisimple Lie algebra g, and 
let the roots be a i Ea, its root system in a chosen Cartan 
subalgebra h; a is the root system of g. If I is the rank of g 
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then the Weyl group W (g) is generated by the reflections ri , 

i = 1, ... ,1, along the simple roots ai' 

riA =A - 2(ai ,A)(ai ,ai )-lai . 

When A itself is a simple root, say au 

rjai = a i - ajAij , 

where 

(2.1) 

(2.2) 

Aij = 2 (aj>aj )(aj,aj ) -I (2.3) 

are the matrix elements of the Cartan matrix of g. 
We denote by 1 = dim b the rank ofg. Let {ri , l.;;;i.;;;/} be 

a minimal set of generators ofW (g) (the corresponding sim
ple roots a i form a base of b); this group is completely char
acterized by the relations 

l.;;;i,j.;;;l, (rirj)mii=I, mii = 1, 2.;;;mij =mji .;;;6. 

(2.4) 

Notethatrirj = rjri whenmij = 2. The list of possible values 
of mij was given by Coxeter and is summarized in the Cox
eter-Dynkin diagram of g. Namely, mij = (1- (}iji1r)-1, 
where (}ij is the angle between a i and aj ; it is 2, 3, 4, or 6 
according to whether there are zero, one, two, or three lines 
joining vertices i andj. To specify the structure ofW(g), we 
define first a family of matrix groups (see, e.g., Ref. 11). 

A. The groups G(m, p, n) 

Let m, p, n be integers with p dividing m; we denote by 
A( m,p,n) the group of diagonal n X n unitary matrices a that 
satisfy the relations 

(aii)m= 1, l.;;;i.;;;n, det(a)m/p = 1. (2.5) 

Let IT" be the group of n X n permutation matrices; they 
have one 1 in each row and each column and zeros else
where. It is a faithful representation of S", the group of per
mutations of n objects. The determinant of a permutation 
matrixis ± 1 according to the parity of the permutation. We 
denote by G(m,p,n) the matrix group generated by the 
groupsA(m,p,n) and IT". Obviously, G(m,p,n) is the semi
direct product, 

G(m,p,n) = A(m,p,n) <2< IT" . (2.6) 

All the matrix groups G(m,p,n), exceptG(1,I,n) = IT" and 
G(2,2,2) are irreducible over C. The only pair of conjugate 
groups is G(4,4,2) and G(2,1,2). For a finite group G, we 
denote by IGI the number of its elements. Then 

IG(m,p,n) 1 = m"p-In!. (2.7) 

The linear action of the Weyl group W (g) on the Cartan 
subalgebra b is represented by 

W(Ar) =G(1,I,I+ 1), W(B/) =W(C/) =G(2,1,/), 

W(Dr ) = G(2,2,/), W(G2 ) = G(6,6,2) . (2.8) 

Exceptionally, for A/-SU/+ I' we have used the Cartan al
gebra of U/ + 1 ; in it the Cartan algebra of A/ is the hyper
plane orthogonal to a vector with all coordinates equal. 

For a matrix group G we denote by SG, or sometimes by 
G+, its unimodular subgroup (i.e., the group of matrices 
with determinant 1). Note the isomorphism, 

SG(2,1,3) =W(B3 )+-S4' (2.9) 
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We recall now, at least in a particular case, the definition 
of the wreath product: given a group K, the wreath product 
by S" , which we denote by K tn, is the semidirect product 

(2.10) 

of S" by n copies of K, S" acting by permutations on the n 
factors of K" . For a finite group K, 

IKtnl = IKI"n!. (2.11 ) 

Let us point out that 

G(m,l,n)-Zmtn; e.g., W(Br)-Z2t/. (2.12) 

We will need the following properties of Weyl groups. The 
Lie algebras of types Br and Cr have roots of two different 
lengths; the corresponding reflections form two conjugacy 
classes in W (Br ) = W( C/) with, respectively, 1 and l(l- 1) 
elements. The elements of the conjugacy class with 1 ele
ments are the reflections of A(m,I,/). They commute and 
generate the Abelian group A(m,I,/). Here W(D1 ) is an 
index 2 subgroup of W(B1 ); when 1 is odd, - 14W(D1 ). 

That is, 

(2.13 ) 

While the Wey I group W (g) is the same for all groups G 
that have the same Lie algebra g, the Demazure-Tits group 
DT(G) does depend on the choice of G; here we consider 
only simple simply connected compact Lie groups G. We use 
the notation 

prod(n,x,y) = xyxy- .. , (2.14) 

for a product of n factors, alternately x and y. Tits2 defines 
DT(G) by its generators qi and their relations 

l.;;;i.;;;l, qi 4 = 1, q/q/ = qJq/, 

prod(mij,qj>qj) = prod(mij,qj,q,), 

2 -I 2 lAy 
qiqj qi = qj qi . 

(2.15a) 

(2.15b) 

The q~ are the square roots of 1 in the Cartan subgroup, they 
generate the kernel of {} in Eq. (1.2). The presence of the 
exponent 2Aij in (2.15b) implies that DT(B1 ) and DT( C1 ) 

are different although W(B1 ) = W(Cr ). Since we will use 
these relations often we give them more explicitly: 

4 1 2...2 2 2 qi = , qi'fj = qjqi , 

mij = 2: qiqj = qjqi , 

3 2 2-1 mij = : qiqjqi = qjqiqj' qiqj = qj qi , 

mij = 2k: (qiqj)k = (qjqi )k, 

qiqj 2qi -I = qj 2qi lAij • 

(El ) 

(E2) 

(E3) 

(E4) 

Consider two semisimple Lie groups G and G' both of 
rank I. If the Coxeter-Dynkin diagram ofG is a subdiagram 
of the extended Coxeter-Dynkin diagram ofG', then one has 
for the corresponding DT groups, 

DT(G) CDT(G') . (2.16) 

Clearly G and G' have the same Cartan subgroup - U~ and 
No ( U ~ ) C No' ( U ~ ). Since the corresponding DT groups 
have the same kernel zL (2.16) holds. If the rank ofG' is 
lower than I, (2.16) still holds provided the Coxeter-Dynkin 
diagram of G' is a subdiagram of the (nonextended) dia
gramofG. 
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Let C(G) be the center of G. The intersection 
C(G) nDT(G) is the group of square roots of C(G). We 
recall the nature ofC(G) in Table I. 

B. The DT subgroup of A, 

In the natural (1 + 1 )-dimensional representation of 
SU I + I , a Cartan subgroup is represented by diagonal matri
ces; its subgroup of square roots of the unit is 
A(2,2,1+ 1)-Z~. The Weyl group -SI+I permutes the 
elements of these diagonal matrices; it can be represented by 
the group of permutation matrices "I + I' The reflections 
correspond to permutations of two elements, the rj corre
sponding to the permutations of neighboring elements. In 
"I + I their determinant is - 1. The unimodular matrices 
that represent them in DT (SUI + I ) have been given in Ref. 3 
(where they are denoted R j ). They are 

a j =/j_1 $(~ ~)$II_j' (2.17) 

where I k is the k X k unit matrix. 

ces: 
Let us introduce the (1 + 1) X (1 + 1) diagonal matri-

j-I 
Vj =/j_1 $ -1$II_j+1 =VI II ai, 2<';<.1+ 1. 

k=1 

(2.19) 

They are the reflections of the group A (2,1,1 + 1) that they 
generate. For 1 <.i<.l, the matrices Vjaj belong to n l + I and 
generate it since they represent the permutations (i,i + 1). 
Hence we have shown that VI and the aj's generate 
G(2,1,1 + 1). Since det(aj ) = 1 = - det(vl), the a/s gen
erate the unimodular subgroup SG(2,1,1 + 1). This proves 
that 

DT(AI) = DT(SUI + I ) 

= SG(2,1,1 + 1) -W(B,+ 1)+ . (2.20) 

When 1 is even, det( - II + I ) = - 1, so we obtain a uni
modular representation "1+ I of SI+ I by multiplying by 
- 1 the matrices representing odd permutations; since 
"1+ I CSG(2,1,1 + 1), this shows that the exact sequence 
( 1.2) splits fori even, 

DT(AI) = ~ <2<W(A I ) (1 even) . (2.21 ) 

This is not the case for odd I; e.g., for 1= 1, DT(A I) = Z4 
(see also at the end of this section). When I is even, we can 
write explicitly a choice of representatives ii j ofthe a j 's that 
realizes the splitting (2.21). We define theaj 's using the sets 
of indices 

TABLE I. Structure of the center of a classical simple Lie group G. 

Algebra 

G 
C(G) 

779 

Spin21 + 1 Sp21 
Z2 Z2 
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Spin21 
Z2XZ2 (/ even) 
Z4 (lodd) 

FU,/) ={k,(O<k oddd)U(i<.k even<./)}, 

ii j = a j II ai . 
iu=F(i,1l 

(2.22a) 

(2.22b) 

These ii j generate a subgroup of DT(A / ) isomorphic to 
W(A / ) -SI+I' 

The center of A 1 is the cyclic group Z/+ I' When lis odd, 
the center has a nontrivial square root of unity that is in 
every Cartan subalgebra and therefore in DT(AI). Indeed, 
the irreducible matrix group SG(2, 1,1 + 1) has a nontrivial 
centerC(SG(2,1,1 + 1)) only when it contains the -/ma
trix, i.e., for odd I. Thus 

C(DT(A/» = 1 or Z2(a), fori even or odd; 

a= IIai. (2.23) 
k odd 

C. The DT subgroup of C, 

Next we consider the DT of the symplectic group Sp2/' 

We denote by Cj the generators ofthis group. The equations 
(E) applied to them become 

CjCj + ICj = c j + ICjCj + I (1<.i<.l- 1) , 

CI_ICICI_ I CI = CICI_ICICI_ I , 

CI_IC/ = C/CI _ I -1, CI CI _ 1
2 = CI_ 1

2
CI • 

(2.24) 

According to (2.16), for l<.i<.l- 1, the c/s generate 
DT(AI_ I ) CDT(CI). In order to complete our study ofC

" our strategy is to consider its I elements Sj' 1 <.i<.l, "above" 
the I commuting reflections rj generating A(2,1,/) CW(CI), 
i.e., 

O(Sj) = rj , SI = cl , l<.i<.l- 1, 
I-I 

Sj = UjSIU j- I with U j = II Ck • 
k=j 

(2.25) 

(In the n symbol, when the factors do not commute, they 
always are assumed to be placed in order of increasing index 
value: U j = CjCj + I" 'CI_2CI_I') We know thatthese reflec
tions commute among themselves. We now prove the follow
ing lemma. 

Lemma 1: The elements Sj commute among themselves. 
We first verify it for SI_ I andsi . Indeed from (2.24) and 

(2.25), we compute 

SI_ISI =CI_ICICI_I-ICI 

= CI_ I CICI _ I CICI _ I 2 

= CICI_ I CICI _ I -I = SISI_I • (2.26) 

Because Cj and cj commute when Ii - jl > 1, with 
uj = n~-:,ljCk' we have 

SjSI = ujsl _ I u j- lSI 

= UjSI_ISIU j-
1 

= ujslsl_ I u j- I 

= slujsl_ I u j -I = SISI U<.I- 2) . (2.27) 

We need the relation [use (2.24) twice] 
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Sj = Cj+ ISjCj+ 1 -I (1..;1..;1- 2) (2.28) 

to prove by recursion thatsj andsj+ 1 commute. Itis true for 
i= 1- 2: 

SI_2SI_1 = CI_ISI_2SICI_I -I 

= CI_ 1SISI_2 CI_I -I 

= CI_1SICI_ 1 -ISI _ 2 = SI_I SI_2 . (2.29) 

Assuming that it is true for 1 = k, we prove it for 1 = k - 1, 

=CkCk_ISkCk_I-ISk+ICk -I 

=CkCk_ISkSk+ICk_I-ICk -I 

= CkCk_ISk+ ISkCk_1 -ICk -I 

=CkSk+ICk_ISkCk_I-ICk -I 

= CkSk+ ISk_ICk -I 

=CkSk+ICk -ISk_1 =SkSk_1 • (2.30) 

Finally when i..;j - 2, we define as before U = UjUj _ 1 -I. 

Then 

-I SjSj = uSj _ 1 U Sj 

-I -I 
= USj_ISjU = USjSj _ 1 U 

Using (2.24), we find 
I 

s/ = II Ck 2, 
k=1 

(2.31) 

(2.32) 

and remark that all the squares are different. Similarly, 

c/=S/Sj+1 2, c/=s/ (1..;i..;I-1). (2.33) 

Hence the Sj commute also with the c/o They generate an 
Abelian group containing the kernel in (1.2) of DT (CI ). 

Moreover, the commutation of the Sj 's shows that the cover
ingofA(2,1,/)CW(CI) inDT(CI) is 

1J -1(A(2,1,/») = Z41. (2.34) 

When 1..;1..;1- 1, we choose other representatives cj of the 
rj's, 

1J(Cj) = 1J(cj) = rj, 
(2.35) 

Cj=S/Cj=CjSj+12 (1<1..;1-1), 
where the last equality is obtained by a repeated use of Eqs. 
(2.24). We verify that 

c/= 1, 1..;1..;1-2, (cj Cj + I )3= 1 (1";i..;I-1). 
(2.36) 

This shows that DT (CI ) contains a subgroup isomorphic to 
W(A I _ I ) -SI. We verify that it acts on the Sj by permuta
tions 

CjSj+ I cj -I = Sj' CjSjCj -I = Sj+ I , 

cjsA -I =Sj (i<j or i>j + 1) . 

This completes the proof of the isomorphism 

DT(CI) -Z4t/-G(4,1,/). 

(2.37) 

(2.38) 

The center, C(DT(CI ») = Z4(S), of this group is the diag
onal subgroup of Z41 . It is generated by 
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I 

S = II Sj. 
k=1 

Observe that 

C(SP21) nC(DT( CI ») = Z2(S2) , 

where a has been defined in (2.23), 

(2.39) 

(2.40) 

(2.41) 

The matrices representing cj's in the 2/-dimensiona1 
faithful representation of the symplectic group CI are shown 
in Sec. III. All equations of this section can be thus verified. 

D. The DT subgroup of 8, 

Let us now consider the DT of Spin21 + I . We denote by 
bj its generators. For 1..;1..;1 - 1, like the Cj, these satisfy 
(2.24) and (E1). But the last line ofEq. (2.24) is replaced 
by 

b l _ I blbl _ 1 b l = blbl _ I blbl _ \I 

blbl_12bl=bl_12bl-l, bl_Ib/=b/bl _ l , 

and mij = 2 when Ii - jl > 1, so (E2) applies 

bjbj=bjbj (11-jl>l). 

From these equations we obtain 

Z2(1]) !;;;C(DT(BI »), 1] = b/ . 

(2.42) 

(2.43 ) 

(2.44) 

Here Z2 ( 1]) denotes the Z2 group generated by 1]. The group 
Z2(1]) is exactly C(Spin21 + I). As we will see later, 
C(DT(BI») might be larger. 

Since W (BI ) = W (CI ), we follow the same strategy as 
for the study of DT (CI ): we introduce the representatives tj 
of the 1 - 1 reflections conjugate to bl , 

tl = b l , tj = bjtj + I bj -I = ujbluj- I (l..;i..;/), 
(2.45) 

where the Uj are defined as in (2.25). This time we find that 
the tj'S all have the same square, 

t/ = 1], 1]2 = 1 , (2.46) 

and, instead of commuting among themselves, we demon
strate that they "anticommute." More precisely their com
mutator is 1], 

t;l/j-I tj -I=1] (l";l,j..;/). (2.47) 

For this we follow the same path of computations as in Eq. 
(2.26 )-(2.31): 

tl_Itl =bl_Iblbl_I-lbl 

= b l _ 1 blbl _ 1 b l b l _ 1
21] 

= blbl _ 1 blbl _ 1 -11] = 1]tltl_1 . (2.48 ) 

Replacing the s;'s by t;'s and (2.26) by (2.48), Eq. (2.27) 
carries through: 

(2.49) 

Equation (2.28) depends only on (2.24) which is common 
for both DT(CI ) and DT(BI ).It reads for the latter group, 

tj=bj+ltjbj+I-1 0..;i..;I-2). (2.50) 

To prove by recursion that tj and tj + 1 anticommute, we 

Michel, Patera, and Sharp 780 



                                                                                                                                    

prove it first for i = 1- 2. For this we use (2.50), then 
(2.49), 

tl _ 2tl _ 1 = bl_Itl_2tlbl_I-1 

= 1]bl_Itltl_2bl_I-1 

= 1]bl_Itlbl_1 -ltl _2 = 1]tl_Itl_2 . 

(2.51) 

We assume it true for i + 1 and prove it for i. For this replace 
the s and e's of (2.30) by t and b's; use (2.51) instead of 
(2.29). An 1] will appear and this will conclude the proof of 
(2.47). 

The group defined by Eqs. (2.46) and (2.47) is called a 
Clifford group. It is also called the extra special two-group in 
mathematics literature. We denote it by CL/. Its elements 
are the monomials of the symbolic polynomial 
(1 + 1])n~= 1(1 + t j ). Thus its order is 

ICL/I = 2/+ I (1<;'i,j<J). (2.52) 

The group C~ is the quaternionic group, generated by two 
iUk, where the Uk' k = 1,2,3, are the three Pauli matrices. 
We define 

I 

t = II tk . 
k=1 

From Eqs. (2.46) and (2.47) we get 

tJ = ttj1]I-I, t 2 = 1], for 1= 1,2 mod 4; 

t 2 = 1, for 1=0,3 mod 4. 

(2.53 ) 

(2.54) 

We have seen that in W(BI ), the subgroup W(A I _ I ) gener
ated by the rk's, 1 <;.k<;.l- 1, acts as the group of permuta
tions SI on the I reflections in A(2,1,/)<1W(BI ) (<1 reads 
"invariant subgroup"). The corresponding action of bk , 

1 <;.k<;.1 - 1, on the tj will be, by permutations modulo ele
mentsin Ker, DT(BI ) = m= IZ2(b/). By computation we 
find that this action is only modulo 1]; explicitly, 

bJjbj-l=tj , 1]tj + l , tj _ l , tj , 

when j<i, j=i, j=i+ 1, j>i+ 1. 
(2.55) 

This also shows that CL/<1DT(BI ). Moreover, since the two 
subgroups CLI and DT(AI _ I ) generate DT(BI ) and their 
intersection is only 1, this proves that 

DT(BI ) -CL/<2<DT(A I _ I ) -CLI <2<SG(2, 1,1) , (2.56) 

with the action defined in (2.55). From this equation we 
obtain the action ofthebj's on t defined in (2.53); it is trivial: 

bJbj -I = t. (2.57) 

From (2.54), we see that when lis odd, teC(DT(BI »). Final
ly, with (2.54) we obtain 

C(DT(BI ») = Z2(1]), Z4(t), Z2(1]) X~(t), 

1 mod 4=0,2, 1, 3. 
(2.58) 

We recall that for all values of I, C(BI ) = Z2(1]). 
In Sec. III we give an explicit representation of the bj's 

in the 2/-dimensional faithful representation of Spin21 + I . 

We denote by q; the homomorphism from Spin21 + I 

onto S021 + I - Spin21 + I /Z2 (1]). These two groups are the 
images of the nontrivial irreducible representations of B I. In 
the tensorial representations, DT(BI ) is represented by the 
splitting image 
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q;(DT(BI ») = Z/-I<2<W(BI ) - (Z/-IX~l)<2<SI . 

(2.59) 

E. The OT subgroup of 0, 

We denote by dj the generators of DT(DI ) CSpin21 • 

Since DI = Spin21 is a maximal subgroup of B I = Spin21 + I 

with the same rank I, we know from (2.16) that 

(2.60) 

and that it is of index 2, Le., the same as W (DI ) in W (BI ), 

since we pass from the latter group to the former one by 
replacing A (2,1,1) in it by its subgroup of unimodular matri
ces A(2,2,/) = SA(2,1,/). It contains only the products of 
an even number of reflections r j. We will write the genera
tors Wj of 11 -I(SA(2,1,/») as products of pairs of the t/s. 
More generally, it follows from the structure of W that we 
can write the generators of DT(DI ) in terms of those of 
DT(BI ). Namely, 

dk = bk, dl = blbl _ I bl -I (1 <.k<;.l- 1) . (2.61) 

We can verify that the dj's satisfy the equations correspond
ing to (E2), and (E3). In particular, 

dl_Idl =dldl _ 1 . (2.62) 

Since 1]eC(DT(BI »), it is also in C(DT(DI »). It can now be 
defined by 

1] = dl _ I 2d/ . 

We can choose for the generators of SA (2, 1,1) , 

Wj = t;ll = vjdl _ 1 -Idlvj -I, 

WI_I = tl_Itl = dl _ 1 -Idl , 
1-2 

Vj = II dk (1<;.i<;.l- 2) . 
k=j 

(2.63) 

(2.64) 

From Eqs. (2.46) and (2.47) we find immediately that the 
1 - 1 w's satisfy the same equations so they generate a sub
group -CL/ _ I. This is an invariant subgroup of DT(DI ) 
that has a trivial intersection with the subgroup DT (A 1_ I ). 

These two subgroups generate DT(DI ). Hence 

DT(DI ) = CL/_ I (xDT(A I _ I) , (2.65) 

where the action of the dj's on the wj's is defined implicitly 
by (2.55) when the dj's and the wj's are expressed, respec
tively, asfunctionsofbj andtj [see (2.61) and (2.64)]. 

Let us now consider the centerofDT(DI ). As in (2.53) 
we define 

I-I 

W= II wk = t, 
k=1 = 1]ttl , 

for I even, 
for 1 odd. 

Similarly to (2.54) we obtain 

WWj = WjW, w2 = 1, for 1=0,1 mod 4, 
w2 = 1], for 1=2,3 mod 4. 

When I is even, 

a= II d/, 
k odd 

(2.66) 

(2.67) 

(2.68) 

already defined in (2.23), is in C(DT(AI _ I »). It anticom
mutes with bl' so it commutes with dl. Hence it is in the 
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TABLE II. Structure of the center ofthe Demazure-Tits subgroup of the simple Lie group DI and its intersection with the center of the Lie group. Zk (Y) 
denotes a cyclic group generated by y. 

1 (mod4) o 2 3 

qDT(DI ») 
C(D/ ) 
qDT(DI»)n(D/ ) 

Z2(a) XZ2 (77) X~(w) 
~2 

~(a) XZ2 (77) 

~(77)XZ2(W) 

Z. 
~(77) 

~(a)XZ.(w) 

Z/ 
Z2(a) XZ2 (77) 

Z.(w) 

Z. 
Z2(77) 

center ofDT(D, ). We summarize the description of the cen
ter of DT(D/) and its intersection with the center of G in 
Table II. 

For 1 even, there are no faithful irreducible representa
tions of D/. We denote again by q; the homomorphism from 
Spin2/ onto SO 2/ - Spin21 + I IZ2 ( 11 ). In the tensorial repre
sentations, q; (DT (B / ») is represented by the splitting image, 

q;(DT(B/») = Z/-I<2<W(D/) - (Z2/-IXZ/-\)<2<S/ . 

(2.69) 

F. The DTsubgroup of Gz 

The Weyl group of Gz is the dihedral group of 12 ele
ments isomorphic to S3 X Zz. Therefore the order of 
IDT(Gz)I is 48. From (2.16) we know that DT(SU3) 
eDT( Gz) and it has index 2. Note that DT(SU3) is isomor
phic to S4 [see (2.20) and (2.9)]; so it is complete. That 
means it has no center and no outer automorphism. Hence 
from a known theorem II one has the isomorphism 

(2.70) 

We have seen that DT(Az) -Z/XS3-S4 splits. Since 
W ( G z) = S3 X Zz, (2.70) implies that DT ( G z) also splits, 

DT(Gz) = Z/XW(Gz) -Z/<2<S3XZZ' (2.71) 

We recall that C(Gz) = 1; however, C(DT(Gz»-Zz. 
In his paper TitsZ asks the question: What is the smallest 

subgroup W' of DT(G) that covers W(G), i.e., 
't1(W') = W(G)? With the knowledge of the explicit struc
ture of the DT( G) groups we can give the answer. It is found 
in Table III. 

To end this section we summarize in Table IV the infor
mation obtained on the structure of the DT (G) and their 
centers. 

TABLE III. The smallest subgroups ofthe Demazure-Tits group DT(G) 
covering the Weyl group W(G). K = ker {J. The exception for DT(A / ) is 
due to the solvability of S4-~2XS3; the result can be understood from 
A3 -D3 • 

G rank 1 W' W'nK 

AI 1 even -W 
3#1 odd DT(A / ) Z2

1 

1=3 CL2<1<S3 Z2(a) 

CI DT(C/ ) Z2
1 

BI CL/CxS, Z2(77) 

DI CL/_ 1 <1<S, Z2(77) 
G2 -W 1 
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III. REPRESENTATIONS OF THE DEMAZURE-TITS 
GROUPS AND EXAMPLES 

Let us underline some common features as well as differ
ences between the well-known group W(G) and the group 
DT(G) that are used subsequently and provide some exam
ples of elements R i , i = 1, ... ,1, generating DT(G) in some 
low-dimensional representations of G of several types and 
many ranks. The rank I = 2 cases are studied in much 
greater detail in Secs. IV-VI. Other properties ofDT (G) can 
be found in Sec. III of Ref. 3. 

The fundamental weights w\> ... ,w/ are defined by 

(a;.wk) = 0ik (a;.ai )/2 . (3.1) 

The weight lattice Q is the l span of the fundamental weights 
ofG, 

Q = -&t: = (al, .. ·,a/) l,u = a\w\ + ... + a,w"~ aiel}. 

(3.2) 

The sector of Q containing only dominant weights (all 
ai ;;>0) is denoted Q +. Each orbit ofW in Qis a set of weights 
that contains precisely one dominant weight, say A +. By 
definition, the set of lattice points 

O(A +) = -&tl,u = WA +, weW}, (3.3) 

is a W orbit, it is W invariant and is usually specified by its 
dominant weight A +. Subsequently, when no ambiguity 
could arise, we often use A + forO(A +); similarlyO(A +) is 
often denoted by WA +. The number of elements of 0 (A +) is 
equal to the ratio 

10(A +)1 = IWA +1 = IWI/IStabwA +1 (3.4) 

of the order ofW to the order of the stabilizer orA + in W.1t 
is tabulated in Ref. 13: 

StabwA + = {WIWA + =A + and weW}. (3.5) 

Stabw A + is the Weyl group of a (semisimple) Lie algebra 
obtained easily as follows. Take the Coxeter-Dynkin dia
gram ofG (W is the Weyl group of G) and attach the coordi
nates of the dominant weight A + in the basis of the funda
mental weights to the corresponding nodes of the Coxeter
Dynkin diagram. Remove nodes with nonzero coordinates. 
What remains is the diagram of a semisimple Lie subgroup 
of G whose Weyl group is Stabw A +. 

An irreducible representation is specified up to G conju
gacy by its highest weight AeQ + . Therefore a representation 
is usually denoted by A. An efficient algorithm for finding all 
A + in !l(A) is given in Refs. 12 and 13. For most cases of 
interest, A + have been tabulated in Ref. 13 together with the 
multiplicity of their occurrences in !l(A). 

The weight system !l(A) of a representation A is in-

Michel, Patera, and Sharp 782 



                                                                                                                                    

TABLE IV. Structure of the Demazure-Tits subgroups of simple Lie groups. Symbols a, S,l1, I, w, are, respectively, defined by the following equations: a: 
(2.23), (2.41), s: (2.39),11: (2.44),1:(2.53), w: (2.66). Here Z. (y) denotes a cyclic group of order n generated by y. The Clifford group CL, is defined by 
(2.53) and (2.54). 

G 

A, 

B, 
B, 

I mod 4 

0,2 
1,3 
0,2 
1 

DT(G) 

~/<i<S'+1 
-W(B,+ 1)+ 

CL/<i<DT(A, _ 1) 

CL/<i«~/<i<S'_1 ) 

C(DT(G») C(G) C(DT(G»)nC(G) 

I Z'+1 
~(a) Z/+l I 
~(11) ~(11) ~(11) 

Z.(t) ~(11) ~(11) 

3 CL/<i«~/<i<S/_ 1) Z2(11) X~(t) ~(11) ~(11) 

Z.(s)tl Z.(s) Z2(a) ~(a) C, 

D, 0 CL/_ 1 <i<DT(A , _ 1 ) ~(a) X~(l1) X~(w) Z/ ~(a)X~(1]) 

CL/ _ 1 <i«~/<i<S,_ 1) ~(1])X~(W) Z. ~(7]) 

2 CL/_ 1 <i<DT(A, _ 1 ) ~(1])XZ.(w) Z/ ~(a) XZ2(1]) 

3 CL/_ 1 <i«~/<i<S'_l) Z.(w) 

S.X~ Z2 

variant under W and decomposes into several W orbits 
O(A +) = O(WA +): 

O(A) = UO(A +) . (3.6) 
A+ 

The same orbit O(A +) often occurs with multiplicity 
multA (A +) > 1 in O(A). We use n for the multiplicity 
multA (A +) orA + inO(A) whenever there is no ambiguity 
as to what A and A + are. The orbit O(A) of the highest 
weight A is always unique in O(A), i.e., multA (A) = 1. 

Consider the representation space VA and its decompo
sition 

VA = Ell Vw(A +) = Ell Ell VA (f.l) (3.7) 
A +eO(A) A +eO(A) ,.eO(A +) 

parallel to the decomposition (3.6) ofO(A), where the sub
space V w (A +) corresponds to 0 (A +). Indeed V w (A +) is 
the direct sum of weight subspaces VA (f.l), f.lEO(A +). The 
dimensions are given by 

dim Vw(A +) = /WA +/dim VA (f.l) 

= /WA +/multA A + . (3.8) 

The permutation of weights 

f.l' = r;f.l, f.l,p:EO(A), r;EW, 

by r;'s of (2.1) exactly corresponds to the permutation of 
weight subspaces VA (f.l) by the elementsR;EDT. Namely, 

R; VA (f.l) = VA (r;f.l) = VA (f.l'), RleDT, 1<i<I. 
(3.9) 

In Ref. 3 the elements R; are called charge conjugation oper
ators. In practice one is more interested in the transforma
tion properties of individual vectors v,. EVA (f.l), 

R;v,. = v,.. = vri ,., v,. EVA (f.l), Vri,.EVA (r; f.l), (3.10) 

rather than in (3.9). Since there may be n, n>O, linearly 
independent vectors v,., it turns out that the action of R; on 
VA (f.l) is quite nontrivial even if r; acts trivially on f.l, i.e., if 
r;f.l = f.l. Although one still has (3.9), it does not imply that 
v,. = v,. .. For examples see Ref. 3 andAppendixCofRef. 14. 

It follows from (3.9) and (3.10) that one can writesym
bolically 
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Z. ~(7]) 

1 1 

DTVw(A +) = Vw(A +) = EIlm;V(r;), m;EZ>o. 
; 

(3.11 ) 

The action of DT is necessarily reducible in subspaces 
Vw(A +) of VA . Indeed,DT, being a finite group, has finitely 
many irreducible representations r;, i = 1,2, ... ,k < 00, while 
the dimension of V w (A +) has no upper limit; it grows with 
A. The summation in (3.11) extends over the irreducible 
representations of DT. 

Before turning to specific examples let us recall some 
notations and conventions. Consider I isomorphic copies of 
the complex Lie algebra sl(2,(;);, 1 <i<l, in 1-1 correspon
dence with the simple roots of G. The basis elements 
ei> /;, h; of each s1(2,(;); are chosen to satisfy 

[e;,/;] = hi> [h;,e;] = 2e;, 

[hi>/;] = - 2/;, l<i<l. 
(3.12) 

The generator of G can be written as linear combinations of 

e; - /; and [-=t (/; + e;) for iE{I, ... ,l} and their commu
tators. Since we make no direct use of these other generators, 
there is no need to write them down here. However, we al
ways assume that a Chevalley basis II ofG has been chosen. It 
amounts to having the structure constants integer. 

as 
The charge conjugation operators3 R; EG can be written 

R; = exp( /; )exp( - e; )expU;) 

= exp !11'(/; - e;), l<i<1. (3.13 ) 

They generate the Demazure-Tits group DT. It has been 
shown in Ref. 3 that 

R;4 = 1, R;VA = (_1)(A-A)/2V_,t, VA EVA (A), 

(3.14) 

where A ( = twice the angular momentum) denotes the ir
reducible representation of A 1 of dimension A + 1 and A is a 
weight of its weight system O(A) = {A,A. - 2, ... , - A}. 

Let us consider examples of R/ in the lowest representa
tions of simple Lie groups of different types. 

(AI) The faithful representation A = (100" '0) of di
mensionl + 1 

Michel. Patera, and Sharp 783 



                                                                                                                                    

(3.15 ) 

Here I k is the k X k identity matrix. In matrixlike symbols 
we write negative signs over the digits. 

(B/ ) ThematricesR;, 1<';<1- 1 (denoted by h; in Sec. 
II) corresponding to r;EW in the (faithful) 21-dimensional 
spinor representation of Spin21 + I are 

R; = (~;-112) ®P® (®I-;-112), 1<i<I-1, 

I-I (0 I) RI = ( ® 12 ) ® 1 0 ' (3.16) 

where P is the matrix 

P= !(l2 fi!Ji2 + U3 ®U3 + iUI ®U2 - iU2 ®UI ) 

In particular, one has for 1 = 3 the B3 representation of di
mension 23 in a direct sum form, as 

RI=12~(~ ~)~(~ ~)~12' 
R2 =11 ~(~ ~) ~12 ~ (~ ~)~Il , (3.17) 

r 0 

I 

V$(~ ~). R,~ (~ ~)$ ! 0 0 

0 0 
0 

Similarly one has the BI representation of dimension 21 + 1 
that is not faithful (trivial center), 

R; =1;_1 ~ (~ ~)~121_2;_1 ~ (~ ~)~1;_\> 
1<i<I-1, 

o 
I 
o 

(CI ) Representation of dimension 2/, 

(3.18 ) 

R; = I; _ 1 ~ (~ ~) ~ 121 _ 2; - 2 ~ (~ ~) ~ I; - I , 

(3.19) 

Note that, for 1 = 2, B2 is identical to C2 up to a renumbering 
al~2 of simple roots. In this case (3.18) and (3.19) refer 
to the same group in representations of dimension 5 and 4, 
respectively. 

(DI ) When 1 is even no irreducible representation of 
DI = Spin21 is faithful because the center is not cyclic, 
C(DI ) = Z22. In order to have a faithful representation one 
can consider the direct sum of the two 21- 1 -dimensional 
spinor representations. It can be obtained from the 21-di
mensional representation of BI = Spin21 + I • The matrices R; 
corresponding to r; EW are 
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R; as in (3.16), for l<i<l- 1 , 

RI = (~1- 212 ) ® Q, 

with 

Q = !(l2 ®12 - U3 ®U3 + iU1 ®u2 - iU2 ®UI ) 

~(~ ~ ! ~) 
The DI representation of dimension 21 has 

(3.20) 

R; =1;_1 ~(~ ~)~121_2j_2 ~(~ ~)~I;_I' 

R, ~i,_, $(! ~ ~ V$i'_'. (3.21) 

Somewhat special is the case 1 = 4. There are three represen
tations of dimension 8. They differ by the following permuta
tions of R;'s, 

1O~ as in Eq. (3.21) , 

oo~ R 1++R4 , 

1 
00

0 
R I++R3 • 

(G2 ) Representation of dimension 7, 

Rl=11~(~ ~)~11~(~ ~)~11' 
o 
I 
o 

IV. THE DEMAZURE-TITS SUBGROUP of Az 

(3.22) 

(3.23) 

In Secs. IV-VI we consider each of the simple Lie 
groups of rank 2. The description of the Demazure-Tits 
group DT in these cases is carried much further than for 
higher ranks because one may expect that the lowest ranks 
will be used most frequently; also, the derivations and results 
are simpler. Our analysis serves as a model of what can be 
learned, at least in principle, about each case, besides being a 
particularly useful illustration. 

Each of the three groups is specified up to an isomor
phism by its simple roots a l and a2 or, equivalently, by the 
Cartan matrix 

where 

A =B= 1, 
A = 2B = 2, for B2 , 

A = 3B = 3, for G2 • 

-A) 
2 ' 
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The Weyl group W acts on the weight lattice Q, which is 
the Z span of two fundamental weights W I and W2' In particu
lar, 

al=2wI-Aw2' a2= -Bwl +2w2 , (4.3) 

and therefore 

WI = [1I(4-AB)](2a 1 +Aa2), 
(4.4) 

W 2 = [11(4 -AB) ](Bal + 2a2 ) • 

The elements r l and r2 generate W by their action (2.1) on 
theweightsJl = aWl + bW2 = (a,b)EQ, wherea,bEZ. Name
ly, 

r l (a,b) = ( - a, b + Aa), r2 (a,b) = (a + Bb, - b) . 

(4.5) 

In particular, one has for the simple roots, rial 
=rl(2,-A) = (-2,A) = -ai' r2a 2= r2( -B,2) 
= (B, - 2) = - a2' A weight is called dominant if a,b>O. 

The "lifting" of the action ofW on Q to the action ofDT 
on VA' i.e., the homomorphism DT ..... W, can be set up in 
several equivalent but not identical ways. To avoid possible 
ambiguities, we adopt from now on the following prescrip
tion. The elementary reflections r l,r2EW of (3) are lifted into 
R I , R2 as given in (3.13) and (3.14). Any other weW is 
expressed as a word rj rj ... of minimal length in elementary 

, 2 

reflections. Then as it is lifted we take the result to be 
R j , R .. .... The group W also contains one element (opposite 
involution) of maximal length kmax = number of positive 
rootsofG. 

The decomposition of V w (A +) into DT -irreducible 
subspaces in the three cases of rank 2 is the main problem 
solved in the rest of this article. Our task is to find the multi
plicities mj of occurrence of the subspaces V(rj ), irreduci
ble with respect to the representations r j ofDT in the direct 
sum [cf. (3.11)), 

(4.6) 

Unlike the W orbit 0(.1 +), which is independent of the rest 
of a weight system n. (A) to which it may belong, the decom
position (4.6) depends on A and the multiplicity 
n = multA A +. For simplicity of notation we write (4.6) as 

(4.6') 

Let us now turn to the particular case of the Lie algebra 
A2 [or Lie group SU (3) ]. The multiplicity n of a dominant 
weight A + = (a,b) in an SU(3) representation A = (p,q) is 
the coefficient of the term PPQqA aBb in the power expan
sion of the generating function 15 

+ (1- PA)(1- QB)(1- Q2A) 
p 3 

(4.7) 

From (4.7) we deduce that n = 0 unlessp - q + b - a = 0 
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TABLE V. The character table of the DT(A2 ) and W(A2 ) groups. Sub
script of the class symbol indicates the order of its elements. EFO denotes 
the conjugacy class in SU (3) and IR means irreducible representation. 

Weyl group 

I 3 2 
Number of 

I~ 
elements 

I r t r1r2 
Representative 
element 

IR Ct C2 CJ 

rt I I I I I rt 

r2 I I -I -I I r2 

rJ 2 2 0 0 -I rJ 

3 -I -I I 0 r~ 

3 -I I -I 0 rs 
c, C2 

CO C~ CJ 

~ 
2 

Representative 
I R2 RtR~ Rt R,R2 element t 

EFO [100\ [011\ [011\ [211\ 1111\ 

Number of Class 
elements 

I 3 I) I) 8 

Demazure - Ti ts group 

mod 3, 2p + q>2a + b, and p + 2q>a + 2b. Then the orbit 
multiplicity n is given by 

n = min [p,q,!(2p + q - 2a - b), 

!(p+2q-a-2b)] + 1. (4.8) 

The four expressions in the minimum symbol arise, respec
tively, from terms 4, 3,2, 1 in (4.7); there is no overlap (i.e., 
for given p,q,a,b at most one term contributes, namely the 
one giving the smallest value). 

The Weyl group of A2 is isomorphic to S3' the group of 
permutations of three objects. It is also the dihedral group 
D3• Its character table is given in Table V. That table con
tains as well the characters of the DT(A 2 ) group, the homo
morphism between the classes of elements of Wand DT 
groups, and the SU (3) -conjugacy classes of elements ofDT. 

The character values afforded by the three conjugacy 
classes ofW are easily deduced using the action of rep res en
tative elements on the points of a generic orbit (a,b), illus
trated on Fig. l. 

The decomposition of Weyl group orbits on the A2 
weight lattice into direct sums of irreducible representations 
of W is presented in Table VI. 

The structure of the Demazure-Tits subgroup 
DT C SU (3) is found either from the SU (n) case of Sec. II or 
by a direct computation.3 It turns out to be the octahedral 

• -- {} • .. .. 
• • .. 

I € C, r, € C2 r, r2 € C 3 

FIG. I. Action of representative elements of conjugacy classes of the Weyl 
group of A2 on weights of a generic orbit. 
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TABLE VI. Decomposition of the orbits of the Weyl group acting as a per
mutation group on the A2 lattice. Character of each class on the orbits is 
shown. 

Characters 
Worbit 

Worbit Shape E Gz G3 decomposition 

(a,b) 
hexagonal 6 0 0 r,1Il r 2 III 2r3 a,b>O 

(a,O) 
or 

triangular (O,b) 3 0 r,lIlr3 
a,b>O 

(0,0) point r, 

group. Its character table is in Table V. Each element ofW 
corresponds to four elements of DT. The correspondences 
are shown in Table V. The irreducible representations r l , 

r2, and r3 ofDT coincide with r l, r2, r3 ofW. Our nota
tions r i , i = 1, ... ,5, for the representations of the octahedral 
group are taken from Ref. 16. Table V contains as well a 
sample element of each conjugacy class ofDT and W, and its 
SU(3) conjugacy class is identified7 in the case ofDT. 

.. Table VI contains the decomposition ofW orbits in the 
weight lattice Q into direct sums of irreducible components. 
Let us point out that the action of W is reducible under a 
general linear transformation but cannot be further reduced 
when it is confined to permutations of the lattice points. 

We now consider the decomposition of the DT orbits 
into direct sums of irreducible representations of DT. The 
results are summarized in Table VII. 

The analysis is simplest for the generic (hexagonal) or
bit; we need to consider only the classes CI and C2 that corre-

spond to Weyl class CI . We use R/ as the representative 
element for C2• Its eigenvalue is ( - 1)m" where m l is the 
SU(2) weight in the a l (horizontal) direction; thus the 
eigenvalue is ( - 1) a, ( - 1) b, ( - 1) a +b each for 2n states 
of the orbit and the trace (character) for C2 is 6n for a,b both 
even, - 2n otherwise, as given in Table VII. 

We can treat the two types of triangular orbit simulta
neously by letting (b) stand for (O,b) or (b,O) according as b 
is positive or negative. Then b is the second weight compo
nent of the states ofthe orbit for which m l = O. The classes 
CI and C2 are treated as for the hexagonal orbit and have the 
characters given in Table VII. We must consider in addition 
the classes C4 and C2' whose representatives we take as R I 
and RIR/, respectively. Only the m l = 0 states contribute 
to their trace; for them the eigenvalue of R/ is ( - 1)b and 
that of RI is ( - 1 )',12, wheresl is the representation label of 
the SU(2) group in the a l direction (SI is even for such 
states). 

We will now derive a generating function for the char
acters ofthe classes C4 and C2'. The generating function for 
SU(3) :::>SU(2) xU(1) is 

F(P,Q,s,Z) = [( 1 - PSZ) (1 - PZ -2) 

X (1- QSZ -1)(1- QZ2)] -I. (4.9) 

In the expansion of (4.9) the coefficient of PPQ qssz Z is the 
multiplicity of the irreducible representation (s,z) of 
SU(2) xU(1) in (p,q) ofSU(3). To convert (4.9) to a gen
erating function for the C4 characters we retain only the part 
even in S [only even S representations of SU (2) contain an 
m = 0 state], set S2 = - 1 [the eigenvalue of RI is 
( - 1)s12], set Z = $ and separate the result into non-neg
ative and negative powers of B. The non-negative power part 
turns out to be 

TABLE VII. Decomposition of orbits of the Demazure-Tits group in an SU (3) representation (p,q) into the direct sum of irreducible representations 
r" .. ,r, of DT. A DT orbit is specified by an SU(3) dominant weight (a,b); n is the mUltiplicity of (a,b) in (p,q). It is known that for (0,0) weight 
n = I +min{P,q}; k=p -qmod 2. 

DT orbit in (p,q) Decomposition 

Characters Multiplicities of irreps of DT group 
Dominant 
weight G, Gz G' 2 G. G3 r, r 2 r3 r. rs Restrictions 

(a,b) 6n 6n 0 0 0 n n 2n a,b even 
a,b>O 6n -2n 0 0 0 n n a,b not both even 

3n 3n 0 0 0 n/2 n/2 n b,n even 
(O,b) 3n -n 0 0 0 n/2 n/2 bodd, n even 
for b>O 3n 3n 1 1 0 (n + 1)/2 (n - 1)/2 (n + 1)/2 (n + 1)/2 (n + 1)/2 beven, n odd, p - q even 

3n 3n -1 -I 0 (n -1)/2 (n + 1)/2 n beven, n odd, p - q odd 
(- b,O) 3n -n -I I 0 (n + 1)/2 (n - 1)/2 b,n odd, p - q odd 
forb<O 3n -n 1 -1 0 (n - 1)/2 (n + 1)/2 b,n odd, p - q even 

n n 0 0 0 n/6 n/6 n/3 n=O mod 6 
n n 0 0 -1 (n - 2)/6 (n -2)/6 (n + 1)/3 n=2 mod 6 
n n 0 0 1 (n + 2)/6 (n + 2)/6 (n -1)/3 n=4mod6 
n n 1 1 1 (n + 5)/6 (n -1)/6 (n -1)/3 n=lmod6,k=0 

(0,0) n n -1 -1 1 (n -1)/6 (n + 5)/6 (n -1)/3 n=lmod6,k=1 
n n 1 1 0 (n + 3)/6 (n - 3)/6 n/3 n=3mod6,k=0 
n n -1 -1 0 (n - 3)/6 (n + 3)/6 n/3 n=3mod6,k=1 
n n 1 1 -1 (n + 1)/6 (n - 5)/6 (n + 1)/3 n=5mod6,k=0 
n n -1 -1 -1 (n - 5)/6 (n + 1)/6 (n + 1)/3 n=5mod6,k=1 
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1 ( 1 
(1 - p 2Q2) (1 + p3)( 1 + p 2B) 

QB Q3) 
+ (1 +p2B)(1- QB) - (1- QB)(l + Q3) . 

(4.10) 

The coefficient of PPQqB b in the expansion of (4.10) is the 
character of the class C4 in the orbit (O,b) in (p,q) ofSU(3). 
The three terms in (4.10) never overlap (at most one con
tributes to the character in each case) and the character is 
( - l)P - q + b for n odd, 0 for n even, as shown in Table VII. 
To get the C2' character, replace B by - B in the generating 
function, or equivalently, multiply the C4 character by 
( - 1 )b. The characters for ( - b,O) orbits are obtained 
from the negative power (in B) part of the generating func
tion with similar results, found in Table VII. 

Finally we come to the (0,0) point orbit. The characters 
of CI , C2, C2', C4 are found as before. In addition we now get 
nonzero contributions from C3• Since C3 contributes nothing 
to the characters of other orbits, its character for the point 
orbit is equal to that for the whole irreducible representation 
of SU ( 3 ). It is given by the generating function 17 

(1-PQ)/{l_p3)(1- Q3), (4.11) 

i.e., I for p = q = 0 mod 3, - 1 for p = q = I mod 3, 0 for 
p = q = 2 mod 3, as shown in Table VII. There is no point 
orbit for p - q=l=O mod 3. 

v. THE DEMAZURE-TITS SUBGROUP OF 8 2 

The irreducible representation (p,q) of the Lie algebra 
B2 [or Lie group Sp(4) and also 0(5)] has the highest 
weight pm 1 + qm2; in particular, (1,0) and (0,1) are the rep
resentations of dimensions 5 and 4, respectively. Similarly 
(a,b), a,b>O, denotes a dominant weight or the Weyl group 
orbit of the B2 lattice containing (a,b); the multiplicity of 
(a,b) in the weight system of (p,q) is denoted by n. 

The multiplicity n of a dominant weight A + = (a,b) is 
the coefficient of the term PPQ qA a B b in the power expan
sion of the generating function 15 

I 

TABLE VIII. The character table of the groups DT(B2 ) and W(B2 ). Subscripts ofthe class symbol indicate 
the order of its elements. Here EFO denotes a B2-conjugacy class; IR is an irreducible representation. 

Weyl group 

Numbor of 

~ 
I 2 2 I 2 .1.m.nts 
I 1'2 1', 1'11'21',1'2 1',1'2 Ropros. 

.1.m.n1 
IR 

C, C2 C' COO C~ 2 2 

r t I I 1 I 1 1 1 1 1 1 1 1 1 1 r t 

r 2 1 1 1 -1 -1 1 1 1 1 1 1 1 -1 -1 r 2 

r3 1 1 1 1 1 -1 -1 -1 -1 1 1 I -I -1 rJ 

r~ I 1 1 -1 -1 -1 -1 -1 -I 1 I I 1 1 r~ 

rs 2 2 2 0 0 0 0 0 0 -2 -2 ·2 0 0 rs 

I I -1 -1 1 I -I I -I -I -1 I I -I r, 

1 1 -1 -1 1 -I I -I I -1 -1 1 -I I r7 

1 1 -1 1 -1 I -I I -I -1 -1 1 -I -I r. 

1 1 -1 1 -1 -I I -I I -1 -1 1 I -I r, 
2 -2 0 0 0 1+1 1-1 -1-1 -1+1 21 -21 0 0 0 rtO 

2 -2 0 0 0 I-I 1+1 -1+1 -1-1 -21 21 0 0 0 rn 

2 -2 0 0 0 -1-1 -1+1 1+1 1-1 21 -21 0 0 0 r l2 

2 -2 0 0 0 -1+1 -1-; 1-1 1+1 -21 21 0 0 0 r tJ 

t 2 -2 0 0 0 0 0 0 2 2 ·2 0 0 rl~ 

c, c2 
C' c· c~ c' COO c·' c'· c· C' c·" c. C' 2 2 ~ ~ ~ ~ ~ ~ ~ • IR 

Numbor of 
1 1 2 4 4 2 2 2 2 1 1 2 4 4 .I.m.nts 

EFO [1001 [0101 [0011 [0011 [1101 (201) [20t! (021) [02t! (110) (110) (110) [lIt] [111) 

M_ ... 
R.pr.s.n- rl' M_ ac ... ac ... 

~ rl' ac rE ... ac Cl.ss I.tivo ~ 
N_ N rE 

M_ ac rE ac - ac N_ ac ac 
rE ';l' M_ ... rE 

M_ 
.l.mont ac ac ... ac ac ac 

rl' rE 
M_ 
ac 

Oem8zure-Tits group 
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:~ • 

• • 
I€e1 

FIG. 2. Action of representative elements of conjugacy classes of the Weyl 
group of C2 on weights of a generic orbit. 

The character tables of the Wand DT groups are given 
in Table VIII. The character values of the five conjugacy 
classes ofW are found from the action of representative ele
ments on the points of a generic orbit (a,b), a > 0, b> 0, 
illustrated in Fig. 2. Thus one finds the decomposition of the 
Weyl orbits into the direct sums shown in Table IX. 

We tum to the decomposition of DT orbits of an arbi
trary irreducible representation (p,q) of B2• As usual the 
analysis is simplest for the generic (octagonal) orbit (a,b) 
with a> ° and b > 0; only the classes C I' C2, C2', which corre
spond to W class CI have nonzero characters. The weight 
vectors are eigenvectors of these classes' representative ele
ments with the following eigenvalues: 

1 .... 1, R/ .... ( _1)m" RI2-.( _1)m,. 

Here ml and m2 are the SU(2) weights in the a l and a 2 

directions. Thus for RI2 one has the eigenvalue ( - 1)Q for 
the two top and two bottom states of each orbit, and 
( - I)Q + b for the remaining four in the middle of the orbit. 
For R22 one has the eigenvalue ( - 1) b for all eight states. In 
Table X one finds the decompositions. 

For square representations [i.e., highest weights (a,O) 
and (O,b), a> 0, b> 0] the eigenvalues of representatives of 
the additional classes needed depend not only on the weights 
of the states, but also on labels S I and S2 of the representation 
the SU(2) along the a l ,a2 directions. We use generating 
functions to keep track of these additional labels. 

First we consider the orbits (a,O), squares with horizon
tal and vertical sides. The new classes are C4 and C2 " with 
representatives R2 and R/R2, respectively. The characters 
of the classes C I , C2, C2' are found as for the octagonal orbits. 
Only the upper right and lower left (m2 = 0) states contrib
ute to the characters of C4 and C2", for them the eigenvalues 
of R2 and RI2R2 are, respectively, ( - 1 )S, and ( _ 1)Q +s'. 

We now derive a generating function for the characters of 
the classes C4 and C/. 

The generating function for Sp ( 4 ) ::J SU (2) xU ( 1 ) 
branching rules is 

F(PQ'S Z) _ 1 ( 1 + Q2 ) 
, ,2' - (1-PZ2)(1-PZ-2)(I-QS2Z)(I-QS2Z-I) I-PS/ l_Q2' 

(5.2) 

In the expansion of (5.2) the coefficient of PPQQS2s,zz is the multiplicity of the representation (S2,z) of SU(2) XU(1) in 
(p,q) ofSp( 4). To convert (5.2) to a generating function for half the C4 character (because two states contribute), we retain 
the part even in S2 [only odd-dimensional SU (2) representations have even valued weights, in particular, the weight m2 = 0]. 
Then we set S22 = - 1 [the eigenValue of R2 is ( - 1 )',/2], and set Z 2 = A and keep only the positive power part in A. The re
sult is 

1 (1 Q4 _ PQ2) 
(l-p2)(1+p)(1+Q2A) I-PA + l_Q4 . (5.3) 

Twice the coefficient of PPQqA Q is the character of C4 for the orbit (a,O). To get a generating function for half the C2" 
character substitute A -+ - A in (5.3) or, equivalently, multiply the C4 character by ( - 1 )Q. The coefficients of the expan
sions have been evaluated and the results are summarized in Table IX. We give below the multiplicity n of (a,O) orbits, 
obtained from the generating function (5.1) with B = 0, for all six cases q is even and p + !q;>a: 

(1) p, !q;>a, p -a even, n = 1 + ! (pq + p + q - a2
) , 

(2) p, !q;>a, p - a odd; n = ! (pq + p + q - a2 + 1) , 
(3) p;>a;>!q, p - a even; n =!q(!q+ 3) +!(p -a)(q+ 1) + 1, 

(5.4 ) (4) p;>a;>!q, p-aodd; n = !q(!q + 3) + !!(p - a)(q + 1) + 1), 
(5) !q;>a;>p; n = !(p + 1) (p + q - 2a + 2), 
(6) a;>!q, p; n = !(p + !q - a + l)(p + !q - a + 2). 

TABLE IX. Decomposition of the orbits of the Weyl group W (B2 ) acting as a permutation group on the B2 1attice. Characters of each class on the orbit are 
shown. 

Characters 

Worbit Shape C, C2 C' 2 C~ C. W orbit decomposition 

(o,b),o,b>O octagon 8 ° ° ° ° r, Gl r 2 Gl r3 Gl r. Gl2rs 
(0,0),0>0 square 4 2 ° ° ° r,Glr3Glrs 
(O,b), b>O square 4 ° 2 ° ° r,Glr2 Glrs 
(0,0) point I I I I 1 r, 
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TABLE X. Decomposition of the generic (octagonal) orbit ofDT(B2 ) into a direct sum ofirreducible representations. n is the multiplicity of the orbit (a,b), 
a,b>O, in the representation (p,q) of B2• 

Nonzero 
characters 

C1 C2 C' 2 

8n 8n 8n 
8n - 8n 0 
8n 8n -8n 

Orbit decomposition 

n(fl Ell f2E1l f3E1l f.Ell 2f,) 
n(flOEil fll Ell fl2 Ell f 13 ) 

n(f6E1l f, Ell f8 Ell f9E1l2f I.) 

Restrictions 

a,beven 
bodd 

a odd, b even 

(1 +p2 )(1 +Q2) [(1-P)(; +p2Q2) 

QB Q2] + + . (1 + p 2Q2)(1_ QB) (1- QB)(l _ Q2) 

For the square orbit (O,b), with diagonal sides, the 
classes with nonzero trace are C" C2, C2', C4', C4", C/', and 
C4;v. The characters of C, C2, C2' are found as for the octago
nal orbit. We take the representative elements of C4', C4 ", 

C/', and C4;v to be, respectively, R" R,3, R,R/, R/R,3. 
Only the top and bottom (m, = 0) states of the orbit con
tribute to their characters; the eigenvalue of R, is ( - 1),' 

and that of R2 2 is ( - l)b for these states. We now derive a 
generating function for the characters of the classes in ques
tion. 

(5.6) 

The generating function for Sp(4) :::>SU(2) XSU(2) 
branching rules is 

F(P,Q;S"U) 

= [( 1 - P) (1 - PSI U) (1 - QS,) (1 - QU) ] -, . 

(5.5) 

In the expansion of (5.5) the coefficient of PPQ qs,s,u u is the 
multiplicity of the representation (s,u) ofSU(2) XSU(2) in 
(p,q) of Sp(4); here s, is the SU(2) representation label 
(highest weight) in the direction of a, and u is the represen
tation label in the a, + 2a2 (vertical) direction. To convert 
(5.5) into a generating function for half (because two states 
contribute) the C4 ' character, we retain the part of (5.5) that 
is even in S, [only even s, representations of SU(2) have 
states with m, = 0]. Set S,2 = - 1 [the eigenvalue of R ,2 is 
(-1)s'],multiplyby(1- U- 2 )(1- U-'B) and keep the 
UO part (thereby retaining only positive u weights, which are 
just the orbit labels). The result is 

Twice the coefficient of PPQqB b is the character ofC4' (and 
C 4" ) for the orbit (O,b). To get a generating function for half 
the characters of C/' (and C4;V) for the orbit, substitute 
B - - B in (5.6) or, equivalently, multiply the C4 ' char
actersby ( - 1 )b. Tbe coefficients have been evaluated (they 
take only the values ± 1 and 0) and the result is found in 
Table XII, along with the reduction of (O,b) to the direct 
sum of irreducible representations ofDT. We give below the 
multiplicity n for (O,b) orbits, obtained from the generating 
function (5.1) with A = O. For each case q - b is even and 
p+q>b. 
(1) p even, q>b; 

n=H(p-p+2)(P+ 1) + (p-r)(r+ 1) 

+ (p+ l)(q-b)], 
(2) p odd, q>b; 

n = H (p - 8 + 1)(8 + 1) + (p - E + I)(E + 1) 

+ (p+ l)(q-b)], 
(3) p even, q < b; 

n = H (p - P - $" + 2)(P - $" + 1) 

+ (p - r - $")( r - $" + 1)] , 
( 4) p odd, q < b; 

TABLE XI. Decomposition of square orbit (a,O) of DT(B2 ) into the direct sum of its irreducible representations. Only nonzero characters are shown. The 
values of the multiplicity n are given in (5.4);a= (-l)Q/2(p+!q-a+2),{1= (_l)Q/2(p+!q-a+ 1), r=p+2,o=p+ 1. 

Characters 

C1 C2 C' 2 e2 C. Decomposition Restrictions 

4n 4n 4n a a (!n + 1a)(fl Ell f3) Ell (!n - 1a)(f2 Ell f.) EIl2f, a>!q, a even, p+ !qeven 
4n 4n 4n -{1 -{1 (!n -l{1)(fl Ell f3) Ell (!n + lP)(f2 Ell f.) EIl2f, a>!q, a even, p+ !qodd 
4n 4n -4n {1 -{1 (!n - lP)(f6 Ell f , ) Ell (!n + 1a)(f8 Ell f9) EIl2f l• a>!q, a odd, p + !qeven 
4n 4n -4n -a a (!n + 1a)(f6E1lf,) Ell (!n - 1a)(f8E1lf9) EIl2f l• a>!q, a odd, p+!qodd 
4n 4n 4n r r (!n + 1r)(fl Ell f3) Ell (!n - !r)(f2 Ell f.) Ell 2f, a<!q, a even, p + !q even, p even 
4n 4n -4n p -p (!n - 1)(f6 Ell f , ) Ell (!n + lP)(f8 Ell f9) EIl2f l• a<!q, a odd, p + !q even, p even 
4n 4n 4n p p (!n + lP) (f 1 Ell f 3) Ell (!n - 1) (f 2 Ell f.) Ell 2f, a<!q, a even, p + !q odd, p even 
4n 4n -4n r -r (!n -lr) (f6 Ell f , ) Ell (in + 1r) (f8 Ell f9) EIl2f I. a<!q, a odd, p + !q odd,p even 
4n 4n 4n -0 -0 (in -lo)(fl Ell f3) Ell (!n + 10)(f2 Ell f.) EIl2f, a<iq, a even, podd 
4n 4n -4n -0 0 (in + 10)(f6 Ell f , ) Ell (in -10)(f8 Ell f9) EIl2f l• a<!q, a odd, podd 
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TABLE XII. Decomposition of square orbit (O,b) of DT(B2 ) into irreducible representations of DT(B2 ). Characters not shown are O. Values of the 
multiplicity n are given in (5.7). For p>b, we have 

a = + I, for (p mod 4, q mod 4, b mod 4) = (0,0,0),(0,1,0,(0,1,3),(0,2,2),(1,0,0),(2,2,2); 
a = - I, for (p mod 4, q mod 4, b mod 4) = (1,2,0),(2,0,2),(2,1,1),(2,1,3),(2,2,0),(3,0,2); 
a = 0, otherwise. 

For p < b, we have 
a = + I, for (p mod 4, q mod 4, b mod 4) = (0,0,0),(0,1,0,(0,2,2),(0,3,3); 
a = - I, for (p mod 4, q mod 4, b mod 4) = (2,2,0),(2,3,0,(2,0,2),(2,1,3); 
a = 0, otherwise. 

c, C2 

Characters 

c· 2 CZ',ct Decomposition Restriction 

4n 
4n 

4n 
-4n 

4n 
o 

2a 
2a 

2a 
-2a 

!(n + a)(r, E9 r 2) + !(n - a)(r3 E9 r.) + nrs 
!(n + a)(r lO E9 r ll ) + !(n - a)(r'2 E9 r 13 ) 

beven 
bodd 

n=H(p-l5-s+ I)(I5-S+ 1) 

+ (P-E-S+ I)(E-S+ 1)]. (5.7) 

In the above 

p=Min{[~],~}, r=Min{[b~l].~ -I}, 

15 = Min{[ ~ ].P ~ I}, E = Min { [b ~ 1 ].p ~ I} , 

s=!(b-q) . 

Finally we tum to the (0,0) point orbit. The characters 
C l , C2, C2', C4', C4", C/', and C4

i
v are found as before. In 

addition we now get nonzero characters for C/, C/i
, C4Vii, 

Cg, and Cg '. Since their characters are zero for the other 
orbits, their characters on the point orbit are equal to those 
on the whole representation of the lh algebra. Thus they are 
given by the generating functions of Ref. 17 (replacing the 
variables A and B by Q and P, respectively) : 

(1 + P)( 1 + PQ2) for CV CVi CVii. 
(1 _ p 2)2(1 + Q2)2 ' 4' 4' 4, 

(1 - P)( 1 + PQ 2) fi C C' 
(1_P4)(I+Q4) ' or g, g. 

For C4
v
, C4

Vi, C/ii we find the characters, 

( - 1 )qI2(!p + !q + 1), for p even, 

(-1)QI2!(p+I), forp odd. 

For Cg and Cg' we find the characters 

( - I)QI4, 

_ ( _ I)QI4, 

( _ 1)(Q-2)/4, 

_ ( _ 1)(Q-2)/4, 

0, otherwise. 

for p = 0 mod 4, 
for p = 1 mod 4, 
for p = 1 mod 4, 
for p = 2 mod 4, 

q=O mod 4; 
q=O mod 4; 
q= 2 mod4; 
q=2 mod 4; 

There is no point orbit for q odd. The generating function for 
the multiplicity of the point is 

(1 + PQ2)/(1 - P)( 1 - p 2)( 1 _ Q2)2, (5.8) 

which implies 

n = ! (pq + P + q) + 1, for p even, 

n = ! (p + 1)( q + 1), for p odd. 
(5.9) 

The decomposition of the point orbit into irreducible repre
sentations of DT is given in Table XIII. 

VI. THE DEMAZURE-TITS SUBGROUP OF G2 

As in the previous two cases, (p,q) = PWI + qW2 is the 
highest dominant weight denoting an irreducible representa
tion of G2• In particular, (1,0) and (0,1) are the representa
tions of dimensions 14 and 7, respectively. A dominant 
weight (a,b) = aWl + bW2 denotes the W orbit in the G2-
weight (and also root) lattice containing it, as well as the DT 
orbit of subspaces in the representation space labeled by the 
highest weight (p,q). Naturally one assumes that 
(a,b)ED.(p,q), otherwise our problem is trivial. 

TABLE XIII. Decomposition of the point orbit of DT(B2 ) into its irreducible representations. The values of n are given in (5.9). a = ( - 0"12 
X(!p+!q+ O,P= (_0"/2~(p+ O,r=2( -0"1',8=2( _0<"-2)/4. 

r, 

A(n+p+a+r+ 4 ) 
A(n +p+ a) 
A(n -p+P-r+ 1) 
A(n -p+P+8- 3) 
A(n+p+a+2) 
A(n +p+a -8 - 2) 
A(n-p+p-O 

Nonzero mUltiplicities of irreducible DT(B2 ) representations 

r 2 

A(n -p+a - r) 
A(n -p+ a) 
A(n+p+P+r+ 3) 
A(n+p+p-8-0 
A(n -p+a - 2) 
!(n-p+a+8-2) 
A(n+p+p+O 

A(n +p+a- r) 
!(n+p+a) 
A(n-p+P+r- 3) 
A(n -p+P-8 + 1) 
l(n +p+a + 2) 
1(n+p+a+8+2) 
l(n -p+P-O 

1(n-p+a+r- 4 ) 
l(n -p+a) 
l(n+p+P-r- l ) 
1(n+p+p+8+3) 
1(n-p+a-2) 
A(n-p+a-8+2) 
l(n +p+P+ 1) 
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l(n - a) 
l(n - a) 
l(n - P) 
l(n - P) 
l(n - a) 
l(n -a) 
l(n -p) 

(p,q) 
mod 4 

(0,0) 
(0,2) 
(1,D) 
(1,2) 
(2,0) 
(2,2) 
(3,0),(3,2) 
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TABLE XIV. Character table of the OT(02) and W(G2) groups. Repre
sentative element of each conjugacy class is shown. Subscript on class sym
bol is the order of its elements. Conjugacy classes of G2 are given as EFO. IR 
is an irreducible representation. 

Weyl gl"ouP 

~ 
I (r,r2t' r2 r, (r, r212 r t r 2 

R.p,..nnbttv. 
.If.mtnt 

1 1 3 3 2 2 Numb.,. of 
.1tm.nts 

IR 
C, C2 C' C· 2 2 C3 C, 

f, 1 1 1 1 1 1 1 1 1 1 f, 

f2 1 1 -1 -1 -1 -1 1 1 1 -1 f2 

f3 1 1 1 1 -1 -1 -1 -1 1 1 f3 

r~ 1 1 -1 -1 1 1 -1 -1 1 -1 f~ 

rs 2 2 -2 -2 0 0 0 0 -1 1 fs 

r, 2 2 2 2 0 0 0 0 -1 -1 r, 

3 -1 -3 1 1 -1 -1 1 0 0 r7 

3 -1 3 -1 -1 1 -1 1 0 0 r. 
3 -1 -3 1 -1 1 1 -1 0 0 f 9 
3 -1 3 -1 1 -1 1 -1 0 0 flO 

C, C2 C' C· C· ~ C .. C' C3 C, 

~ 
2 2 2 2 ~ 

Numb." of 1 3 1 3 6 6 6 6 8 8 
.1tm.nts 

EFO (100) (001) (001) (001) (001) (110 (001) (201) (101) (111) 

tl.' R.pnstntltiv. IE ,t.mlnt tl.' Clus 

'l.. 7£ 'l.. 
tl.' tl.' tl.' 'tl' t£" " 

N_ !£ "- " IE 
t£ - a: IE t£ t£ IE IE rE 

Demezul"e-Tlts gl"oup 

The multiplicity n = mult(p,q) (a,b) of a weight (a,b) in 
the weight system n (p,q) is also the multiplicity of the DT 
orbit, It can be found either in the tables of Ref. 13 (for the 
lowest 100 representations) or it can be calculated using the 
G2 character generator, Eq. (2.7) of Ref. 18. There in order 
to conform to present notation the following substitutions 
shouldbemade:A ..... Q,B ..... P,1J ..... AB -3/2,S ..... B 1/2; then the 
coefficient of the term PPQqA aB b (a,b non-negative) in the 
power expansion of the generating function is the multiplic
ity n. 

The character table of the Weyl group W(G2 ) and the 
Demazure-Tits group DT(G2 ) are found in Table XIV. 

First consider W acting on the G2 weight lattice. Repre
sentative elements of the W-conjugacy classes are 

C I : I, C2: (rlr2)3, C2': r2, 

C2": r l , C3: (rlr2)2, C6: r lr2 . 
(6.1 ) 

The subscript on a class symbol is the order of its elements; r I 
and r 2 are the elementary reflections (2.1). The traces of 

TABLE XV. Decomposition of the Weyl group orbits of the G2 lattice. 

• • 

* 
~ 

• • 
• • 
• • ~ • • • • 

Ie C, (r,r2)3 eC
2 r2e C~ --

0 
.. • 

0 .. 
.......-

r; eC; (r;r2)2eC 3 r; r2eC6 

FlO. 3. Action of representative elements of conjugacy classes of the Weyl 
group of G2 on weights of a generic orbit. 

classes of each type are easy to determine as before: each 
point of the orbit that is not moved by the representative 
element contributes 1 to the trace. Hence it suffices to see the 
action of the representative of each class on Q(G2 ). It is 
shown in Fig. 3. 

Consider the generic, or dodecagonal, orbit (a,b), a > 0, 
b > 0, of the Weyl group in the G2 weight lattice Q. The class 
C I has trace 12, while all other classes have trace O. Hence 
one has the decomposition (a,b) = r 1 Ell r 2 Ell r 3 Ell r 4 

EIl2r s EIl2r 6 as shown in Table XV. Similarly for the hexag
onal orbit (a,O), a> 0, the class C I has trace 6, the class C/ 
has trace 2, and all other classes have trace O. We find the 
decomposition (a,O) =r l Ellr4 E1lrs Ellr6 (cf. Table XV). 
For the other hexagonal orbit, (O,b), b > 0, the class C I has 
trace 6, the class C2" has trace 2, and the others are 0. The 
decomposition is (O,b) = r I Ell r 2 Ell r s Ell r 6' Finally for the 
point orbit (0,0) each class has trace 1 so that its decomposi
tion is (0,0) = r I' The decomposition of Weyl group orbits 
of Q( G2 ) is summarized in Table XV. 

Next let us consider the DT group acting on the weight 
vector basis of VA' A = (p,q) and let us find the decomposi
tion (3.11). 

We consider first the generic orbit (a,b), a> 0, b > 0, 
which appears with multiplicity n in V(P,q) . The classes with 
nonzero traces are CI and C2• The trace ofCI is 12n. For C2 

we have the representative element R 12; its eigenvalue is 
( - 1) m" where m I is the SU (2) weight in the a 1 direction. 
The values of I m II at the 12 points of the orbit are a, a + b, 

Characters of classes 
Worbiton 
G2 lattice Shape C, C2 C2 Ci C3 C6 Orbit decomposition 

(a,b) 
dodecagonal a,b>O 12 0 0 0 0 0 

(am 
hexagonal a>O 6 0 0 2 0 0 

(O,b) 
hexagonal b>O 6 0 2 0 0 0 

(0,0) point 
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2a + b, each 4n times. Hence the trace for C2 is 12n for a,b 
both even, and - 4n otherwise. Hence one has the decom
position as given in Table XVI. 

The hexagonal orbit (a,O), a > 0, has two horizontal 
sides; the classes with nonzero character are C)' C2, C2 '", C4 , 

as follows from Fig. 3. The trace of C) is 6n. For C2 the trace 
is 6n if a is even, and - 2n if a is odd. We will derive generat
ing functions for traces of C2'" and C4• Orient the 
SU(2) XSU(2) subgroup of G2 so that a 2 points in the di
rection of the second SU(2) root. The states not moved by 

R2 and R)2R2' the representative elements of C4 and C2'", 
respectively, are those with dominant weight (a,O) and op
posite weight ( - a,O). On these states the eigenvalue of R2 
is ( - 1)t12, and that of R/ is ( - 1)0; 1m, I takes the value 
2a, where (s,m,) are the representation label and weight of 
the first SU(2) subgroup and (t,m t ) those ofthe second. 

The even-even part of the G2 =>SU(2) xSU(2) branch
ing rules generating function is found from Ref. 18, Eq. 
( 3.1) (to conform to our present notations, the substitutions 
A -+ Q and B -+ P should be made): 

I 

Because R2 = ( - 1)t12, we set T2 = - 1. The result is 

F'(PQ'S2) _ I [ I _ P 
" - (1-p 2)(I+Q) (1_PS2)(1-Q 2)(1+Q 2S 2) (1+P)(I-PS 2)(1_Q2) 

PQ PQS2 
(1 +P)(I- Q2)(1 + Q 2S2) + (1 +p)(1_PS2)(1 + Q 2S2) 

p 2S2 + p3QS4 ] 
(6.3) 

Finally we convert this generating function for SU(2) representations to the corresponding one for non-negative SU(2) 
weights (or G2 orbit labels, since a = ~ms) by computing 

G(PQ;A) _ F'(P,Q;S2) I 
' - (1-S-2)(1-S-2A) SO 

I [ I 
= I+Q (l-P)(l-p 2)(1_Q4)(I-PA) 

Q2A P 
(1-p 2)(1_Q4)(1-PA)(1 +Q 2A) 

-(-I-_-P-'2=-)-(1-+-p-/--'( ~=-_-Q-;4-)(-I-+-Q-::-2A-) + (1 - P 2) 2(1 :~ 2) (1 + Q 2A) 

P 2A+P 3QA 2 P2Q2A_P3QA2] 
- (1-p 4)(1+p2A)(1-PA)(I+Q 2A) + (1-p 4)(I+Q2)(1-PA)(1+Q 2A) . 

TABLE XVI. Decomposition of G2 orbits of the Demazure-Tits group DT in a representation (p,q) into a direct 
sum of irreducible representations r" ... ,r lO ofDT. An orbit is given by a G2 dominant weight (a,b); n is the 
multiplicity of (a,b) in (p,q). Notation: c, d, e,f, g are the coefficients of the term P PQ qA aB b in the power series of 
Eqs. (6.5), (6.8), (6.9), (6.10), (6.11),respectively;X± = (n ±e)/12, Y± = (d±c)/4,Z± = (/±g)/6. 

DT orbit in (p,q) Decomposition 
Dominant Cha,..,,,t.,rs Multiplicities of irreps of DT(G2) 

• eight C. C2 C2 Ci Ci' C~v C~ C~ C3 C, r • r 2 r3 r~ rs r, r7 r, r, rIO 
(a,b) aJb ev.n 12n 12n 0 0 0 0 0 0 0 0 n n n n 2n 2n 0 0 0 0 
a,b)O other"ise 12n -4n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n n n 

(a,O) 6n 6n 0 0 2" 0 2" 0 0 0 n+" !l=.!O n-" !l±.S n n 0 0 0 0 a even -2- 2 2" 2 
a odd 6n -2n 0 0 -2" 0 2" 0 0 0 0 0 0 0 0 0 T n~" T ~" 

(O.b) b even 6n 6n 0 0 0 2d 0 2d 0 0 !l:!:.SI !l:!:.SI !J::SI. !J::SI. n n 0 0 0 0 2 2 2 2 
~ !l:!:.SI !J::SI. !J::SI. b odd 6n -2n 0 0 o -2d o 2d 0 0 0 0 0 0 0 0 2 :I 2 

+ + N 
N 

I N I 

(0,0) + + N + n n ., ., 
" d " d f 9 + + 

I + + N 
I N 0 0 0 0 

> I I > > > " + + + I 

" + I + X X 
X X X X '" '" 
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The symbol Iso indicates that only the Oth power of S term of (6.4) should be retained. The power series expansion of 
G(P,Q-,A), 

G(P,Q;A) = 2:.PPQqA aCpqa , (6.5) 
pqa 

states that the trace of class C4 is 2cpqa for the orbit (0,0) in (p,q); for C2- the trace is 2( - 1)acpqa . The factor 2 appears 
because two states contribute to the trace. The decomposition of the (0,0) orbit is shown in Table XVI. 

For the hexagonal orbit (O,h), h>O (two vertical sides), the classes with nonzero trace are C" C2, C2
i
v, C4'. For C, the 

trace is 6n. For C2 it is 6n for h even, - 2n for h odd. We derive generating functions for the trace of C2
iv and C4', using the rep

resentative elements R/ R, and R" respectively. Orient the SU (2) X SU (2) subgroup with the first SU (2) root along a, of G2• 

The states not moved by R, and R 2
2R, are those with weights (0, ± h). On these states the eigenvalue of R, is ( - 1 )S/2 [sis 

the first SU(2) representation label] and that of R/ is ( - 1)b; 1m, I takes the value 2h [m, is the second SU(2) weight]. 
Because R, = ( - 1)s12, we set S2 = - 1 in the generating function (6.2) with the result 

F"(PQ'T2) _ 1 [ 1 + QT
2 

] 
" - (1_P 2)(I+Q 2T 2) (1_Q2)(I+Q3) (1+Q3)(I_QT 2) 

p 2T 6 P_PT2_p2T4 PQ2] 

- (1-QT 2)(1 +p2T 6 ) - (1 +P 2T 6 )(1 +P) - (1 +P)(1_Q2) . 
(6.6) 

Finally we convert this generating function for SU (2) representations into the corresponding one for non-negative weights 
(or G2 orbits labels, since h = ~mt ) by computing 

H(PQ'B) _ F"(P,Q;T
2

) I 
" - (1- T- 2 )(1- T- 2B) TO 

1 [1+ Q + Q2 p
2 

= 1+Q 2B (1_P 2 )(1+Q3)(1_Q4) + (1+P)(1_P4)(1+Q 2) 

p2 PQ2 

(1-p 4)(1-Q)(1 +Q2) + (1 +P)(I_p2)(I_Q4) 

p 2B +p 2B 2 + p 4B 3 PB +p2B +p2B 2 +p3B 3 +p4B 3 _p 3 _p 3B 

(1-p 4)(1-Q)(1 +p2Q3) + (1 +P)(1-p4)(1 +p2B 3) 

QB P
2
B

3
] 

+ (1-p 2)(1-Q)(I+Q3)(I-QB) - (1-p 2)(I-Q)(1-QB)(I+p2B 3) . 
(6.7) 

I 
The power series expansion of H(P,Q;B), 

H(P,Q.B) = 2:. PPQqBbdpqb , (6.8) 

1 "PPQqe - ----:;----;:--::::.....----::----::--:; i: pq - (1 + p)2(1 - p 2)2(1 + Q)2(1 _ Q 2)2 

pqb 

gives the trace of the class C 4 for the orbit (O,h) in the G 2 

representation (p,q) as 2dpqb ; for C/' the trace is 
2( - 1) bdpqb . The decomposition of the orbit (O,h) is given 
in Table XVI. 

Finally we deal with the point orbit (0,0). All classes 
can now have nonzero trace. The traces of classes C" C2, 

C2 '", C2
iv, C4 , C4 ' are computed as above for the hexagonal 

orbits. Thus the trace of C, and C2 is n, the multiplicity of the 
orbit. A generating function for n is obtained from (6.2) by 
setting S = T = 1, since each even SU (2) X SU (2) represen
tation has just one state at the origin; n for (p,q) is the coeffi
cient of PPQ q in the power series expansion. For C2

iv and C4' 
the trace is C = cpr/.)' the coefficient of PPQ qA 0 in the expan
sion of (6.4). For C2'" and C4 the trace is d = dpr/.)' the coeffi
cient of PPQ qB 0 in the expansion of (6.7). Since the remain
ing classes have zero trace for all but the point orbit, their 
trace for the point orbit is their character in the whole irredu
cible representation (p,q). Accordingly we can get it from 
the known generating functions for the characters of the cor
responding Gz-conjugacy class of elements of finite order in 
G2, Ref. 17. For C2' and C2 " we have 
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X [1 +P- 2PQ_p 2Q_PQ2 

+ Q3 + 2p3Q _ 2p 2Q2 + 2PQ3 

+p4Q_ P3Q2 _p 2Q3 _ 2P 3Q3 

+ P 3Q4 + p 4Q4] . (6.9) 

For C3 we have 

"PPQ'1, - 1 
;: pq - (1 - p 3)2(1 + Q + Q2)3 

X [ 1 + P + 2Q + 2Q 2 + PQ 2 + PQ 
+Q3+p4Q+p 3Q2 

+ 2p4Q2 + p 3Q3 + 2p4Q3 

+ P3Q4 + p 4Q4] . 

For C6 we have 
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Our result, the decomposition of the point orbit, is given in 
Table XVI. 

VII. CONJUGACY CLASSES OF ELEMENTS 
GENERATING THE DEMAZURE-TITS GROUPS 

In this section we consider the elements R k , 

ke{I,2, ... ,l}, which generate the Demazure-Tits group 
DT (G) up to equivalence transformation by the simple con
nected Lie group G, and identify the G-conjugacy classes to 
which they belong. Since part of that has been done already 
in Ref. 7, here we just complete Table III of that article. 

First let us show that R k , ke{I,2, ... ,l}, are rational ele
ments in any G. (An element is rational if its character val
ues for any representation of G are integers.) Consider 
RkESUk (2)EG, and the subgroup SUk (2) whose simple 
root is ak' The character value of Rk for any representation 
A ( G) of G is by definition its character for the subgroup 
representation A(SUk (2»)CA(G). Then recalling3

•
17 that 

Rk is a rational element ofSUk (2), it has to be rational also 
inG. 

We know3 that all Rk are of order 4 and that those Rk 
corresponding to simple roots ak of the same length are G 
conjugate, while any two Rk corresponding to roots of dif
ferent lengths are not G conjugate. Therefore here we have to 
identify one conjugacy class of elements of order 4 in D/, E 6 , 

E7 , and Eg and two such conjugacy classes in F4 • For all other 
cases the conjugacy classes were found.7 All the conjugacy 
classes of Rk are shown in Table XVII. 

From now on we assume the conventions and results of 
Ref. 7. In particular, elements of finite order in G are de
noted by relatively prime non-negative integers attached to 
the nodes of extended Coxeter-Dynkin diagram; we use the 
Dynkin numbering of the nodes (cf., for instance, Ref. 7 or 
Ref. 13). It is not difficult to list all conjugacy classes of 
elements of order 4 in any G. Thus, for example, there are 
only seven such classes of elements in Eg. Since this is clearly 
the most complicated case we have to face, we illustrate in 
this example how one can proceed. 

Let gEEg belong to one of the seven Eg-conjugacy classes 
of elements of order 4, g4 = 1. Note that all Eg representa
tions are self-contragredient. Therefore g and g-I = ~ are 
conjugate, g - ~. That is, all powers of g relatively prime to 4 
are conjugate to g. Consequently,? the character XA (g) of 

TABLE XVII. G-conjugacy classes of elements generating the Demazure-
Tits group and their second powers. Subscript short (long) corresponds to 
short (long) simple roots of a simple Lie algebra. 

G 

Al 
AI 1>2 
BI 1>2 
CI 1>3 
DI 1>4 
E6 
E7 
E. 
F4 
G2 

794 

R 10ng 

[ Il] 
[210·· ·01] 
[2010·· ·0] 
[210···0] 
[2010···0] 
[2000001] 
[21000000] 
[210000000] 
[2100] 
[210] 

[01] 
[010·· ·01] 
[0010·· ·0] 
[010···0] 
[0010···0] 
[0000001] 
[01000000] 
[010000000] 
[0100] 
[010] 

[IlO·· ·OJ 
[2010···0] 

[2001] 
[101] 
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[010···0] 
[0010···0] 

[0001] 
[010] 

any element of our seven conjugacy classes is an integer in 
any representation A of Eg. 

Since all eightRk' ke{I,2, ... ,S}, areEg conjugate, it suf
fices to consider only, say, R I' In adopted conventions the Eg 
simple roots are numbered as 

Let us find the character value XAd(E,) (R I ) of RI on the 
24S-dimensional (adjoint) representation Ad (Es). But h I is 
orthogonal to the diagram with a I removed. That is, the 
diagram of E7 (its dimension is 133) on which the SU(2) 
with simple root al acts trivially. Otherwise RI sends hi to 
- hi and merely transposes the remaining root vectors in 

pairs which contributes nothing to the character. Therefore 
one has 

XAd(E,) (R k ) = 132, kE{I,2, ... ,S}. 

Next we find which of the seven elements of order 4 in Eg 
has that character value on Ad(Eg).1t turns out that there is 
just one such element [21000000]. Using the extended dia
gram, it is given as 

2 o o 0 o 0 o 
In order to verify that its character is indeed 132, one can 
consult the table of positive roots of Eg (pp. 62 and 63 of Ref. 
13), this time reading the roots in the simple root basis (a 
basis). We need to know only the a I coordinate of each root. 
That coordinate takes only five values ± 2, ± 1, 0, negative 
values occurring for negative roots only. An Eg root with the 
a I coordinate m contributes 7 to the character value 
exp(21Tim/4). Moreover since the character must be in
teger, the values m = 1 and 3 can be disregarded; they must 
cancel out. Among the positive roots one finds 63 times 
m = 0 and once m = 2; the negative roots contribute simi
larly. Adding the eight zero weights of the adjoint represen
tation as another m = 0 eight times, one gets the character as 
132. In the same way, but much more quickly, one can deter
mine the rest of the conjugacy classes of Rk in any other 
simple G. 

VIII. CONCLUDING REMARKS 

The Weyl group has been the most important device in 
virtually any extensive work with representations of high 
rank ( ~ 1) simple Lie algebras/groups. The higher the rank 
the more difficult it is to proceed without it. 

Physical states "live" in representation spaces rather 
than in spaces populated by roots of an algebra or weights of 
its representations. Consequently, the symmetries of the 
Weyl group are no more than an (homomorphic) image of 
the general symmetries of physical states. Moreover, inter
esting problems at any period of time are usually at (or be
yond) the limits of what one can calculate with present day 
methods. Therefore using only the Weyl group is helpful but 
one can often proceed much more effectively. 
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A motivation to carry out large scale computations is 
often present in physics but only rarely in mathematics. That 
is perhaps the reason that a tool of prime importance like the 
Demazure-Tits group has been relatively little studied by 
mathematicians. 

This independent sequel to Ref. 3 is an attempt to par
tially rectify the situation. The principal results are the fol
lowing: Description of the DT in the classical series of simple 
Lie groups and G2; identification of the conjugacy classes 
(under the Lie group action) of the elements generating DT; 
finding the character table of DT in simple Lie groups of 
rank 2; and decomposition of all finite-dimensional repre
sentations of rank 2 Lie groups into direct sums of irreduci
ble components ofDT. 

There remain unsolved other equally interesting prob
lems involving DT. We name a few. 

The character tables ofDT group in simple Lie groups of 
rank > 2. An extension of known character tables of W to 
those ofDT, as exemplified here for rank 2, is possible and it 
may not even be difficult. 

The structure of DT in E6, E7, E8, and F4• The following 
appears to be true: DT(Ek ) CDT(Ek + I) for k = 6 and 7. 
The homomorphism DT(Ek ) .... W(Ek ) is nonsplit. 

Branching rules for Lie groups of rank > 2 to DT. The 
multiplicities ofWeyl group orbits in corresponding weight 
systems are either known 13 or can easily be found right now 
for every case which may conceivably ever be needed. 

Integrity bases of invariants and covariants ofDT. Their 
description along the lines, for instance, Ref. 16 is possible at 
least for lower ranks. 

Let us finish the article with a remark concerning the 
action of DT (G) on a generic orbit V w (A +). Its dominant 
weight A + = (AI, ... ,A/) has only trivial stabilizer in W; 
equivalently, A + has no zero coordinates in the basis of fun
damental weights, Aj > ° for any 1 ~ j~l. The decomposition 
(3.11) in this case depends only on the values Aj mod 2, 
1 ~ j~l and not on the highest weight A of any representation 
ofG. 

The only elements of DT( G) which have nonzero trace 
on V w (A +) are the zi elements which are mapped under ~ I 
of (1.2) to the identity element ofW. All other elements of 
DT move every vector of V w (A +). The 21 elements are of 
the form 

1 

II (R;)'\ 0/ =0 or 1. 
1=1 

The eigenvalue of R/ acting on any vector of weight 

I.kmkcuk isjust ( - 1)m,. The weight component m l is also 
the SU(2) weight in the a i direction. 

The eigenvalues of all elements of DT with nonzero 
trace thus depend only on the weights of the orbit. Their 
characters and hence their orbit decomposition, therefore 
depend only on the parity of Aj 'so 
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APPENDIX: A SUMMATION FORMULA 

Here we derive the following identity: 

[9/21 (- I)q-X(q -x), (AI) l . = (q + 2) mod 3 - 1 , 
x=o x!(q - 2x)1 

which we have not been able to find in the literature. The 
right-hand side is the character of the conjugacy class [111] 
of elements of finite order in SU (3) on the irreducible repre
sentation (p,q),p>q,p - q = ° mod 3, as given in Ref. 17, 
and used in Sec. IV of this paper. We may represent the EFO 
by R 1R2, an element of DTCSU(3) belonging to the DT 
class C3• Since it has trace ° on all but the point orbit, its trace 
for the point orbit is also given by the right-hand side of 
(AI). We show below that it is also given by the left-hand 
side of (Al). 

The zero-weight space V(P,q) (0,0) is of dimension 
q + 1. It is spanned by the q + 1 vectors which can be writ
ten l9 as 

Ix) = (7f7f*)X(SS*)q-X(7fS')(P Q)/3, x=O,l, ... ,q, 

(A2) 

where 71, 5, t are the three weight vectors ofthe SU (3) repre
sentation (1,0) of weights (1,0), ( - 1,1), (0, - 1), respec
tively; 71*, 5 *, t * are the weight vectors of the representation 
(0,1) with weights (- 1,0), (1, - 1), (0,1), respectively. 
We eliminate, * of weight (0,1) by means of the syzygy 

7171* + 55 * + t, * = ° (the scalar 7171* + 55 '" + " * never 
appears in these states). The action of RIR2 is to permute 
7f5t and 71*5 *t '" cyclically. Thus (A2) becomes 

R tR21x) = (55*)"( -7171* - 55*)q-X(7f5t)(P-Q)/3 

q-x 
= (- I)q-"(7f5t)(P-Q)/3 l (55*)q-a 

a=O 

x (7f7f",)a (q-x)! 
a!(q - a -x)! 

= ( - 1)q- xl la} (q -x)! . (A3) 
a a!(q - a - x)! 

The contribution of Ix) to the trace is the coefficient of Ix) 
on the right-hand side of (A3) and the complete trace is 
hence the left-hand side of (A 1). 
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Generalized Lie algebras and superalgebras with generators and structure constants taking 
values in a Grassmann algebra are introduced. Such algebraic structures describe the equal 
time algebras in the superfield formalism. As an example, the equal time commutators and 
anticommutators among bilinears made out of the D = 1 quantum superfie1ds describing the 
supersymmetric harmonic oscillator are considered. 

I. INTRODUCTION 

Let us introduce the Grassmann algebra fj N generated 
by 6= (OI, ... ,ON)' where {O;,Oj} =0 (i,j= 1, ... ,N). The 
multipletr(6) (a = 1, ... ,m) ofsuperfields is described by 
the mapping Ja: 6Efj N ~JaEfj = fj F ® fj N' where fj F 

describes the Z2-graded algebra of quantized bosonic and 
fermionic components, with even (odd) grading for bosonic 
(fermionic) ones. The expression of a superfield Ja in its 
components takes the following explicit form: 

r(6) =j+J~i)O; + ... +.fc.;' ... ;k) 0;, "'O;k 

(1) 

The grading (parity) of r(6) is defined as the product of 
parities in fj F and fj N; we assume that the superfields 
r(6) have definite parities. Thus we have (i) bosonic su
perfie1ds, withJ~;" .. ;k) even (odd) if k is even (odd); or (ii) 
fermionic superfields, withJ~;" .. ;k) even (odd) if k is odd 
(even). A superfield r(6) is bosonic (fermionic) if j is 
even (odd). 

In a superfield description of supersymmetric quantum 
mechanics (QM) the componentsJ~;" .. ;k) are simply func
tions of time. If we consider the algebra of D = 1 superfields 
at fixed time (e.g., t = 0), the algebra fj F is finite. 

The aim of this paper is to study the algebraic structures 
for the superfie1ds J a (6) closed under commutation or anti
commutation. For the sake of simplicity we shall suppress 
the space-time arguments of the component fields J~; .... ;k>' 

which corresponds to (a) considering superfie1d algebras in 
supersymmetric QM at fixed time; and (b) considering 
J~;" .. ;k) as component fieldsJ~;'· .. ;k) (x,t) smeared out with a 
test functionj(x,t). In particular one can formally consider 
the improper limit, j(x,t) ~c5(t), in which the r(6)'s de
scribe at fixed time the superfield extension of the conserved 
local current, integrated over (D - 1 )-dimensional space 
coordinates. In such a way one can introduce the notion of 

a) On leave of absence from the Institute for Theoretical Physics, University 
ofWroc1aw, 50-205 Wroclaw, Poland. 

superfield of charges usually with only one component de
scribing the "conventional" conserved global charge. 

II. ALGEBRAIC STRUCTURES FOR CLOSED FINITE
DIMENSIONAL SUPERFIELD ALGEBRAS 

The simplest Lie algebraic structure for bosonic super
fields J a ( 6) can be written as follows (see also Mansouri 1 ) : 

(2) 

wherejabdjdc. + cycl(a,b,c) = 0, so that thejabc are the 
Lie algebra structure constants, and the components j in 
( 1) describe a conventional finite-dimensional Lie algebra. 

An essential feature of the algebra (2) is that it is gener
ated by the commutators of operators depending on the same 
Grassmann coordinates. In contrast, the analog of a local 
current algebra in Grassmann space would be 

[r(6),J b (6')] = c5(N) (6 - 6')rbJC(6'), (3) 

where 
N 

c5(N) (6 - 9') = II (0; - 0;). 
;= I 

Assuming, by analogy with the local current algebra for the 
quark model (see, e.g., Ref. 2), that ther(6)'s are bilinear 
in some basic superfie1ds <1>; (6), the local algebra (3) could 
be derived if the superfield description would allow for the 
canonical formalism in superspace. In such a case one would 
have 

r(9) -<1>;(6),1. ijllj, 

where 

[<1>;(9),1Tj (6')] = ic5(N) (6 - 9')·c5if, 

[<1>;(9),<I>j(6')] = ["/(6),"j(9')] =0. 

(4) 

(5) 

However, it is known3
--6 that superfields do not honor 

the canonical formalism, i.e., the superfields <1>; ( 6) cannot 
be accompanied with canonical supermomenta ll; (9), satis
fying the relations (5). As a result, the relation (3) does not 
seem to be useful in supersymmetric quantum-field theory 
(QFT), and one has to consider the following generaliza-
tion: 
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(6) 

where the integration over Grassmann variables is under
stood in the sense of Berezin,7 and 

f d Nl1r bd (6,6',1)/dCe (1),6" ,1)') 

+ cycl[ (a,6),(b,6'),(e,6")] 0. (7) 

The algebra (6) can be extended to a superalgebra, provided 
that we supplement the even operators Ja (0) with odd ones 
sa ( ° ) . A first guess would be the following extension of ( 6) : 

[J"(O),sa(o')] = f dNl1rap(O,O',1)SIJ(1), 
(8) 

{sa(0),slJ(6')} = f dNl1rPa (0,6',1)}J"(1). 

However, in the presence of odd operators sa(o), the rela
tions ( 6) and (8) are not the most general ones, because they 
imply definite parity properties for labc , laalJ, and/alJ

o in 
~ N (even for even N, odd for odd N). The relations (6) and 
( 8) can be generalized as follows: 

[J"(O),Jb(O')] = f dNl1[rbe(6,O',1)r(1) 

+h ab
a (6,O',1)sa(1)], (9a) 

[J"(o),sa(o')] = f dNl1[rap(O,O',1)SIJ(1) 

+ h aae (6,O',1)r(1)], (9b) 

{sa(o),SP(O')} = f dNl1[lalJe(6,O',1)r(1) 

+ h alJ
y (O,O',1)SY(1)], (9c) 

where the three different types of/'s (h 's), which have an 
even (odd) number of Greek indices are even (odd) func
tions of the Grassmann variables if N is even; if N is odd, 
their parity is the opposite. The position of the Greek and 
Latin indices should be noticed: for instance,loap and/aP

e 

have the same parity, but they multiply the generators with 
opposite gradings in (9b) and (9c), respectively. Thef'sand 
the h 's satisfy the obvious relation, e.g., 

IUVw (6,0',1) = - (- l)deg u'de8 '1vuw(6',0,1), (10) 

where deg u is the grading of the index u = a,b,... or 
a,p, ... [deg u = ° (1) Latin (Greek) indices]. 

Using graded Jacobi identities 

[[J"(0),Jb(6') ],r(O")] 

+ cycl{(aO),(b 6'),(eO")} = 0, 

[[sa(6),J b(6') ],r(O")] 

+ cycI{(aO),(bO'),(cO")} = 0, 

[{sa(O),slJ(O')},sa(o") ] 

+ cycI{(aO),(pO'),(PO")} = 0, 

and 

( lla) 

(llb) 

(lIe) 

[{sa,s'IJ},J"C] + nrC,Sa],S'IJ} {[S'IJ,J'c],sa} = 0, 
(lId) 
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and assuming irreducibility for JO and sa, one obtains, re
spectively, the following identities for the structure func
tions IUV wand h uv w : 

f d Nl1 [rbd (0,6',1)/dCe (1),0" ,1)') 

+ h ab.,(O,O',1)h "ce(1),O",1)')] 

+ cycl{(aO),(b 6'),(eO")} = 0, 

f d Nl1 [r
bd (O,O',1)h dep (1),O" ,1)') 

+ h ab .. (6,6',1)/"CIJ (1),0" ,1)') ] 

+ cycI{(a6),(bO'),(eO")} = 0; 

f dNl1[labu (6,6',1)/U\(1),0",1)') 

+ h abu (O,O',1)h uCy (1),6" ,1)') ] 

+ cycl{(a6),(b6'),(e6")} = 0, 

f dNl1[/abu (O,O',1)h UCe(1),O",1)') 

+ h abu (6,6',1)j"ce(1),6",1)')] 

+ cycl{(a6),(b 6'),(e6")} = 0; 

f d Nl1 [/alJd (0,6',1) )/dr,; (1),6" ,1)') 

+ haP .. (0,6',1)h .,y,; (1),0" ,1)') ] 

+ cycI{(a6),(p9'),(yO")} = 0, 

f d Nl1 [laPd (O,O',1)h dYe (1),0" ,1)') 

+ h alJ" (9,0',1) )jEre (1),0" ,1)') ] 

+ cycl{(a6),(p9'),(yO")} = 0; 

f d Nl1 [/aP
u (0,6',1)j"ce (1),0" ,1)') 

+ h alJu (9,9',1)h uCe (1),0" ,1)') ] 

+ grad cycl{(aO),(pO'),(cO")} = 0, 

f dNl1[/alJu(9,9',1)h UCy (1),6",1)') 

+ h aPu (O,O',1)/u< Y (1),0" ,1)') 

+ grad cycl{(aO),(P9'),(e9")} = 0; 

(12a) 

(l2b) 

(12c) 

(I2d) 

where 1) and 1)' indicate the integration variables and (i) in 
formulas (l2b) and (l2d) the index u is Greek or Latin 
depending on the permutation, in such a way that the f's 
(h 's) have always even (odd) number of Greek indices; and 
(ii) in formulas (12d) graded cyclic means that (aO), 
(P6'), (cO") and (e9"), (a6), (PO') have a + sign and 
(p9'),(eO"),(aO) a one (pjumpsovera). 

It turns out that by calculating the equal time (E.T.) 
commutators of bilinear products of free superfields the su
peralgebra (9a)-(9c) emerges provided that we consider 
products biloeal in the Grassmann variables. Therefore in 
superfield applications the Grassmann algebra [§ N is de
scribed by a graded tensor product of two copies of Grassman 
algebras describing the anticommuting superspace coordi-
nates. 
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III. E.T. ALGEBRAS FOR SUPERFIELDS DESCRIBING 
THE SUPERSYMMETRIC HARMONIC OSCILLATOR 

We shall realize below the superalgebra (9a)-(9c) in 
terms of the bilocal bilinears of D = 1 superfields, which 
describe the SUSY harmonic oscillator with complex super
symmetries.3

,8,9 The action for Witten's supersymmetric 
QM in superspace has the form 

I = f dt dO dO 

X [ - !(DcI>; DcI>; - DcI>; DcI>;) - V(cI>~)], (13) 

where 

tl.ij(t - t';O,O,O',O') = (1/i) [cI>;(t,O,O),cI>j(t,O',O'» 

a .- a - a . a 
D = - - lO - D = --=- - lO-

ao at ' ao at ' 
(14) 

and the cI>; are real superfields (i = 1, ... ,m) 

cI>;(t,O,O) = X;(t) + iO,,;(t) + ;O"¢;(t) + OOA;(t). (15) 

Putting V( cI>;) = !ktI>; one gets the action for supersymme
tric oscillator, and cI>; satisfies the equation 

[! (DD - DD) - k ] cI>; (t,0,0) = O. 

Using the identity 

[! (DD - DD) - k ] [!<DD - DD) + k ] 

X(a;+k 2 )-I=I, 

(16) 

(17) 

one gets the following formula for the supercommutator9
: 

= 8ij [!(DD - DD) + k ]{[sin k(t' - t)]lk}8(O - 0 ')8(0 -0') 

= 8 ij ({ [sin k ( t' - t)] I k} [1 + k (0 - 0 ' ) (0 - 0 ') + k 2 ( ff{)o '0 ' )] + cos k ( t' - t) ( ff{)' + 00 ' ) ). 

From (18) one gets the following nonvanishing E.T. 
graded commutators ofcl>;, DeI>;, and DeI>;: 

(cI>; (t,O,O),cI>j (t,0',0') ] = 8ij(00' + 00'), 

[Del>; (t,0,0), cl>j (t,0 ',0') ] 

= 8ij [ - (0 - 0') - k( 00'0' + 0'(0) ], 

[Del>; (t,O,O),cI>j (t,0 ',0')] (19) 

= 8ij [ - (0 - 0 ') - k(OO'O' + 0 '(0)], 

{Del>; (t,O,O) ,DeI>j (t,O ',O')} 

= 8ij[ -.1 + k(OO + 0'0' - 200') - k 2000'0']. 

The E.T. superfield graded commutators (supercommuta
tors) (19) are fully equivalent to the canonical E.T. rela
tions for the fields X;(t), ,,;(t), and "¢;(t); the fields 
A; (t) = - kX; (t) are auxiliary. Formulas (19) describe an 
extension ofthe Heisenberg algebra in the spirit of our gener
alization, i.e., with the numerical constants describing quan
tization conditions represented by the elements of Grass
mann algebra ("Grassmann numbers"). The E.T. 
supercommutators (19) have the following new features 
with respect to the conventional canonical formalism. 

(a) They are "nonlocal" in the Grassmann variables 
(i.e., they are not proportional to Dirac deltas in Grassmann 
variables) . 

(b) The E.T. odd commutators [J,S] among bosonic 
(J = cI>;) and fermionic (S = DeI>/tDel>;) superfields do not 
vanish. In contrast, the E. T. commutators of a bosonic and a 
fermionic canonical variable (e.g., [X;(t),,,;(t)]) are all 
zero. 

The nonlocality ofE. T. supercommutators ( 19) implies 
that the superalgebra (9a)-(9c) can only be realized in 
terms of bilinears in superfields that are non local in the 
Grassman variables. The property [J,S] #0 implies that the 
Grassmann-valued odd structure constants h are different 
from zero. 
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(18) 

From the superfields cI>/t DeI>;, and DeI>; the following 
examples of closed algebraic structures may be constructed. 

( 1) Let us consider 

J(t,O,O,O ',0') = cI>; (t,O,O)cI>; (t,0 ',0 '). (20) 

The E.T. supercommutators of the operators (20) pro-
vide an example of the algebra (6). 

(2) The E.T. supercommutators of the bilinear prod
ucts, 

J + (t,0,0,0 ',0') = DeI>; (t, 0,0) Del> ; (t,0 ',0'), 

Jo(t,O,O,O ',0') = DeI>; (t,O,O)DeI>; (t,O'O '), (21) 

J _ (t,O,O,O ',0 ') = DeI>; (t,O,O)DeI>; (t,O ',0 '), 

generate another example of the algebra (6). 
(3) If we consider the commutators [J,J +] we obtain 

an example of relation (9a) with Jabc = 0 and h aba #0, 
where the odd operators are described by 

S+ (t,0,0,0 ',0') = cI>; (t,O,O)DeI>; (t,O ',0 '), 

S _ (t,O,O,O',O') = cI>; (t,O,O) Del> ; (t,O',O'). 
(22) 

(4) The six bilinears (20)-(22) provide an example of 
E.T. algebra described by the set of relations (9a)-(9c). In 
particular the E. T. supercommutators [S ± ' Jo] provide ex
amples of the relation (9b) with J # 0 and h # 0, and the 
superanticommutators {S ± ,S ± } and {S ± ,S =F } provide 
an example of the relations (9c), also withJ # 0 and h #0. 

For simplicity in the bilinears (20)-(22) we have ig
nored the possible matrix insertions, which could generate a 
more complicated form of the algebra (9). For example, we 
could replace (20) by 

r(t,o,o,O ',0') = cI>; (t,O,O)A ijcl>j (t,0 ',0 '), (23) 

where, for instance, the 3 X 3 matrices A a describe the gener
ators of U( 3), closed under matrix multiplication, i.e., 
A aA b = CabdA d, where cabd are real. 
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IV. THREE DIFFERENT FORMS OF THE 
SUPERALGEBRA (9aH9c) 

A. The algebra of local products of superflelds 

We see from the example in Sec. III that the basic super
algebra (9a)-(9c) is obtained if r and sa are the products 
of superfields bifocal in the Grassmann sector [see, e.g., 
(23)]. One can use, however, a Taylor expansion in the 
Grassmann variables, e.g., 

- - a-
<l>i (t,0 ',0') = <l>i (t,0,0) + (0' - 0)- <l>i (t,0,0) 

ao 

+ (0' - O)~ <l>i (t,0,0) 
ao 

- - a a -+ (0' - 0)(0' - 0) ao ao <l>i (t,0,0), 

(24) 

and write 

r(t,o,o,O ',0') = J~o,O) (t,O,O) + (0' - O)J~I,O) (t,O,O) 

+ (0' - O)J~O,I) (t,O,O) 

+ (0' - 0) (0' - O)J~I,I) (t,0,0), 
(25) 

where (i,j = 0,1) 

- (a )I( a )j - - I J'(i,j) (t,0,0) = ao' ao' ru,o,o,O',O') ;::r 
(26) 

In such a way one can replace, e.g., the relation (6) for the 
partly bifocal product (23) by the superalgebra (9a)-(9c) 
for the local products (26), with J ~O,O) and J (I, I) describing 
bosonic and J(I,O)' J'(o,1) describing fermionic local super
fields. It is easy to check that in the general case of N anti
commuting coordinates in superspace every bilocal super
field J( 0,0') is described by 2N local superfields. 

B. The generalization of the algebra (2) 

Let us consider the following generalization of the alge
bra (2): 

[Jf(O),J!(O)] = F ab
c c7J,k;O)Jk(O) 

+ Haba (iJ,r,O)s~(O), (27a) 

[Jf(O),S~(O)] = Faap (l,r,s;O)Sr(O) 

+ Hoa
c (i,r,k;O)J~ (a), (27b) 

{S~(O),Sr(O)} = Fa/3c (r,$,k;O)J~ (a) 

+ HaPy (r,$,i;O)s[(O). (27c) 

Expanding, r(O'), sa(o') from (9a)-(9c) in the powers 
of 0; - 0i, e.g., 

(28a) 

where 
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J'(i""i.) (a) = a~. . .. a~. r(o) (28b) 
" 'k 

one can replace the superalgebra (9a)-(9c) by the finite 
superalgebra (27a)-(27c) of the superfields 

J'(i""i.) (0), S'(i .... i.) (a), where 

Ji(O) = {J'(i""i.) (O)(k even),Sfi""i.) (O)(k odd)}, 

S~(O) = {J~i""i.) (O)(k odd),Sfi .... i.) (O)(k even)}. 
(29) 

By differentiating the relations (9a)-(9c) with respect to 
the 0; variables and substituting the Taylor expansion of 
JC <''1),S a (1) around the point 1) = a [as in (28a) ] one can 
express the structure constants F UV w' HUV win (27a)-(27c) 
in terms of the fUv w , h uVw taken from (9a)-(9c) [u,v,w 
= (a,a)]. 

C. Conventional form of the superalgebra 

First we observe that the algebra (6) can be reexpressed 
as a large superalgebra in the componentsJ~i,. "i.) [see (I)]. 
Indeed, using expansion (1) for the Grassmann-valued 
structure constants, e.g., 

(30) 

and the formula 

J dNOOi, "'Oi.1a(o) =€i""i",J'U.+,"·i",>, (31) 

one gets from (6) the following conventional superalgebra 
with numerical structure constants: 

(32) 

where anticommutators are assumed if both I and m are odd, 
and commutators otherwise. The Jacobi identities (7) can 
be written as the following set of bilinear relations for the 
numerical structure constants defined by the relation (30): 

N 

~ fab (i "·i J' ., 'J' k···k )€ fdc £.. d 1 I' 1 m' 1 n k.···knk,,+l···kN e 
n=O 

(33) 

An analogous rewriting of the superalgebra (9a)-(9c) and 
the graded Jacobi identities (12a)-( 12d) in its component 
form is tedious but straightforward. 

V. FINAL REMARKS 

Our example of the superalgebra (9a)-(9c) is con
structed out of the E. T. bilinears of D = 1 free superfields. In 
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the presence of interactions the basic relations (19) are 
modified-some Grassmann numbers are replaced by the 
operator terms (the second derivatives ofthe superpotential 
V( <1>7) [see ( 13) ]}. In such a case the E. T. supercommuta
tors of the bilinears (20)-(22) cease to form a closed super
algebraic system (9a)-(9c). 

In the presence of interactions describing an asymptoti
cally free theory, one can introduce the fully bilocal products 
of superfields (also bilocal in the space-time coordinates). If 
D> 1, one can consider their graded supercommutators for 
the differences of superspace coordinates lying on the super
light cone. The postulate that such a superalgebra closes 
leads to the supersymmetric extension of D = 4 Fritzsch
Gell-Mann algebra for bilocal internal symmetry currents. 10 
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On the spectrum of a third-order 80(3) scalar in the enveloping algebra 
of 80(6) 
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With the aid of previously derived expressions for the SO(3) reduced matrix elements of the 
SO(6) generators. which were obtained by considering an intermediate SO(6) !SU(2) ® SU(2) 
reduction, a method is set up to evaluate analytic expressions for the eigenvalues of a third
order scalar operator belonging to the integrity basis ofSO(3) scalar operators in the 
enveloping algebra ofSO(6). 

I. INTRODUCTION 

In two previous papers l
,2 it has been shown that within 

the SU (3) limit, symmetry-conserving higher-order interac
tion terms influence the energy spectrum within the inter
acting boson model (IBM) quite seriously. Three- and four
body interactions introduced in the IBM Hamiltonian by 
Vanden Berghe et al. I gave rise to a much better approxima
tion of the energy spectra as well as to the removal of the 
degeneracy, which originally existed for members of the so
called.B and r bands. By this success it is tempting to investi
gate the analogous problem in the two other IBM limits, 
SO (6) and SU (5). In this scope it is natural to ask for SO (3 ) 
scalars that preserve both mentioned symmetries. It has 
been proved recentIy3 that, when applied to symmetric ir
reps, there exists in the integrity basis of the corresponding 
algebras only two functionally independent third-order 
SO (3) scalars. In this paper special attention will be paid to 
the SO ( 6) limit and to one of these scalars in particular. 

Denoting in the SO ( 3) basis the SO ( 6) Lie algebra by 
the SO (3) basis elements 10 ,1 ± I' together with the compo
nents PI' (ItE[ - 2,2]) of a five-dimensional irreducible 
SO(3) tensor operator, and the components ql' 
(ItE[ - 3,3]) of a seven-dimensional SO(3) tensor opera
tor, the third-order functionally independent SOC 3) scalars 
can be expressed as3 

r l = (pp)2p )(0) (Ll) 

and 

( 1.2) 

It is the aim of the present paper to derive for several classes 
of SO (6) physical basis states closed formulas for the r 2 

eigenvalues by making use of a previously derived expres
sion4 for the reduced matrix elements of p. Because of the 
complex structure of the operator r I' closed formulas are 
very difficult to derive. As a by-product we shall discuss the 
possibility of using the p-reduced matrix elements for the 

a) Senior Research Assistant N. F. W. O. (Belgium). Present address: De
partment of Mathematics, University of Southampton, Southampton 
S09 5NH, England. 

b) Senior Research Associate N. F. W. O. (Belgium). 

derivation of compact expressions of B(E 2) values between 
SO ( 6) basis states. 

II. BASIC FORMULAS 

Using the explicit expression (1.2) for the operator r 2' 

applying the Wigner-Eckart theorem, and introducing the 
analytic expression for the occurring 3j symbol, it is easy to 
verify that the matrix elements of r 2' with respect to the 
SO(6) totally symmetric irreps IU1"v/) can be written as 

(u1"'v'lm Ir 21U1"Vlm) 

= [/(/ + 1 )(21 + 3 )(21- 1)/2.3.5(21 + 1)] 1/2 

x (u1"'v'/llPllu1"v/). (2.1 ) 

Herein we have denoted for the SO(6) symmetric irrep 
[0',0,0] the states that constitute the physical basis as 

IU1"Vlm), (2.2) 

with m = -I, -I + 1, ... ,/. The labels 0', 1", I, and mare, 
respectively, related to the Casimir operator eigenvalues of 
the algebras SO(6), SO(5), SO(3), and SO(2), Let us 
remember that the SO (5) label 1" takes on the values 

1" = 0',0' - 1,0' - 2, ... ,0, (2.3 ) 

while the extra label v is given by 

v=0,I,2 ..... [1"/3]. (2.4) 

For a given v value. the SO(3) content is specified by 

1= 2K.2K - 2.2K - 3 ..... K + I,K. 

with 

K= 1"- 3v. 

(2.5) 

(2.6) 

It should also be remarked that the states (2.2) are orthogo
nal in all labels except for the v label. More explicitly. 

Several equivalent formulas that permit one to evaluate the 
overlap integrals A l(v',v) have been derived by Williams 
and Pursey.5 For further discussion. we mention one ofthe 
expressions here: 
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A [( v',v) = r' - V[ (2/ + 1) (3v' - 3v)!] -I [( 1" - v)!( 1" - v')!v!v'!(/ + 3v' - 1")! 

x (I + 1"- 3v)!/(I + 1"- 3v')!(1 + 3v- 1")!]1/2 L( - 4)v+a-P(3v' - 3.8+ a)!(21"- 2v- 2v' + 2,B)! 
a,p 

x [(1" - V - v' +.8 - a)!(v' - .8)!(v - .8) !a!,8 !(21" + v' - 2v + a -.8 + 1)!]-1 

X 3F2(1" - 3v -/,1" + 1- 3v + 1,3v' - 3.8 + a + 1;3v' - 3v + 1,21" + v' - 2v-.8 + a + 2;1). (2.8) 

The reduced matrix element ofp with respect to the physical basis states (2.2) has been the subject of another paper.4 For the 
sake of self-containment we mention the result here: 

(2/' + 1)-1/2(0'1"'v'I'IIPIIO'rvl) 

= 8,."T+ 1 [(0' - 1")(0' + 1" + 4 )/(21" + 5)] 1/2{ - [/'(1' + 1)/3(21" + 3)] [vl( 1" - v + 1)( 1" - V + 2) p/2 

X (IK221/'K + 2)(/'K + 41 - 11/'K + 3)(/'K + 31 - 11/'K + 2)A 1'+ 1(v',V- 1) + (1" - V + 1)-1/2 

X [- [/'(1' + 1)/2p/2(21"- 2v+ 3)/(21"+ 3)(IK221/'K + 2)(/'K + 1111/'K + 2) 

+ (1"- v+ 1)(IK211/' K + 1) + [1'(1' + 1)/3P/2(IK201/' K)(/' K + 11 -III' K) 

+(1'(1'+ l)/3(21"+3»)(IK2 -III' K-1)(/' K+ 11 -III'K)(/' Kl -II' K-1)]Ar.+ I (v',v) 

+ (v+ 1)1/2[ - [21'(1' + 1)] 1/2/(21"+ 3)(IK2 -III' K -1)(/' K - 2111/' K-1) 

+ (I K2 - 21/' K - 2)]A 1'+ I (v',v + I)} + 8,."T_I [(0'- 1" + 1)(0'+ 1"+ 3)/(21" + 3) p/2 

X{VI/2(1 K 2211' K + 2)A r.-I(v',v - 1) - (1" - v)1/2(1 K 2 - III' K - 1)A r.-I(v',v)}. 

It is clear that these reduced matrix elements only differ from zero when r' = 1" ± 1. 

III. r z EIGENVALUES 

(2.9) 

Before discussing the evaluation of the different eigenvalues it is worthwhile to define some classes in which the SO(6) 
physical basis states (2.2), with a fixed but large enough 0' value, can be subdivided with respect to their I contents. For this 
classification we make use of the restrictions imposed by Eqs. (2.3) - (2.6) on the occurring labels. 

Class (a): Inondegeneratedstates: 1=20',20'-3 (1"=0', v=O). 
Class (b): I doubly degenerated states: I = 2u - 2,20' - 5 (1" = 0', V = 0; 1" = 0' - 1, v = 0). 
Class (c): I triple-degenerated states: 1= 20' - 4,20' -7 (1" = 0', V = 0; 1" = 0' - 1, v = 0; 1" = 0' - 2, v = 0). 
Class (d): I quintuple-degenerated states: I = 20' - 6,20' - 9 (1" = 0', V = 0; 1" = 0', V = 1; 

1"=0'-1, v=O; 1"=0'-2, v=O; 1"=0'-3, v=O). 

All other possible states are at least sevenfold degenerated. 
This has as a consequence that the secular equation, giving 
rise to the eigenvalues ofr 2' becomes a polynomial equation 
of sixth degree or higher. This means that an analytic treat
ment for these cases is excluded; a numerical solution is, 
however, still possible. 

A. r z eigenvalues for states of class (a) 

Since these states are uniquely described by one phys
ical basis state of the type (2.2), the r 2 eigenvalue is, because 
of the relation (2.1), linearly correlated with the reduced 
matrix element of p. Since the reduced matrix elements (2.9) 
vanish for 1"' = 1", it is clear that for all 0', 

(3.1 ) 

Hereafter, we denote the eigenvalue of r 2' corresponding to 
an eigenstate with angular momentum I, as r 2 (/). 

B. r z elgenstates for states of class (b) 

For this class of doubly degenerated states, we have at 
our disposal two basis states of the type (2.2), i.e., the one 
with 1" = 0', V = 0 and the other with 1" = 0' - 1, v = O. 
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These states are not normalized and are not orthogonal to 
each other. Let us, as an example, demonstrate how the secu
lar equation for this specific class can be derived. 

An eigenvector 11m> of the operator r 2 will be a linear 
combination of the two basis states available, i.e., 

II = (20' - 2 or 20' - 5)m» 

=aIO'1"=O'v=Olm) +bIO'1"=O'-l v=Olm), 
(3.2) 

with 

r21/m» = r 2(/) 11m». (3.3) 

From (3.2), (3.3), and (2.7) it is easy to derive the secular 
equation 

or 
1

- r2(/)A f(0,Q) 

Q(O' - 1 0;00) 

r 2(/)2A f(O,O)A i- 1(0,0) 

= Q(oO;O' - 1 O)Q(O' - 10;00), 

(3.4 ) 

with Q( 1"'V';rv) a shorthand notation for (0'1"'v'/lr2 10'rv/). 
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Taking into account (2.1), and after a lengthy evaluation of 
the occurring reduced matrix elements of p, where special 
properties of the hypergeometric functions present (see Ref. 
6) are used, one arrives at the following eigenvalues, 

r 2 (/) = ± [~(20"-1)2(2/+ 3)(/-0"+ l)r12, 

1 = 20" - 2,20" - 5. (3.5) 

C. r 2 eigenvalues for states of class (c) 

For these triple-degenerated states, one can derive the 
secular equation in a way analogous to that ofthe class (b) 
states. Because of the fact that the p-reduced matrix ele
ments only differ from zero when 1"' = 1" ± 1, a few zero ele
ments occur in the determinant representation of the secular 
equation, which reads 

- r 2 (/)A r(O,O) 

Q(O"- 10;0-0) 

o 

Q(o-O;O" - 1 0) 

- r 2 (/)A r-I(O,O) 

Q(O" - 2 0;0" - 1 0) 

o 
Q(0"-10;0"-20) =0. 

- r2(l)A r- 2(0,0) 

In this way one immediately observes that one eigenvalue takes on a zero value and that the two others are the solutions of the 
following quadratic equation: 

r 2(/)2A f(O,O)A r-I(O,O)A r- 2(0,0) 

= A r- 2(0,0)Q(0" - 1 O;o-O)Q(o-O;O" - 10) + A f(O,O)Q(O" - 2 0;0" - 1 O)Q(O" - 10;0" - 2 0). (3.6) 

After a tedious evaluation of the matrix elements occurring, one obtains the following eigenvalues for states of class (c): 

r 2 (l) = 0, ± ['M20" - 3)(2[3 + 16/ 2 + 651 + 81 - 220"1- 450") r/2, 1 = 20" - 4,20" - 7. (3.7) 

D. Eigenvalues for states of class (d) 
For this class, it is the first time that a basis state with a v value of 1 occurs. This makes the evaluation of the p-reduced 

matrix elements much more involved. It is not possible anymore to always base upon known relations between hypergeome
tric functions as discussed in Ref. 6. Therefore separate formulas will be given for each of the 1 values present. Nevertheless 
the determinant giving rise to the secular equation can still be given in a general way, i.e., 

r 2 (/)A f( 0,0) r2 (l)A f( 1,0) - Q(o-O;O" - 10) 

r2(l)A r(1,O) r2(l)A r(1,l) - Q(O"I;O" - 1 0) 

Q(O"- 10;0-0) Q(O"- 10;0"1) - r 2 (/)A r-I(O,O) 

0 0 Q( 0" - 2 0;0" - 1 0) 

0 0 0 

Again one eigenvalue takes on a zero value and the four 
other eigenvalues are the solutions of a biquadratic equation 
in r 2 (I). After a tedious evaluation of the occurring matrix 
elements, the following results are obtained: 

r 2 (l=20"-6) 

with 

= 0, ± [~( 800-4 - 820~ + 305Qu2 - 49920" 

+ 3069 ± D 112)] 112, (3.9) 

D J = 4096if - 83 9680"7 + 742 656if - 3706 240di 

+ 11434 1800"4 - 22 359 876~ + 27 087 561u2 

- 185929560" + 5536 836, (3.10) 

and 

r 2 (l=20"-9) 

= 0, ± [f5(800"4 - 1180~ + 5930u2 - 126060" 

+ 9873 ± D y2)] 112, (3.11) 

with 
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0 0 

0 0 

Q(0"-10;0"-20) 0 

- r2(l)A r- 2(0,0) Q(O" - 2 0;0" - 3,0) 

Q(0"-30;0"-20) - r2(l)A r- 3 (0,0) 

D2 = 4096if - 1208320"7 + 1498 368if 

- 10 228 864di + 42 251 6200"4 

- 108 571 308~ + 169914 861u2 

- 1482310260"+ 55194129. 

=0. (3.8) 

(3.12) 

In these and the following formulas plus and minus signs 
must be combined in all possible ways. 

E. r 2 eigenvalues for states belonging to the physical 
basis (2.2) but with small CT values 

It is evident that for small 0" values the above discussion 
does not hold anymore. Certain basis states defined in classes 
(a)-(d) do not occur for small 0" values due to the restric
tions (2.2)-(2.6). Hereafter, we summarize the derived 
eigenvalues forOE{0,1, ... ,6}. If necessary, we give (between 
brackets) the number of times the same eigenvalue occurs. 
The evaluation of these results proceeds in a way analogous 
to the general case, with the exception that for many I values 
the representation space is smaller: 
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0- = 0: r 2 (0) = 0, 

0- = 1: r 2 (2) = 0, r 2 (0) = 0, 

0- = 2: r 2 (4) = 0, r 2 (2) = ±.fl, r 2 (0) = 0, 

0-=3: r 2 (6) =0, r 2 (4) = ±2.p/, r 2 (3) =0, 

r 2 (2) = ± 4.jI, r 2 (O) = 0(2), 

0-=4: r 2 (8) =0, r 2 (6) = ±7,j6, r 2 (5) =0, 

r 2 (4) = 0, ± 2-JI¥, 

r 2 (3) = 0, r 2 (2) = 0, ± 9,fi, r 2 (0) = 0, 

0-= 5: r 2 (10) =0, r 2 (8) = ± 18~, r 2 (7) =0, 

r 2 (6) = 0, ± 6.JI¥, r 2 (5) = ± 9~, 

r 2 (4) = ± ~ n(2' 11· 132 ± 2~11(285 371)), 

r 2 (3) = 0, r 2 (2) = ± v", ± 4..[3, 

r 2 (o) = 0(2), 

0- = 6: r 2 (12) = 0, r 2 (10) = ± 11..j¥, r 2 (9) = 0, 

r 2 (8) = 0, ± 126/../5, r 2 (7) = ± 22.JH, 

r 2 (6) = 0, ± 3~!(351 ± 16J33f), 

r 2 (5) = ± 6,p/, 

r 2 (4) =0,±~1ff±N8761, r 2 (3) =0(2), 

r 2 (2) = ± 2,p/, ±,J66, r 2 (o) = 0(3). 

IV. CALCULATION OF B (E2) VALUES IN THE SO(6) 
LIMIT 

In the original paper of Arima and Iachello 7 treating the 
SO ( 6) limit, the derivation of analytic expressions for B 
(E2) values is rather lengthy and quite involved. This fol
lows from the fact that for constructing compact expressions 
for the matrix elements of the quadrupole operator, and all 
operators other than the Hamiltonian, the wave functions 
belonging to the group chain SU(6) :::>SO(6) :::>SO(5) 
:::> SO (3) have to be expanded in terms of the wave functions 
belonging to the group chain SU ( 6) :::> SU ( 5) :::> SO ( 5 ) 
:::> SO (3). The expansion coefficients occurring can only be 
obtained by making use of rather complex integral represen
tations of certain sums. 

Since the most general "SO(6) invariant" quadrupole 
operator used by Arima and Iachello 7 can be denoted as 

T!2=ij2P~' (4.1) 

and since a general expression for the p-reduced matrix ele
ment is at our disposal (2.9), the B (E2) values can be de
rived much more easily. Since we are working in a nonorth
onormalized basis the classical definition (see, for example, 
Ref. 8) for the B (E2) values cannot be used immediately. 
Instead, the following definition is appropriate: 

B(E2;o-r'v'I'--+l7'Tvl) =ij~ 1 (_1)1'-1 1 1 (o-r'v'I'llPlio-rv/)(o-'TV/llPllo-r'v'I'). (4.2) 
(2/' + 1) A r. (v',v') A l(v,v) 

In this way the results of Arimaand Iachell07 [formulas (5.14), (5.18), and (5.25)-(5.28)] are reproduced in a more elegant 
way. As an example of a more complex result, let us give a B (E2) value not derived previously, 

B(E2;0-=Nrv'= 11'=2r-6--+o-=Nr-l v=0/=2r-5) 

= ~ 32(2r - 3)(4r - 5)(4r - 7) (N _ r + 1) (N + r + 3) 
(2r+ 3)(2r- 5)(4r- 11) 

(? + 27r- 88f 
X (l8~ _ 1169r + 29118r4 

- 117347r + 83592? + 204628r - 230160) 

V. CONCLUSIONS 

We have succeeded in deriving closed expressions for 
the eigenvalues of one of the third-order SOC 3) scalar opera
tors occurring in the SO(6) limit of the IBM. The method 
discussed has been applied to four typical classes of SO ( 6 ) 
physical basis states. It is, however, straightforward to ex
tend the method in a numerical way to other cases. The de
rived formulas can now be used for a systematic study of the 
influence of higher-order interaction terms of the type r 2 on 
the theoretical spectra and transition rates of so-called 
SO(6) nuclei. We hope to report on this in the near future. 

805 J. Math. Phys., Vol. 29, No.4, April 1988 

'G. Vanden Berghe, H. De Meyer, and P. Van !sacker, Phys. Rev. C 32, 
1049 (1985). 

2G. Vanden Berghe and H. De Meyer, Proceedings a/the 14th ICGTMP, 
edited by Y. M. Cho (World Scientific, Singapore, 1986), p. 346. 

3J. Van der Jeugt and H. De Meyer, "Generating functions for higher-order 
interaction terms in the IBA-Hamiltonian," J. Phys. A 20,5045 (1987). 

4J. Vanthoumout, J. Vander Jeugt, H. De Meyer, and G. Vanden Berghe, J. 
Math. Phys.18, 2529 (1987). 

'So A. Williams and D. L. Pursey, J. Math. Phys. 9, 1230 (1968). 
6G. Vanden Berghe and H. De Meyer, J. Math. Phys.22, 2326 (1981). 
7 A. Arima and F. Iachello, Ann. Phys. (NY) 123,468 (1979). 
8 A. De-Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 
1963). 

Vanthournout et a/. 805 



                                                                                                                                    

New classes of symmetries for partial differential equations 
George W. Bluman and Gregory J. Reid 
Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1 Y4, 
Canada 

Sukeyuki Kumei 
Faculty of Textile Science, Shinshu University, Ueda, Nagano-ken 386, Japan 

(Received 6 August 1987; accepted for publication 18 November 1987) 

New classes of symmetries for partial differential equations are introduced. By writing a given 
partial differential equation S in a conserved form, a related system T with potentials as 
additional dependent variables is obtained. The Lie group of point transformations admitted by 
Tinduces a symmetry group of S. New symmetries may be obtained for S that are neither point 
nor Lie-Backlund symmetries. They are determined by a completely algorithmic procedure. 
Significant new symmetries are found for the wave equation with a variable wave speed and the 
nonlinear diffusion equation. 

I. INTRODUCTION 

In this paper we introduce new classes of symmetries for 
partial differential equations (POE's). We present an algo
rithm to find such symmetries. In general, they are not deter
mined by a direct application, to the given POE, of Lie's 
method for finding point symmetries and Lie-Backlund 
symmetries. These new symmetries significantly extend the 
applicability of group analysis to differential equations. 

A symmetry group of a differential equation is a group 
that maps solutions to other solutions of the differential equa
tion. 

Lie considered groups of point transformations depend
ing on continuous parameters, acting on the space of inde
pendent and dependent variables of a given differential equa
tion. Unlike the case for a discrete group, Lie showed that 
the continuous group of point transformations admitted by a 
differential equation can be found by an explicit algorithm 
(cf. Refs. 1-3 for recent accounts). Such a group is com
pletely characterized in terms of its infinitesimal generators, 
which depend on the independent and dependent variables 
of the given differential equation. Lie extended his work to 
groups of contact transformations that act on the space of 
independent and dependent variables and first derivatives of 
the dependent variables of the given differential equation. 

Noether4 recognized the possibility of generalizing Lie's 
infinitesimals by allowing them to depend on derivatives of 
the dependent variables up to any finite order. Such general
ized symmetries, commonly called Lie-Backlund transfor
mations, came to fruition in Ref. 5. Lie-Backlund symme
tries lead directly to the infinity of conservation laws arising 
in the study of the Korteweg-de Vries, sine-Gordon, nonlin
ear Schrodinger, and other nonlinear differential equations 
exhibiting soliton behavior and are computed by a simple 
extension of Lie's algorithm. ',6,7 

In our approach we obtain new classes of symmetries by 
computing Lie groups of point transformations whose infini
tesimals act on a different space than the space of indepen
dent variables, dependent variables, and their derivatives, of 
the given differential equation. In terms of the variables of 
the given differential equation, our new symmetries are 
neither point symmetries nor Lie-Backlund symmetries. 

Our approach can be applied to a system S of POE's 
with independent variables x and dependent variables u, 
written in a conserved form with respect to some choice of 
these variables. Through the conserved form we naturally 
introduce potentials ¢. The resulting system T of POE's has 
as its variables the independent variables x, the dependent 
variables u of S, plus new dependent variables ¢. We find the 
Lie group GT of point transformations, of this enlarged 
space of variables (x,u,¢), admitted by system T. 

Any transformation in GT maps solutions of Tinto oth
er solutions of T and hence maps solutions of S into other 
solutionsofS. Consequently, GT is a symmetry groupofS. A 
transformation in GT is a new symmetry for S if the infinitesi
mal of the transformation, corresponding to any of the vari
ables (x,u), depends explicitly on ¢. We show that a new 
symmetry is neither a point symmetry nor a Lie-Backlund 
symmetry of S. 

Our new symmetries are nonlocal symmetries that are 
realized as local (point) symmetries in the space (x,u,¢). 
Thus they can be found by Lie's algorithm. 

Special types of nonlocal symmetries have been studied 
by other authors. 8-10 Their works give no explicit algorithms 
for finding nonlocal symmetries. In general, our nonlocal 
symmetries do not belong to the types considered by these 
authors. 

In Sec. II we present our method for obtaining new sym
metries admitted by POE's. By way of example, we find new 
symmetries for the wave equation in Sec. III and the nonlin
ear diffusion equation in Sec. IV. 

II. METHOD FOR FINDING NEW SYMMETRIES 

Consider a POE S of order m written in a conserved 
form, 

± ~ F; (x,u,au,a 2u, ... ,a m - 'u) = 0, (2.1) 
;~l ax; 

with n>2 independent variables x = (X,,x2""'Xn ) and a sin
gle dependent variable u; aju represents alljth-order partials 
of u with respect to x. (For simplicity we consider a single 
POE-the generalization to a system of POE's in a con
served form is straightforward.) 
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We remark that if a given POE is not written in a con
served form, there are a number of ways of attempting to put 
it in a conserved form. As discussed in Sec. V, these include a 
change of variables (dependent as well as independent), an 
application of Noether's theorem, and combinations of the 
above. 

Since Eq. (2.1) is in a conserved form, there is an 
(n - 1) -exterior differential form F such that Eq. (2.1) can 
be written as dF = O. It follows that there is an (n - 2) -form 
<1>11 , 

F= d<l>. (2.2) 

In terms of components, Eq. (2.2) implies that there exist 
~n (n - 1) "potentials" '11 ij' components of an antisymmet
ric tensor, such that 

Fj(x,u,au, ... ,am-Iu) 

a'IIij a'II .. 
=L(-l)j-' +L(-l)j-I_J', 

j<j aXj j<j aXj 

i,j= 1,2, ... ,n. (2.3) 

Equation (2.3) is a system of POE's with 1 + ~n(n - 1) 
dependent variables u, '11 ij (kj). Thus (2.3) is underdeter
mined for n;;;.3. We can impose suitable constraints (effec
tively, a choice of gauge) on the potentials '11 ij to make sys
tem (2.3) into a determined system. A natural way to do this 
is to impose the conditions 

'11 ij = 0, Ii - jl # 1. (2.4 ) 

In this case, letting 

..I.. ='11"+1' i= 1,2, ... ,n-1, 'f', 1.1 
(2.5) 

system (2.3) becomes the determined system T, 

F _a,pl 
1- , 

aX2 

Ft'= (_1)1'-1 [~+ a,pt'_I], l<t<n, 
axt'+ I aXt'_1 

Fn =(_1)n+l a,pn-l. (2.6) 
aXn _ 1 

Ifn = 2, letxJ = x, X2 = t, FJ = F, andF2 = - G, so that 
Sbecomes 

aF _ aG =0. 
ax at 

Let the potential '11 12 = ,pI = ,p. Consequently, Tis 

a,p = F(x,t,u,au, ... ,am-Iu), 
at 

a,p = G(x,t,u,au, ... ,a m - Iu). 
ax 

(2.7) 

(2.8a) 

(2.8b) 

If n = 4, let XI = x, X2 = y, X3 = Z, X4 = t, F J = F, 
F2 = G, F3 = H, and F4 = I, so that S becomes 

aF + aG + aH + aI = o. 
ax iJy az at 

(2.9) 

The corresponding determined system Tis 

a,pJ F( a am-I) - = x,y,z,t,u, u, ... , u , 
ay 

(2. lOa) 
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[
a,pl a,p2] G a am-I - - + - = (x,y,z,t,u, u, ... , u), (2. lOb) 
ax az 

a,p2 a,p3 H a am - J - + - = (x,y,z,t,u, u, ... , u), 
ay at 

(2.1Oc) 

a,p3 _ I( t a am - I ) - - - x,y,z, ,u, u, ... , u . 
az 

(2.lOd) 

Now assume that a system T admits a one-parameter 
( E) Lie group of point transformations 

x* =f(x,u,,p;E) = x + E5T(X,U,,p) + O(e), (2.11a) 

u*=g(X,U,,p;E) =u+e'lT(x,u,,p) +O(e), (2.11b) 

,p* = h(x,u,,p;E) =,p + E~T(X,U,,p) + O(e), (2.11c) 

where 5 To "IT' and ~ T are the infinitesimals of x, u, and ,p, 
respectively, of the group. This group maps a solution of T 
into another solution of T and hence induces a mapping of a 
solution of S into another solution of S. Thus the group 
(2.11) is a symmetry group of POE S. This one-parameter 
symmetry group of POES is a new symmetry group ofS if and 
only if either 5 T or "IT depends explicitly on ,p. A new symme
try of S is neither a point symmetry nor a Lie-Backlund 
symmetry of S since,p, as defined by system (2.6), appears 
only in derivative form. Hence this new symmetry cannot be 
expressed as a function of (x,u,au, ... ,a kU), for any finite k. 
Clearly, from its form, a new symmetry of S is a nonlocal 
symmetry of S. We let GT denote the group of all point trans
formations admitted by T. 

A one-parameter Lie group of point transformations ad
mitted by S, in terms of its given variables, is of the form 

x* = x + E5s(X,U) + O(e), (2.12a) 

u* = u + E"Is(X,U) + O(e). (2.12b) 

Let G s denote the group of point transformations of the form 
(2.12) admitted by S.1t is important to note that the trans
formations belonging to Gs with infinitesimals 5s (x,u) and 
"Is (x,u) may not belong to GT in the following sense: there 
exist no transformations in GT with infinitesimals 
5T(X,U,,p), "IT (x,u,,p ), and ~T(X,U,,p) such that 

5T(X,U,,p) =5s(X,U), (2.13a) 

(2.13b) 

Say Sis alinear POE and Tis a linear system of POE's. 
In this case, 5s and 5 T depend only on x. Here we distinguish 
two types of new symmetries arising from a new symmetry in 
GT with an infinitesimaI5T(x). 

(i) A linear partial differential equation S is said to have 
a new symmetry of type I if it has a new symmetry for which 
there is no infinitesimal in Gs such that 5s(X) t T(X). 

(ii) A linear partial differential equation S is said to have 
a new symmetry of type II if it has a new symmetry for which 
there is some infinitesimal in Gs such that 5s(X) t T(X). 

For a new symmetry of type II, the similarity variables 
(group invariants depending only on x) are identical to 
those for some symmetry in G s' This is not the case for a new 
symmetry of type I. 

There are many ways of expressing a given POE S as a 
system. However, the symmetries of such a system may not 

Bluman, Reid, and Kumei 807 



                                                                                                                                    

induce nonlocal symmetries for S. For example, the "usual" 
"'-

way to find a system T related to S is to introduce new depen-
dent variables Vi = au/ax;. l<i<n. A point symmetry ad
mitted by T, namely, 

x. = x + €t(x,u,v) + 0(€2), 

u· = u + €f](x,u,v) + O(C), 
A 2 

v· = V + €S(x,u,v) + O(€ ), 

(2.14a) 

(2.14b) 

(2.14c) 

always induces a local symmetry of S that is either a point 
symmetry or a Lie-Backlund symmetry of S. 

III. EXAMPLES OF NEW SYMMETRIES FOR THE WAVE 
EQUATION 

Consider the wave equation S: 

e2(x) a
2
u _ a

2
u = 0. (3.1) 

ax2 at 2 

Equation (3.1) can be expressed in a conserved form, 

aF _ aG = 0, (3.2) 
ax at 

where 

F= !!!.... 
ax' 

G=_l_!!!..... 
e2 (x) at 

The associated system Tis 

a¢J au -=-, 
at ax 

a¢J au 
ax = e2 (x) at 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

Let Gs and GT be the Lie groups of point transforma
tionsadmitted by S [Eq. (3.1)] and T [Eqs. (3.4)], respec
tively. These groups depend on the form of the wave speed 
e(x) and were derived in Ref. 12. The results in that paper 
can be broadly summarized in terms of Theorems 1-5 fol
lowing. [A prime denotes differentiation with respect to x; 
we exclude the case e(x) = (ax + {3)2, with {a,{3} arbi
trary constants, for which Gs is an 00 -parameter group.] 

Theorem 1: The wave equation (3.1) admits a four-pa
rameter Lie group of point transformations Gs ifand only if 
the wave speed e(x) satisfies the fifth-order ODE 

{
e2 [H'" 3 [2(H')3 - 2HH'H" - (H")2] ]}' 

2H' +H2 + [2H' +H2]2 

= 0, (3.5) 

where 

H=e'/e. (3.6) 

Theorem 2: GT is a four-parameter Lie group of point 
transformations if and only if the wave speed e(x) satisfies 
the fourth-order ODE 

[ ee' ( cI e' ) "]' = 0. (3.7) 

Theorem 3: For any wave speed e(x) satisfying ODE 
(3.7), there exists a new symmetry of the wave equation 
(3.1 ). 
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Theorem 4: The new symmetries of the wave equation 
( 3.1) arising from G T are new symmetries of type II if and 
only if the wave speed e(x) satisfies the third-order ODE 

(cle')" = 0. (3.8) 

The general solution of (3.8) is 

e(x) = (ax + {3)Y, (3.9) 

where {a,/3,y} are arbitrary constants. 
Theorem 5: The new symmetries of the wave equation 

(3.1) arising from GT are new symmetries of type I if and 
only if the wave speed e(x) satisfies the ODE 

ec'(c!c')" = const:;i:O. (3.10) 

The following theorem was proved in Ref. 13. 
Theorem 6: A wave speed e(x) simultaneously satisfies 

(3.10) and (3.5) if and only if either 

.Jc - arctan y.Jc = ax + {3, 

or 

2.Jc + 10gJ (.Jc - y)/(.Jc + y) J = ax + {3, 

where {a,/3,y} are arbitrary constants. 
From the above follows this corollary. 

(3.lla) 

(3.11b) 

Corollary 1: Both of the groups GT and Gs are four
parameter groups if and only ifthe wave speed e(x) satisfies 
(3.8), (3.11a), or (3.llb). The family of wave speeds (3.8) 
yields new symmetries of type II and no new symmetries of 
type I. The families of wave speeds (3.11a) and (3.llb) 
yield new symmetries of type I and no new symmetries of 
type II. 

The following representative examples illustrate the 
above theorems. 

1. e(x) = ~1 + lI'. In this case, Gs is a two-parameter 
group and GT is a four-parameter group. Infinitesimal gen
erators of their Lie algebras are 

The generators 13 and 14 are new symmetries of type I 
for the corresponding wave equation (3.1). 

2. e(x) = 1 - x 2
• In this case, GT is a two-parameter 

group and Gs has four parameters. Infinitesimal generators 
of their Lie algebras are 

a 
L 2 =-, 

at 
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2 a a L3 = (1 - x ) - - xu - , 
ax au 

L4 = t( 1 - x2) ~ + ! log Ix + 11 ~ - xtu ~ ; 
ax 2 Ix - 11 at au 

- a a - a 
GT : LI =u-+t/J-, L2=-· 

au at/J at 
3. c(x) = x. Here both of the groups Gs and GT have 

four parameters, and there is a new symmetry of type II for 
S. Infinitesimal generators of their Lie algebras are 

a a a a 
Gs : LI=u-, L 2=-, L3=x-+u-, 

au at ax au 

a a a 
L4= 2xt-+ 2Ioglxl-+ tu-; 

ax at au 

- a a - a 
GT : LI = U - + t/J -, L2 = -, 

au at/J at 

- a a 
L3=x-+u-, 

ax au 

£4 = 2xt~+ 2loglxl ~+ (tu -xt/J) ~ 
ax at au 

- (x-Iu + tt/J) ~. 
at/J 

The infinitesimal generator £4 of GT is a new symmetry of 
type II for S. 

4. 2ve + logl (ve - 1)/( ve + 1) I = x. In this case, 
both of the groups Gs and GT have four parameters, and 
there are new symmetries of type I for S. Infinitesimal gener
ators of their Lie algebras are 

a 
L 2 =-, 

at 
L3 = et12 (c - 1) - 112 

X[C3/2~_~+ (c-l) u~], 
ax at 2 au 

L4 = e- t / 2 (c - 1) -1/2 

X [C3/2 ~ + ~ + (c - 1) u~] ; 
ax at 2 au 

- a a - a 
GT : LI =u-+t/J-, L 2=-, 

au at/J at 

809 

- e
t 

{ 3/2 a a L3=-- 4c - -2(c+ 1)-
c-l ax at 

+ [(3c - 1)u - 2c3/2t/J] ~ 
au 

+ [(3-c)t/J-2c- 1/2u] ~}, 

£4 =~ {4c3/2~ + 2(c + 1) ~ 
c-l ax ax 

+ [(3c - l)u + 2c3/2t/J] ~ 
au 

+ [(3 - c)t/J + 2c- 1/2u] ~} . 
at/J 
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Any linear combination of £3 and £4 is a new symmetry 
oftype I for S. 

As these examples clearly demonstrate, our method en
ables one to discover systematically new symmetries of (3.1 ) 
that cannot be found by a direct application of Lie's algo
rithm to (3.1). 

Ovsiannikovl4 recognized the difference between the 
groups admitted by an equation equivalent to (3.1) and by a 
corresponding system equivalent to (3.4). He made some 
cursory remarks about these differences and went no 
further. 

IV. EXAMPLES OF NEW SYMMETRIES FOR THE 
NONLINEAR DIFFUSION EQUATION 

Consider the nonlinear diffusion equation S, 

-K(u)- --=0. a [ au] au 
ax ax at 

(4.1 ) 

As it is written, Eq. (4.1) is already in a conserved form, 

aF _ aG =0, 
ax at 

where 

au 
F=K(u) -, 

ax 

G=u. 

The associated system Tis 

at/J = K(u).E!!.., 
at ax 

at/J = u. 
ax 

(4.2) 

(4.3a) 

(4.3b) 

( 4.4a) 

(4.4b) 

The group G s of ( 4.1) depends on the form of the con
ductivity K(u) and is derived in Refs. 2, 3, and 15. The re
sults are summarized as follows. 

1. K(u) arbitrary. Equation (4.1) always admits a 
three-parameter group with infinitesimal generators 

a a a a 
L I=-, L2=-, L3=x-+2t-. (4.5) 

at ax ax at 

2. K(u) = A(U + K)", {v( # - V.A.,K} arbitrary con
stants. Here Gs is a four-parameter group with infinitesimal 
generators L I, L2, and L3 given by (4.5), and 

a 2 a 
L4=x-+-(U+K)-. (4.6) 

ax v at 

A limiting case is K(u) = Aevu
• 

3. K(u) = A(U + K) -4/3, {A, K} arbitrary constants. 
Here Gs is a five-parameter group with infinitesimal genera
tors L I, L2, and L3 given by (4.5), L4 given by (4.6) with 
v= -~, and 

L 2 a 3 a 5=X -- X(U+K)-. 
ax au 

(4.7) 

The group GT of system (4.4) also depends on the form 
of the conductivity K (u). This group is presented here for 
the first time. The results are summarized as follows. 
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1. K (u) arbitrary. Equations (4.4) always admit a four-
parameter group with infinitesimal generators 

- a - a - a 
L o = al/J' L I = at' L2 = ax ' 

- a a a 
L3 = x - + 2t - + l/J - . 

ax at al/J 

(4.8) 

2. K(u) = A(U + K)V, {v( 1= - 2), A,K} arbitrary con
stants. Here GT is a five-parameter group with infinitesimal 
generators Io, II' I 2, and I3 given by (4.8), and 

I4 =x~+~(u +K) ~+ (1 +~)l/J~. 
ax v au v al/J 

(4.9) 

3. K(u) =...t(u + K) -2, {A,K} arbitrary constants. Here 
GT is an 00 -parameter group with infinitesimal generators 
Io, II' I 2, and I3 given by (4.8), I4 given by (4.9), and 

- a a a 
L2 = -xl/J- + (u +K)[l/J +x(u +K)] -+ 2t-, 

ax au al/J 
(4.lOa) 

I5 = -X(l/J2 + 2t) ~+ 4t2~+ (u +K) 
ax at 

x [l/J2 + 6t + 2xl/J (u + K)] ~ + 4tl/J ~ , ( 4. lOb ) 
au al/J 

I = O(A. t) ~ _ u2 aO(l/J,t) a (4.lOc) 
00 '1" ax al/J au' 

where v = O(l/J,t) is an arbitrary solution of the linear differ
ential equation 

a
2
v _ av = o. 

al/J2 at 
(4.11 ) 

4.K(u) = 1 exp [rf du ]. 
u2 + pu + q u2 + pu + q 

In this example, {p,q,r} are arbitrary constants not satisfying 
either of the relationships 

(a) r = ± 2, p2 - 4q> 0, 

(b) r = 0, p2 - 4q = O. 

The cases (a) and (b) belong to 3. 
Here GT is a five-parameter group with infinitesimal 

generators Io, II' I 2, and I3 given by (4.8), and 

I4 = l/J~+ (r-p)t~ - (u2 +pu + q) ~ 
ax at au 

a 
- (qx +pl/J) -. 

al/J 
( 4.12) 

A comparison of the groups Gs and GT leads to the 
following theorem. 

Theorem 7: The nonlinear diffusion equation ( 4.1 ) has a 
new symmetry, arising from Gr if and only if 

K(u) = 1 exp [rf du ] , 
u2 + pu + q u2 + pu + q 

with arbitrary constants {p,q, r}. 
Ovsiannikovl

•
16 expressed the nonlinear diffusion equa

tion (4.1) as a system, 

au 
v=K(u)-, (4.13a) 

ax 
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av au 

ax at 
(4.13b) 

Our remarks at the end of Sec. II show that a point symmetry 
of system (4.13) is always a local symmetry of the single 
equation (4.1). In particular, as Ovsiannikov found in his 
complete point group classification of system (4.13), the 
group is Gs when restricted to (x,t,u) space. 

v. CONCLUDING REMARKS 

( 1) There are various ways of attempting to put a PDE 
S into a conserved form. One way is to find a change of 
variables x = X(x,u), U = U(x,u), if possible, so that S be
comes a conserved form, 

n a"F. L ~ (x,u,au, ... ,a m - IU) = 0, 
;=1 ax; 

(5.1) 

where a kU denotes all k th-order partials ofu with respect to 
x. 

Another way depends on S being represented as the 
Euler-Lagrange equation for some Lagrangian density L. 
Each one-parameter Lie group of point transformations that 
leaves the action integral invariant leads to a conserved form 
for S through an application of Noether's theorem. 

The following two examples illustrate other ways of ob
taining conserved forms. 

Consider the Schrodinger equation S: 

a 2u . au 
- --2 + V(x)u = 1-. (5.2) 

ax at 

We can reexpress (5.2) in the form 

aF _ aG =0, 
ax at 

where 

au 
F=m(x) --m'(x)u, 

ax 

G = - im(x)u, 

with 

Vex) = m" (x)/m(x). 

The corresponding system Tis 

al/J = m(x) ~ - m'(x)u, 
at ax 

al/J = _ im(x)u. 
ax 

(5.3 ) 

(5.4a) 

(5.4b) 

(5.5) 

(5.6a) 

(5.6b) 

In a future paper we will show that for a class of potentials 
Vex), the group GT of system (5.6) generates new symme
tries for the SchrOdinger equation (5.2). 

For our second example we consider the nonlinear wave 
equation 

C2(X,t,~) a
2
u _ a

2
u = O. (5.7) 

ax ax2 at 2 

We differentiate (5.7) with respect to x and let v = au/ax so 
that (5.7) becomes the PDE S, 

a [2 av] a (av) ax C (x,t,v) ax - at at = o. (5.8) 
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The corresponding system Tis 

a</J 2 au -=c (x,t,V)-, 
at ax 

(5.9a) 

a</J av 
ax=at' 

(5.9b) 

If (v,</J) solves T, then u (x,t) , defined by 

au 
-=v, 
ax 

(5.lOa) 

!!!... = </J, 
at 

(5.lOb) 

solves the nonlinear wave equation (5.7). Hence the symme
try group GT is a symmetry group of (5.7). From the form of 
(5.10) we see that new symmetries may arise for (5.7). 

(2) A new symmetry leads to invariant solutions of T, 
which, in turn, lead to solutions of S. If S and Tare linear and 
the new symmetry is of type I, then these solutions cannot be 
obtained by applying the infinitesimal operators of G s to the 
invariant solutions of S arising from Gs . 

If a new symmetry arising from GT has ST depending 
only on x, then it can be used to solve boundary value (initial 
value) problems explicitly. New symmetries have been used 
to solve initial value problems for wave equations (3.1) for a 
class of wave speeds with a smooth transition. 17 

(3) Since the choice of conserved form is not necessarily 
unique, various new groups could be admitted by a given 
differential equation. For any conserved form the symme
tries of the related system are computed by the standard Lie 
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algorithm. The work presented in this paper, when com
bined with recent advances using symbolic manipulation to 
execute Lie's algorithm,18 offers considerable promise for 
applying group methods to much wider classes of differen
tial equations. 
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Sufficiently regular systems of partial differential equations can always be derived from a 
composite variational principle via the introduction of a suitable set of adjoint variables. By 
applying an appropriate formulation of Noether's theorem to such composite variational 
principles, an operative procedure leading to the determination ofthe conservation laws of the 
given system is determined. As an application, conservation laws for a viscous incompressible 
fluid and an inviscid barotropic compressible fluid are examined in detail. In particular, new 
conservation laws for Euler flows are found. 

I. INTRODUCTION 

It is commonly believed that conservation laws could be 
beneficial in the application and understanding of physical 
theories. Moreover, conservation laws can be used in prov
ing the existence of solutions and in analyzing scattering and 
integrability properties of the given system. Thus consider
able attention has always been paid to the question of the 
determination and classification of conservation laws for 
given systems of partial differential equations. 1-3 

In this connection, a systematic method for finding con
served currents in terms of isovectors of closed ideals of exte
rior forms4

•5 and the use of the Green's identity has recently 
been proposed.6 In this paper we describe an alternative ap
proach leading to the determination of the complete set of 
conserved vectors for any system of partial differential equa
tions, without any need for additional assumptions on the 
structure of the given equations, e.g., that they are expressed 
in Hamiltonian form or may be derived from a variational 
principle. The present formulation is based on the applica
tion of a suitable version of Noether's theorem to an appro
priately defined composite variational principle.7 The result
ing systematic procedure reduces the operative 
determination of conservation laws to the problem of seek
ing solutions to largely underdetermined linear systems of 
partial differential equations. Besides these practical advan
tages, it is to be emphasized that the algorithm based on 
composite variational principles exhausts the class of al
lowable conservation laws, yields a proper extension of the 
approach proposed in Ref. 6, and also transfers to the frame
work of generally nonlinear field theories some results hold
ing for mechanical systems. 8,9 

Specific applications of this approach to Navier-Stokes 
equations and compressible Euler equations are then dis
cussed. In particular, this allows a detailed comparison with 
some pertinent results already discussed in the literature, 
and leads to the determination of new conservation laws for 
the Euler equations. 

The plan of the paper is as follows. The construction of 
composite variational principles is outlined briefly in Sec. II. 
The approach to conservation laws is described in Sec. III. 
Sections IV and V deal with the equations modeling the mo
tion of a viscous imcompressible fluid (Navier-Stokes equa
tions) and of an inviscid barotropic compressible fluid 
(Euler equations), respectively. Additional comments are 
found in Sec. VI. 

II. ESSENTIALS ON COMPOSITE VARIATIONAL 
PRINCIPLES 

Consider the following system of partial differential 
equations: 

Fa(xa,(r,f/J~f/J~p) =0 (2.1) 

in the unknowns f/JC(xa), where Greek (Latin) indices vary 
from 1 to n (m), f/J~ = af/Jc/axa, f/J~fJ = a2f/Jc/a~ axfl, and 
the Fa's are sufficiently regular functions of their arguments. 
To save writing we omit all hypotheses concerning contin
uity, differentiability, etc., whenever it is clear from the con
text what these ought to be. It is well known that the system 
(2.1) admits a variational formulation if and only if it is self
adjoint, 7.10,11 which means that a set of quite stringent condi
tions involving partial derivations of the F's must be identi
cally satisfied. However, one can always look for a variation
al formulation of (2.1) in terms of a so-called composite 
variational principle. 7,8.12 This requires the introduction of a 
suitable set of additional variables :qo (xa ), added to the origi
nal field variables f/J. 

Namely, consider the following action functional: 

A (f/J,n) LFo:qodx1"'dXn
, (2.2) 

where V is a suitable domain in R n. The related stationarity 
conditions under arbitrary variations of :q and f/J imply the 
original field equations (2.1 )-not involving :q-and 

Me ( :q): = :: :qo - D a (!:~ :qo) 

D (
aFo -0) + ap --'T} = 0, 
a4>~fJ 

(2.3 ) 

where D a denotes the total derivative with respect to xa and 
Dap = Da oDp. 

Clearly, the previous process can be adapted straightfor
wardly to deal with arbitrary, not necessarily second-order, 
systems. Thus it follows that any system of partial differen
tial equations may be embedded in a set of Euler-Lagrange 
equations yielding the stationarity conditions for the func
tional (2.2). In particular, Eq. (2.3) determines the addi
tional variables :q and should also provide their physical in
terpretation. In fact, a similar approach to purely 
mechanical systems has led to the introduction of an oscilla
tor with "negative" friction (cf. Ref. 12, p. 298); later, the 
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additional variables and corresponding equations have been 
related to one-fonns invariant along the trajectories of the 
given system and thus playa natural role as generators of 
constants of motion. 13 It will be shown that this interpreta
tion can be extended to general field theories. 

III. OPERATIVE APPROACH TO CONSERVATION LAWS 

Consider an n-dimensional vector with local compo
nents r = r(;xP,tjl,cp%,cp%u,"'); notice that dependence on 
higher derivatives of the cp's is allowed explicitly. A conserva
tion law for the system (2.1) is an equation of the form 

Dala=-O, (3.1) 

where the =- symbol means that equality holds on solutions 
to (2.1). Whenever (3.1) holds the vector r is said to be 
conserved or divergence-free. In this section a suitable for
mulation of Noether's theorem is applied to the functional 
(2.2), with the aim of finding conservation laws-and the 
associated conserved vectors-related to the additional vari
ables ij. 

Accordingly, we consider a local one-parameter group 
of transformations of the fonn 

xa = xa + Er', ~c = cpc + Esc, fic = W + EA. c, (3.2) 

where E denotes as usual an infinitesimal parameter and the 
generators T, S, and A. are allowed to depend on x and cpo 
Expressing invariance of the functional A under the transfor
mation (3.2) to within the integral of a divergence field of 
the fonn EDa Wa{;xP,cpb,cp%) and considering first-order 
tenns in the parameter E, we find the invariance condition 14 

Ma {1])ija + r'DaFaW 

+ Fa (A. a + ijaDar') - Da Wa=-O, 

where 

(3.3 ) 

JFa JFa JFa 
Ma (1]): = 1]c- + Da1]c- + Dap1]c-- , (3.4) 

Jcpc Jcp~ Jcp~p 

with 1]c defined by 

(3.5 ) 

Taking into account (3.4) and (3.5) and recalling the defini
tion (2.3) of Mc (ij), the lhs of (3.3) can be transfonned to 
read as 

(3.6) 

with 

On recalling that Mc (ij) =-0, DaFc =-0, and Fa =-0, it 
turns out that (3.6) is written in the fonn of a conservation 
law, with related conserved current I a = Ja - W a. How
ever, (3.6) is simply arefonnulation oftheinvariance condi
tion (3.3) and so we are led to conclude thatJa - Wayields 
a Noether-type conservation law pertaining to the composite 
variational principle (2.2). In addition, the dependence of 
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Ja on ij shows that such a conservation law is related to the 
additional variables. 

To illustrate the operative features of this approach, it is 
convenient to analyze in detail Eq. (3.3). In principle, the 
variables ij are to be detennined as solutions to the stationar
ity conditions (2.1) and (2.3); however, on observing that 
(2.1) does not involve the ij's, it is found that the ij's are only 
required to satisfy the restriction of (2.3) to solutions of 
(2.1 ). Thus, in actual practice, no explicit representation for 
cp is required in solving (2.3): simply, we let ija 
= ija{xa,cpe,cp~, ... ); we substitute into (2.3); and then we 
recall that, under rather general assumptions,3 the condition 
Me ( ij) =- 0 reduces to the fact that Me ( ij) is a linear combi
nation of (2.1) and possibly of its total derivatives. This suf
fices to find the explicit fonn of the ij's. Now (3.3) can be 
imposed and the expressions of 1] and W will follow. Notice 
that 1] and W may be allowed to depend on higher derivatives 
of the cp's, that the simplifying conditions DaFa =-0 and 
Fa =-0 have to be taken into account, and that A. a is multi
plied by Fa and hence does not enter the conserved vector. 
We have thus proved the following theorem. 

Theorem: Consider ij, 1], and Was functions of xa
, 

cpe,cp~ ,cp~p, ... satisfying 

Me (ij) =-0, 

Ma (1])ija - Da wa=-o. 

(3.Sa) 

(3.Sb) 

Then the vector I a = Ja - W a, with Ja given by (3.7), is 
conserved. 

Several remarks are in order now. First it is convenient 
to observe that condition (4.Sa) corresponds to Eq. (5.52) 
in Ref. 3, thus showing that the ij's are solutions to the condi
tions necessarily obeyed by characteristics of conservation 
laws for Eq. (2.1) (see Proposition 5.33 in Ref. 3). Thus the 
theorem shows that such functions ij can be used effectively 
to construct conservation laws through the knowledge of 
solutions to (3.Sb), that is, in particular through the knowl
edge of generalized symmetries of Eq. (2.1), as clarified by 
the subsequent discussion. It is also worth pointing out that 
any conserved vector may be represented in the fonn 
Ia = Ja - W a, provided W a is suitably chosen. Notice also 
that the presence of the tenn D a Wain (3. Sb) makes this 
equation largely underdetennined and may lead to consider
able simplifications in the integration procedure. 

A further comparison with pertinent results already 
available can be made if we examine the case w a = O. Then 
a sufficient condition for the validity of (3.Sb) is simply giv
en by 

(3.9) 

On comparing with (3.4) and (3.5) it is found that (3.9) 
identifies the generalized symmetries of the system (2.1) 
(see Sec. 5.1 in Ref. 3). If in addition ij, T, and S are not 
allowed to depend on the derivatives of the cp's we recover the 
results of Ref. 6. 

Equation (3.Sa) is the fonnal adjoint II to (3.9), i.e., to 
the definition of generalized symmetry transfonnation. This 
observation suggests a possible interpretation of the meaning 
of the additional variables ij as solutions to the adjoint of the 
definition of generalized symmetries. Moreover, this con-
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nection between additional variables and symmetries ac
counts for the role played by the ij's as generators of conser
vation laws. Let us also recall that if the definition (3.9) of 
generalized symmetries is self-adjoint then the system (2.1) 
is derivable from a variational principle, 6.7.10.11 just as it hap
pens in the case of purely mechanical systems8

•
9

; in such a 
case the added variables identify generalized symmetries and 
the theorem shows that a conservation law is always asso
ciated with pairs of generalized symmetries. 

The method described thus far leads to the construction 
of conservation laws without any need for additional restric
tions on the structure of the given equations (2.1), e.g., that 
they come from a variational principle or may be represented 
in Hamiltonian form. Moreover, the previous procedure 
may be modified straightforwardly to deal with systems of 
partial differential equations of any order. However, we are 
not concerned with those conservation laws that are trivial, 
which means that they are generated by a vector / satisfying 
Da/a = 0 identically, or /a=,=O. Consequently we regard as 
equivalent any two conserved currents that can be combined 
linearly to give rise to a trival conservation law; two con
served currents that are not equivalent are said to be inde
pendent.3 In the following we are only concerned with inde
pendent conservation laws. Moreover, we also make use of 
the fact that equivalent conservation laws have the same 
physical interpretation. 

IV. NAVIER-STOKES EQUATIONS 

We are now in a position to apply the algorithms de
scribed in Sec. III in order to find conservation laws. To 
illustrate the method we consider the system modeling the 
motion of a viscous incompressible fluid under the assump
tion that body forces may be neglected. Following the Euler
ian description, the equations satisfied by the velocity field 
v = ue l + 002 + we3 and the pressure p read as 

v, + (v·V)v + Vp - vV2v = 0, 

V'v=O, 

( 4.1a) 

( 4.1b) 

where v is the (constant) kinematic viscosity; e l , e2, and e3 

are the unit vectors of the given Cartesian axes; V denotes the 
gradient operator; and the subscript t denotes partial differ
entiation with respect to t, that is, v, = av/Bt. 

The independent variablesxa (a = 1, ... ,4) are identified 
with the spatial coordinates x, y, and z and the time t. The 
field equations yield the definitions of F I , ... ,F4• Finally, we 
let the (pc's (c = 1, ... ,4) coincide with u, v, w, and p, respec
tively. To adhere to the usual terminology the t component 
of a conserved current is referred to as a conserved density, 
whereas the space components yield the corresponding 
flux. 1.3.15 The meaning of the conserved currents is discussed 
on the basis of an analysis of the associated densities. In so 
doing we also take into account the fact that conserved den
sities are defined up to a divergence taken over the space 
variables. 

The generators of symmetry transformations for Na
vier-Stokes equations (4.1) have already been determined 
under the assumption that r and 5 do not depend on the 
derivatives of the field variables 16; moreover, the equations 

814 J. Math. Phys .• Vol. 29. No.4. April 1988 

yielding the additional variables ij have been written down 
and solved explicitly elsewhere. 17 Accordingly, we only re
produce the general solutions and devote the remaining part 
of this section to a detailed analysis of the related conserva
tion laws, which was not given in the already cited refer
ences. 

Explicitly, we have 

rl = a~ - a3Y - a4z + f, ~ = a2 Y + a3x - a5z + g, 

~ = a~+ a4x + a5 y + h, r4 = al + 2a2t, 

51 = - a2u - a3v - a4w + j" 
5 2 = - a2v + a3u - a5w + g" 

53 = - a2w + a4u + a5v + h" 

54 = - 2a2 P + j - xj" - ygtt - zh tt , 

(4.2) 

where al , ... ,a5 are five arbitrary parameters, andf, g, h, andj 
are arbitrary functions of t. If all but one of these is set equal 
to zero, the remaining one describes an independent gener
ator of the group of symmetry transformations. The physical 
interpretation of the generators has been discussed else
where. 16 Thus we concentrate our attention on the added 
variables. The most general family off unctions W(x,y, ... ,p) 
satisfying the system ita (ij) =,=0 reads as l7 

ijl = hI Y + h~ + k, ij2 = - hlx + hJZ + m, 

ij3 = _ h~ - h3 Y + n, 

ij4 = ijlu + ij2v + ij3w - (xk, + ym, + zn,) + 0, 

(4.3) 

where hI' h2, and h3 are arbitrary parameters; k, m, n, and 0 

are arbitrary functions of the time t. 
With the aim of finding conserved densities, let us ob

serve preliminarily that in view of (4.1) expression (3.7) for 
J' reduces to 

J' = ijl1]1 + ij21]2 + ij31]3. (4.4) 

Recalling that ij is given by (4.3) and that 1] is formed by 
comparison of (3.5) and (4.2), substitution into (4.4) yields 
the required conserved densities. After long and cumber
some calculations, which involve repeated use of the fact 
that J' is defined up to a spatial divergence, we find the 
following six independent conserved densities: 

J~ =zv-yw, J~ =xw-zu, J~ =xv-yu, 

J~ = q(t)u, J~ = r(t)v, J~ = s(t)w, 
(4.5) 

where q, r, and s are arbitrary functions of t. The fact that 
each of the above densities gives rise to a conservation law 
can also be proved directly. The physical interpretation of 
these conserved densities is easily obtained: J ~ , J ~, and J ~ 
correspond to conservation of angular momentum; and J ~, 
J ~ , and J ~ yield conservation of momentum provided q, r, 
and s are set equal to 1. 

In principle, further conservation laws can be generated 
by application of the symmetry group generators described 
in (4.2) to the conserved currents J I , ... ,J6 (see Ref. 3, Sec. 
5.3). However, rather long calculations show that these pro
cedures do not give rise to new independent conservation 
laws. It is also to be pointed out that J4 , J5 , and J6 identify an 
infinite number of independent conservation laws, e.g., by 
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taking qn (1) = tn, where n goes from 0 to infinity. One may 
wonder whether an additional infinite set of conservation 
laws can be generated by multiplication of the components 
of the angular momentum by an arbitrary function of time. 
It turns out that this result can really be achieved, but the 
corresponding conservation law is nonlocal. Specifically, if 
one considers the density Q(zv - yw), which is obtained 
when J ~ is multiplied by an arbitrary function of time Q( t), 
one finds that the components of the corresponding con
served flux are given by 

- Qt r: (zv - YW)dA 

-Q[y(uw-vwx ) -z(uv-vvx )], 

-Q[y(vw-vwy ) -z(v2 +p-vvy ) +vw], 

-Q[y(w2+p-vwz ) -z(vw-vvz ) -vv], 

where the definite integral is taken over the space variable x. 
By making use of the condition V-v = 0 we can form 

another infinite set of conservation laws, where the con
served density is 

and the corresponding flux reads as (clxn + c2yn + c/)v; 
here c2, c2 , and C3 are arbitrary constants; n goes from 1 to 
infinity; and the integral is evaluated with respect to the time 
variable. 

v. EULER EQUATIONS 

Consider now an inviscid, barotropic, compressible flu
id. The balance laws of momentum and mass may be written 
in the usual form: 

vt + (v-V)v+PVp=O, 
Pt + V-(pv) = 0, (5.1) 

where p is the mass density; P is given by P = (lip )dp/dp, 
with p = p (p ); and we have adopted the conventions of Sec. 
IV, with the only exception that (r is to be identified with the 
density p. 

The generators of symmetry transformations are given 
byls 

7'1 = 0IX - 02Y - 03Z + a4t + os, 

r = a~ + a I y + ar,Z + a7t + as, 

~ = a3x - a6 y + alz + a9t + a lo, 7'4 = alt + aw (5.2) 

5 I = - a2v - a3w + a4' 52 = a2u + a6w + a7, 

53 = a3u - 06V + a9, 54 = 0, 

where °1>".,° 11 are arbitrary parameters. The most general 
solution of the form it = it(x,,,.,p) to the system (3.8a) 
reads as lS 
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ill = (blu - b2y - b~ + b4t + bs)p, 

il2 = (blv + br + br,Z + b7t + bs)p, 

il3 = (blw + b3x - b6 y + b9t + blO)p, 

il4= ~ b{u2+v2+w2+2 fP P(A)dA) (5.3) 

+ bsu + bsv + blOW + b11 + (b2v + b3w - b4)x 

- (b2u + b6w + b7 )y + (b6v - b3u - b9 )z 

+ (b4u + b7v + b9w)t, 

with b l ,,,.,b11 arbitrary constants. 
We will now study in detail the conserved densities gen

erated by (5.2) and (5.3). In this case the expression of P 
reduces to 

(5.4 ) 

In view of (5.2) and (5.3) it may be shown that (5.4) gives 
rise to the following list of independent conserved densities: 

J~ =pu, J~ =pv, 

J~ = pw, J~ = (zv - yw)p, 

J~ = (xw - zu)p, J~ = (xu - yv)p, 

J; = (ut - x)p, J~ = (vt - y)p, 

J~ = (wt-z)p, J~o =p, 

1 Jt> fA J~I ="2 (u2 + v2 + w2) + dA P(7')d7'. 

The physical interpretation of these conserved densities 
can be derived by observing that J I , J2, and J3 correspond to 
conservation of momentum; J4 , Js, and J6 describe conserva
tion of angular momentum; and JIO and J 11 yield conserva
tion of mass and energy, respectively. In order to discuss the 
meaning of the remaining densities, it suffices to examine 
one of them, say J;. The form of this density shows that it is 
related to the motion of the center of mass l9 provided we 
recall that here x is to be evaluated along the trajectories of 
the particles of the fluid. This interpretation is understood 
most easily if we observe that under the assumption that u, v, 
and w behave suitably at the boundary, the integral of J; 
over the space variables is constant in time and coincides 
with the value of the x coordinate of the center of mass at the 
time t = O. Notice also that a counterpart for J~ in the La
grangian description has already been discussed in Ref. 14. 

It seems that J;, J Land J ~ give rise to new conserva
tion laws for perfect fluid motion, whereas the remaining 
densities are already well known. In fact, it has been shown 
that energy, momentum, angular momentum, and the so
called total helicity, with density20 v-(V 1\ v), exhaust the 
class of local invariants depending on v and its first-order 
derivatives21 in the case of an incompressible fluid22

; in this 
connection, the previous conclusions show that this result 
cannot be extended to the model of compressible fluids, if 
dependence on position is allowed. 
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Finally, to recover conservation of total helicity within 
the present framework, we have to consider the possibility 
that additional variables depend on the derivatives of v. 
Then it is to be verified that 
-1 -2 -3 -4 0 
1] = Wy - Vz ' 1] = Uz - W x , 1] = Vx - uy ' 1] = 

yield a solution to (2.3) in the case of a compressible fluid. 
Thus substitution into (5.4) under the assumption that 
a 1 = 1 and the remaining constants vanish leads to conserva
tion of total helicity. When a2, ••• ,all in tum are set equal to 1 
no other significant conserved density is obtained. 

VI. COMMENTS AND CONCLUSIONS 

In this paper we have described an algorithm leading to 
the practical construction of conservation laws for any given 
system of partial differential equations. Our procedure does 
not require a priori restrictions either on the form of the 
given equations or on the number of dependent and indepen
dent variables, besides the usual differentiability assump
tions. Indeed, the present approach seems quite simple in the 
sense that it depends on the application of an appropriate 
version of Noether's theorem to a suitably defined composite 
variational principle. 

First, our procedure requires the determination of the 
additional variables fJ as functions of the independent vari
ables, of the field functions, and, possibly, of their higher 
order derivatives; in practice, the fJ's are found by integra
tion of the linear system (3.8a), which is a subset of the 
stationarity conditions for the already mentioned composite 
variational principle. Second, we need 1] and Was solutions 
to Eq. (3.8b). It is worth noting that this condition may be 
fulfilled when the 1]'S are related to the generators of general
ized symmetry transformations for the original system of 
differential equations provided we introduce the simplifying 
assumption W = O. In this case a considerable simplification 
is achieved because the infinitesimal symmetry transforma
tions of a great number of significant equations have already 
been determined in connection with the problem of finding 
the so-called similarity solutions.3

,23 Third, the final expres
sion of the conserved vectors is given as Ja - wa, with Ja 
defined by Eq. (3.7). 

The algorithm used to find conservation laws can work 
even though a limited amount of information is available. 
For instance, one can construct an infinite number of inde
pendent conservation laws by using an infinite class of sym
metry transformations depending on higher order deriva
tives of the unknowns and a single solution ofEq. (3.8a), as 
in the case of the Korteweg-de Vries equation.24 Alterna
tively, one can make use of an infinite class of solutions to the 
adjoint equation (3.8a) in order to combine them with a 
generator of symmetry transformation and thus find an infi
nite class of conservation laws: this possibility has been dealt 
with in the analysis of the heat equation; the corresponding 
conserved densities yield the initial values of the moments of 
the solution, in terms of which the time development of the 
solution can be recovered. 24 

In most cases, however, the problem of finding fJ, 1], and 
Was functions of the higher order derivatives is rather cum-
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bersome, as in the case of the Euler and Navier-Stokes equa
tions. Thus we have introduced the simplifying assumptions 
that W vanishes and that the symmetry generators and addi
tional variables are independent of the derivatives; this re
quirement has been relaxed only in the derivation of conser
vation of total helicity. In spite of these stringent conditions, 
we have found an infinite set of conserved currents of Na
vier-Stokes equations and we have explored the possible ex
istence of further infinite families of nonlocal divergence
free vectors. As to compressible inviscid fluids, our approach 
has led to the determination of a new family of conserved 
currents that are related to the motion of the center of mass. 
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The Fourier transform g(k) of a square integrable functionj(x), vanishing for x < 0, is 
analytic in the upper half plane, so that, replacing k by k exp t, k~O, 0< 1m t < tr, it can be 
associated with an operator K(t) in2+ = L 2«0,00 ),dx). The operator K(t) can be 
expressed in terms of the generator D of the dilatation group on 2+ and it can be shown that 
it is analytic in the strip 0< 1m t < l' with strong limits as 1m t Wand tl'. The Laplace 
transform (t = itr/2) is an analytic vector for D. It is also found that D is not a spectral 
operator of scalar type on LP ( 0,00 ) ,dx), 1 <.p < 00, p =1= 2. Applying the results obtained here to 
the time-evolution operator for a one-dimensional Sommerfeld model for the interaction 
between an electron and a metal, it is found that this operator has a complex-dilated analytic 
extension. 

I. INTRODUCTION 

The Fourier transform of a square integrable function 
J(x) vanishing on a half-line, i.e., 

g(z) = (2tr)-1/2 L"" dxexp[izx]J(x), Imz;;;.O, (1.1) 

is one of the matters considered by Paley and Wiener in their 
classic treatise on Fourier transforms in the complex do
main. 1 Thus they showed that g(z) = g(u + iv) is analytic 
in the open upper half plane, is square integrable in u for 
fixed v, and has a limit in the strong L 2 sense as v W. Instead 
of considering the square integrability as a function of z re
stricted to a line parallel to R in C, we can also investigate the 
square integrability of gas z runs through a ray in the upper 
half plane originating in zero. Thus we put 

g(k,t) = (21') -1/2 exp [ ; ] L"" dx 

X exp[ie'kxlJ(x) = (K(t)J)(k), (1.2) 

where k;;;.O and t= 1J + it/!, 1JER, tf;e[0,1'], and consider 
K(t) as an operator that maps K + (K ± = L 2(R± ,dx), 
R+=[O,oo], R_=(-oo,O], K=K+EBjY_ 
= L 2 (R,dx») into itself. Recalling that the dilatation trans

formation is defined as the map 

(U(1J)J) = (exp[i1JD ]J)(x) 

= exp[1J/2] J(eOx) , 1JER, (1.3) 

we see thatg(t)andg(t ') are connected by a complex dilata
tion transformation. We note further thatg(itr/2) is, up to a 
factor, the Laplace transform. In the next section, where we 
give a precise meaning to K (1J), we show that g( itr /2) is an 
analytic vector for D, the generator of dilatations, and that 
the Fourier transforms g(O) and g(itr) are strong limits of 
g(t) as t -0 and t -itr, respectively. In fact we obtain an 
expression for K (~) in terms of D, which can be extended to 
the Fourier operator F: 

(FJ)(k) = (2tr) -1/2 f-+ ",,""dX exp[ikx] J(x), JEK. 

(1.4 ) 

At this point we note in passing that another representation 
ofFis 

F = exp [ - itr /2H] = R exp [itr /2H] , ( 1.5) 

where R is the reflection or parity operator, 
(RJ) (x) =J( - x), and H = !(p2 + x 2 

- 1) is the self-ad
joint closure of! ( - a ~ + x 2 

- 1) acting in K. 
Equation (1.5) follows from the observation that the 

Hermite functions Un (x), which are the eigenfunctions of H 
with corresponding eigenvalue n(n = 0,1,2, ... ), constitute 
an orthonormal basis for jY and have the property 
(Fun) (k) = (WUn (k) = i"un ( - k). It does not have an 
obvious extension to other LP(R,dx) spaces, whereas ours 
apparently has one. But, as discussed in Sec. III, this is not 
the case. In fact we find that D, appropriately defined, is not 
a spectral operator of scalar type.2 In Sec. IV we present an 
application. We consider the time-evolution operator 
exp[ - iHt] associated with 

H=p2_ p O(X), p>O, (1.6) 

the closure of - a~ -pO(x), O(x) = 0, x <0, O(x) = 1, 
x;;;.O (H is the one-dimensional version of the Sommerfeld 
Hamiltonian describing the interaction of an electron with a 
metal filling a half space). We show that under the dilatation 
transformation, restricted to x;;;.O, exp[ - iHt] transforms 
into exp[ - iH(t)t], analytic in~. This result is not covered 
by the cases considered by Kat03 since H does not generate a 
holomorphic semigroup. 

II. THE OPERATOR K(~) 

On LP=LP(R,dx), l<.p< 00, the dilatation group is 
the strongly continuous group of isometric operators defined 
by 

(U(1J)J)(x) = (exp[iW]J)(x) 

= exp[1J /p] J(eOx) , JEL p. (2.1) 

We note that LP± =LP(R± ,dx) are invariant subspaces 
under the action of U( 1J). We now consider its restriction to 
LP±, again denoted by U(1J). Let Tbe the 1-1 isometric 
map from L P+ to L P defined by 
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tfJ(u) = (T/)(u) = exp[u/p] /(e"). (2.2) 

Then V(iI) defined by V(iI)tfJ = TU( iI)/acts according to 

(V(iI)g)(u) = tfJ(u + iI), (2.3) 

i.e., {V(iI) It?eR} is the group of translations of LP. Thus 
there exists a 1-1 correspondence between U( iI) on L P and 
V(iI) on LP(BLP. The generator of V(iI) on 
K = L 2(R,dx) is the closure of - iax ' the momentum op
erator, which has spectrum R and has purely absolutely con
tinuous spectrum. Thus we obtain the following. 

Proposition 1: D acting in either K, K +' or K _ has 
spectrum u(D) = R, and u(D) is purely absolutely contin
uous, u(D) = u"" (D). 

We now continue with the discussion of K(~) on K+. 
For later convenience we introduce the operator L, 

(L/)(x) = x-I/(X- I ), jEK+. (2.4) 

The operator L is bounded, self-adjoint, and unitary (since 
L 2 = 1) and has ± 1 as its spectrum. Thus 

L=P+ -P_ =exp[i1rP_], (2.5) 

where P + and P _ are the eigenprojectors associated with the 
eigenvalues + 1 and - 1, respectively. We also have 

LU(iI) = U( - iI)L. 

The functions/" (x), n = 0,1,2, ... , are defined by 

/,,(x) =xnexp[ -x]. 

(2.6) 

(2.7) 

They constitute a fundamental set in K + since the Laguerre 
basis consists of finite linear combinations of the /n's. The 
action of K(~) on/n is readily calculated: 

gn (k,~) = (K(~)/,,)(k) 

whichisinK+ for~=iI +it/JEC, t{1e[O,1T]. ThusK(~) is 
densely defined. [It is also easily checked that K(~)jEK + 
for the dense set of continuousjEK + with compact support 
bounded away from zero.] 

Proposition 2: K(~) defined by (2.8) can be extended to 
a bounded linear operator on K +' which is analytic in ~ in 
the strip t/I = 1m ~E(O,1T) and has strong limits K( iI) and 
K(iI + i1T) as t/lW and t/lt1T, respectively. These limits are 
strongly continuous in iI. 

Proof Let/= ~:=oaJn' anE C and/" given by (2.7). 
Then for t{1e(0,1T), 

g(k,~) 

= (21T) -1/2e,/2 i co 

dy exp[ie'y]k -1j(yk -I) 

= (21T)-1/2e,/2 f:co d7J e'1exp[ie'+'1]k- I/(e'1k- l ) 

= (21T) -1/2e,/2 f: co d7J exp[ie'+ '1]exp [~] 
X(LU(7J)/)(k). (2.9) 

Decomposing 

D= fAdE ... , 

and defining 

we note that we can write 

/= exp[ - aiD I ]h, aE(0,1T/2), hEK +. 

(2.10) 

(2.11) 

(2.12) 

g(~) = (21T) -1/2e, /2L f-+ COCO d7J exp[ie'+ '1]exp [ (! + iD )7J ]exp [ - aiD I]h 

= (21T) -1/2e' 12L f-+ COCO d7J exp [ie' + '1] 1 exp[ (! + u )7J ]exp [ - alA I ] dE ... h 

= (21T) -1/2e,12 L 1 f-+ COCO d7J exp[ie'+ '1]exp [ (! + iA )7J ]exp [ - alA I ] dE ... h 

= (21T) -1/2e, /2L d7J exp[ - e'1]exp - + iA 7J - ~ + - 'exp[ - alA I ] dE ... h i J + co + i(I/1- 1T/2) [( 1 .)( i1T)] 

... _ co +i(I/1-1T/2) 2 2 

= (21T)-1/2e, 12L 1 r(! + iA )exp [ (! + iA )( - ~ + i;) ]exP[ - alA I ] dE ... h 

= (21T) -1/2ei1T/4L exp[ ( - i~ - 1T/2)D ]r(! + iD)f (2.13) 

Since IIK(~) II = lIexp[ (t/I - 1T/2)D ][exp[ 1TD ] 

W(! + iu) 12 = 21T[exp[ 1TU] + exp[ - 1TU]]-1, 

it follows that 

K(~) = (21T)- 1IV 1T/4L 

Xexp[ ( - i~ - 1T/2)D ]rq + iD) 

is a bounded operator on K + for t{1e [0, 1T] with 
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(2.14) 

(2.15 ) 

(2.16) 

The analyticity of K(~) in the strip t{1e(0,1T) is evident from 
(2.15), whereas the existence of the strong limits for t/I!O and 
t/lt1Tfollows from the uniform estimate (2.16) and the fact 
that they exist for/as in the beginning of this proof. We thus 
find 
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K(TO = (217)-l/V1T/4Lexp[ -il1D] 

X exp[ - (17/2)D ] rq + iD), 

K(l1 + il7) = (217)-l/2t1T/4L exp[ - il1D] 

X exp[ (17/2)D] r(! + iD), 

(2.17) 

(2.18) 

which are evidently strongly continuous in 11. [Note that 
exp[ ± (17/2)D ]r(! + ID) are bounded operators.] 

Let now jE)7t'" + and 

g = K(i17/2)/= (217) -1I2ei1T/4Lr(! + iD)f (2.19) 

It follows from (2.14) that g is an analytic vector for D. Thus 
since g equals, up to a factor, the Laplace transform, we have 
the following corollary. 

Corollary: The Laplace transform of/EK + is an analyt
ic vector for D. 

Since r (! + iD) has an (unbounded) inverse and g is in 
its domain, we have the inversion formula 

(2.20) 

which is an abstract version of a result by Paley and Wienerl 
[po 39, (13.21)]. 

It follows from (1.2), (2.17), and (2.18) and the defini
tion of F (1.4) that, for a function/(x)EK vanishing for 
negative x, 

(Fj) (k) = ei1T/4(L exp[ (17/2)D ]a(D)f)(k), k > 0, 

(Fj) (k) = e - i1T14(RL exp[ (17/2)D ]a(D)/)(k), k < 0, 

(2.21 ) 

where 

a(D) = (217)- l12r(! + iD), (2.22) 

and R is the reflection operator (Rj) (k) = /( - k). We can 
obtain similar expressions for /( x) that vanishes for x > ° 
with the final result 

F = L{ei1T/4e-1T/2D + Re - i1T/4e1T/2D}a(D). (2.23) 

Since L *L = 1 we have 

F*F = [{ei1T/4e(1T/2)D + Re - i1T/4e(1T12)D}a(D)] * 

. {ei1T/4e - (1T12)D + Re - i1T14e(1T/2)D}. a(D) 

= (exp[ - l7D] + exp[l7D] )a(D)*a(D) = 1. 
(2.24) 

It follows from (2.6) that, for <l>EL 00 (R,dx) , 

L<I>(D) = <1>( - D)L, 

so that 
F2 = L(ei1T/4e - (1T/2)D + Re- i1T/4e(1T12)D) a (D) 

X L(ei1T14e - (1T12)D + Re - i1TI4e(1T/2)D)a(D) 

(2.25) 

= R{exp[l7D] + exp[ - l7D ]}a( - D)a(D) = R. 

(2.26) 
Thus the two major properties of F are verified. 

Let us finally consider the map M(;) on JY', corre
sponding with K(;) onJY' +, as discussed at the beginning of 
this section. Thus let 

'II(u) = exp[u/2]g(eU
), t/>(v) = exp[v/2]f(eV). (2.27) 

Then (2.9) translates into 
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'II(u) = (217)-l/2e~12 f dvexp[ie~+v]exp[ ~ ]t/>(V- u) 

= (217) -l/2e~/2 f dv exp[ie+ V] 

X(Rexp[(~ +iP)V]t/»(U) 

= (M(;)t/»(u), (2.28) 

where R is again the reflection operator and P = ( - i au )e, 

the closure of - i au, is the generator of the translation 
group (the momentum operator). Following the same pro
cedure as before, we obtain 

M(;) = (217) -l/2ei1T/4R 

X exp[( -i;-17/2)p]r(!+iP). (2.29) 

III. THE LP CASE, p¢2 

It is known4
•
5 that P, the generator of translations on 

L P(R,dx), 1 <p < 00, p=/=2, is not a spectral operator of sca
lar type. In the following we show this in an elementary way 
by deriving a contradiction. The corresponding statement 
for the generator of dilatations, D, follows immediately. 

Let/(x)ELP+ , l.;;;;p.;;;;2, and let 

g(k,;) = (217) -l/2e~/q.L'" dx exp[ie~kx] lex), 

o (3.1 ) 
p-l +q-l = 1, Im;E(O,l7). 

For the set {In} given by (2.7),g(k,;)EL q+ ,and, since this 
set is fundamental in LP+ , (3.1) defines an operator K(;) 
with dense domain. The factor exp [; I q] has been chosen in 
such a way that for; = {J, {J real, g(k,{J) = (U( {J)g)(k). 
Because of the somewhat simpler notation, we change to the 
equivalent map from L P to L q by putting 

'II(u) = exp[ulq]g(eU
), t/>(v) = exp[vlp]/(eV), (3.2) 

so that 

'II(u) = (217)-l12e~/q f dvexp[ie~+V]exp[~]t/>(V- u) 

= (217) -l/2e~/q f dv exp[ie~+ V] 

X(Rexp[(~ +iP)V]t/»(U) 

= (M(;)t/>)(u), (3.3) 

where Pis now the generator of translations on L p. Its spec
trum is R. This can be seen in an elementary way by noting 
that for 1m z> 0, 

/(x,z) = ([z-P]-1>(x) 

= -i L'" dt(exp[i(z-P)t]/)(x) 

= -i Loo dtexp[izt]/(X-l), /ELP. (3.4) 

Assuming that zoER is in the resolvent set of P, we can con
tinue/(z) analytically to/(zo)' Taking/(x) = exp[ - Ixl] 
we find that/(zo) is not in L P, so that Zo must be in u(P). 
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Recalling that L q = (L P)., 1 <p < 00, we can write a 
general bounded linear functional on L P 

ct>x(~) = (~,x) = f_+oooo dv~(v)X(v), 
¢eL P, xELq, p-l+ q-I=1. (3.5) 

Suppose now that P, defined above, is a spectral operator of 
scalar type. Then, since u(P) = R, there is a spectral mea
sure E(') defined on the Borel sets ofR such that (for these 
notions see Dunford and Schwartz2) 

(P~,X) = f-+ 0000 A d (E(A)~,X), 

(3.6) 

and also (Berkson, 6 Theorem 3.1 ) 

(exp[ + iPt ]~,X) = f_+oooo exp[ - iAt] d (E(A)~,X), 

¢eL P, XEL q. (3.7) 

Recalling that (E(' )~,X) has finite total measure, we can 
use Fubini's theorem to obtain 

(M(~)~,X) 

= (21T)-1/2e,;-/q f dvexp[ie';-+V]exp[~] 

X (R exp[iPv]~,X) 

= (21T)-1/2e';-/q f dvexp[ie';-+V]exp[~] 

. f d (E(A)~,Rx)exp[iAv] 

= (21T) -1/2e';-/q f d (E(A)~,RX) f dv exp[M+ V] 

xexp[(: +iA )v] 

= (21T) -1/2exp[~:] f d (E(A)~,RX) 

xexp[ ( - i~ - ;)A ]r(: + iA ). (3.8) 

Since the integrand is a bounded continuous function, ana
lytic in a domain containing R, the operational calculus ap
plies with the result 

(M(~)~,X) = (21T)-1/2exp[~:] 

X (R exp [ ( - i~ - ;)p ]r(~ + iP )~,x). 
(3.9) 

Thus 

M(~) = (21T) -1/2exp[~:]R 

X exp [( - i~ - ; )p ] r( ~ + iP ) (3.10) 

defines a bounded operator. Next we note that [see Ref. 7, p. 
47 (6)] 
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lim W(x + iy) lexp[ 1T/2Iyl] lyl1l2 - x = (21T) 1/2, (3.11) 
Iyl- 00 

which implies that for 1 <p < 2, i.e., O<q-I ,s;q, M(~) is a 
bounded linear operator on L P, analytic in ~ in a strip 0 
< 1m ~ < 1T with limits continuous in TJ as in ~ = TJ + if/!, f/! ~O 
and f/!t1T/2, respectively. But the latter are precisely the 
Fourier transform, i.e., a bounded 1-1 map from LP onto 
L q, for 1 <p < 2, and a map from L I to a subset of L 00 con
taining functions outside L I, for p = 1. Thus the assumption 
that P is spectral of scalar type is incorrect. Since 
L P, 1 <p < 00, is reflexive, a duality argument implies the 
same for P acting in L P, 2 <p < 00. Thus we have the follow
ing. 

Proposition 3: The generator P of the translation group 
and, a fortiori, the generator D of the dilatation group, are 
not spectral operators of scalar type on L P, 1 <:,p < 00, p =1= 2. 
IV. AN APPLICATION 

In the following we discuss an aspect of a model for the 
following situation: Consider an atom moving in front of a 
metal surface. Assuming the existence of the corresponding 
negative ion, then, depending upon its bound state level and 
the work function of the metal, the atom may pick up an 
electron from the metal and emerge as a negative ion, or a 
negative ion may be stripped of an electron. In the case of an 
atom frozen close to the metal, the negative ion bound state 
may now become unstable; it turns into a resonance. A very 
simple model for such a situation is a one-dimensional one 
(the Sommerfeld model) where the metal is represented by a 
step function potential and the atom by an attractive poten
tial with support outside the metal. The corresponding 
Hamiltonian is then the self-adjoint operator on 
J¥' = L 2(R,dx) given by [p2 is the closure of - a" 2, 
O(x) = 1, x;;;'O, O(x) = 0, x <0] 

H=p2-j.tO(x) + V(x) =Ho+ V(x), (4.1) 

where V(x) <:,0 is a continuous function of x with support in 
an interval [a,b] C R -, bounded away from zero. Here Ho 
has a purely continuous spectrum consisting of two 
branches, [ - j.t, 00 ) and [0,00), as can be seen by means of 
Dirichlet decoupling (adding a Dirichlet condition in 
x = 0) and the use of Krein's formula. s Suppose now that 
HI = p2 + V(x) has a negative eigenvalue v with 
- j.t < v < O. Then this eigenvalue is unstable under the per

turbation - j.tO.9 In fact we found for a model problem lO 

with V(x) = - A 8(x + y), 0 <A 2/4<j.t, y> 0 (in which 
case v = - A 2/4), that v turns into a resonance for suffi
ciently large y but becomes real in the second Riemann sheet 
for small y (a so-called virtual state). The same generic be
havior was found in case the metal was described by a 
Kronig-Penney model. 

A standard procedure to treat resonances is the dilata
tion-analytic method initiated by Aguilar and Combes. 11 It 
cannot be used in the present case due to the discontinuity in 
O(x). An adapted version akin to the exterior scaling version 
of Simon 12 does work, however. Thus we define, for t?ER, 

{ 
{j/2"'(e{j ) 

(U (U)/)(x) = e J' x, 
+ f(x), 

(4.2) 

We note that the J¥' ± reduce U + (U) and that 
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{ U + ( {J) I {}eR} constitutes a strongly continuous group of 
unitary operators. We have 

i.e., 

(U+({J) VI)(x) = V(x)(U+({J)/)(x), 

(U+({J)OI)(x) = O(e"x)(U+({J)f)(x) 

= O(x)(U+({J)/)(x), 

V({J)==U+({J)VU+({J)-I = V, 

O({J) == U+ ({J)OU+ ({J)-I = O. 
(4.3) 

£P(p2) is not invariant under U+({J)[for /E£P(p2) with 
1(0)#0, (U+({J)/)(x) has a discontinuity in zero for 
{J #0], but we can definep2({J) through the resolvent 

[Z_p2({J)]-1 = U+({J)[Z_p2]-IU+({J)-I. (4.4) 

Let p2± be the closure of - a! on K ± with the Dirichlet 
boundary condition in the origin. Then by Krein's formula 
(P ± are the projectors upon K ± ), 

[Z_p2]-1 = [Z_p2+ ]-Ip+ + [Z_p2_ ]-IP_ 

+ (2iK)-I( ,c/J( - iK»)c/J(iK) , (4.5) 

where K = ,[z and 

c/J(X,iK) = exp[iKlxl]. (4.6) 

It is easily established that 

U+({J) [z - p~ ] -IU+({J)-I = [z _ p2+ e- 2"]-1 
and 

U+({J) [Z_p2_ ]-IU+({J)-I= [Z_p2_ ]-1 

so that 

[z - p2 ( {J) ] - 1 = [z _ p2+ e - 2" ] - 1 EB [z _ p2_ ] - 1 

+ (2iK)-I( ,c/J( - iK,{J»)c/J(iK,{J) , (4.7) 

where 

c/J(iK,{J) = U + ({J)c/J(iK). (4.8) 

Equation ( 4. 7) can be continued to complex {J, i.e., 
{J - ~ = {J + it/!. For suitably chosen z (negative real, for ex
ample), 

[z _ p2(~)]-1 

= [Z_ p2+ e-2']-lp+ [Z_p2_ ]-IP_ 

+ (2iK)-I( ,c/J( - iK,t»)c/J(iK,~), (4.9) 

where 

""(' r _ {e'12exP [iKe'x]' x>O, 
'I' IK,,:»-

exp[ - iKX] , x<O. 
(4.10) 

Equation (4.9) defines a closed operator p2 (~) that con
verges towards p2({J) in strong resolvent sense as t/!lO. It 
follows that these properties carry over to 

H(~) = p2(~) - p,O(x) + V(x), (4.11) 

where H(~), which is no longer self-adjoint for nonreal~, 
may possess complex eigenvalues (the resonances men
tioned earlier in this section). 

In the course of our investigations concerning the pres
ent model, connected with the derivation of an adiabatic 
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theorem, we had to determine the analyticity properties of 
the time evolution generated by H(~,t) given by (4.11) but 
with V time dependent. Since - p,0 + V(t) is a bounded 
perturbation of p2 (~), this can be handled once we know the 
properties of 

W(t,~) = exp[ - ip2(~)t] (4.12) 

for the cases t>O, r/Je(0,11'12), and t<O, r/Je( - 11'12,0), re
spectively. In the standard dilatation case we have 
W(t,~) = exp [ - ip2e - 2, t], which, for t> 0, is analytic in 
~, r/Je(0,11'12), due to thesectoriality properties of p2e - 2, 
(see Kato,3 Chap. IX). In the present case, p2(~) does not 
possess such properties. In fact it is not even dissipative. This 
difficulty can be circumvented by starting from 
exp[ - ip2t] , t> ° directly. We have (see Kato,3 Chap. IX, § 
1-8) 

g(x,t) = (exp[ - ip2t ]/)(x) 

= (411'it)-1/2 f dX'exp [;/x-X')2]/(X'), 

t>o, jEK, 

or, with s = In.,fit, 

g(x,t) =exp[ - i;]exp[ - ; ]exp[~ (e- Sx)2] 

._I-f exp[ - ie-Sxx']exp[~(x')2] 
.[fiT 2 

(4.13) 

xexp[ ~ ]/(ex'), (4.14) 

or 

g(t) = exp[ - i;] U( _ s)exp[ ~ x2 ]F- 1 

xexp[~ x2 ]U(S)1 

= exp[ -4
i
11'] U( -In.,fit)exp[ ~ x 2 ]F- 1 

xexp[ ~ x
2
]U(ln.,fit)J, t>O, (4.15) 

where exp [ (i12 )x2] is interpreted as a multiplication opera
tor. Thus 

exp[ - zih {J)t] 

= U+({J)exp[ -ip2t ]U+({J)-1 

= exp[ - i;]U+({J)U( -In.,fit)exp[~ X2]F- 1 

xexp[ ~ x2]U(ln.,fit)u+({J)-1 

= exp[ -4
i
11']U( -In.,fit)exp [~ X2({J)] 

where 

xU + ({J)F -IU + ({J) -I exp[ ~ x2( {J) ] 

. U(ln.,fit) , t> 0, 

P. Hofstee and A. Tip 
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exp[ (j/2)x2(8)] = U + (8)exp[ (j12)x2] U + (8)-1 
( 4.17) 

is reduced by £' ± and we have 

exp [ ~ x
2
( 8) ] = exp [ ~ e

2
"x

2
]p + + exp [ ~ X2]p_. 

(4.18 ) 

Its right-hand side can be continued analytically into the 
strip § = {~EC, 0 < 1m ~ < 1T12}. Thus 

exp [ ~ X2(~)] = exp [ ~ e2'X2]p + + exp [ ~ x2]P_, 

(4.19) 

with (4.18) as its strong limit for 1m ~ !O. We also have 

P + exp[ - ip2(8)t]P + + P _ exp[ - ip2(8)t]P_ 

= P + exp[ - ip2e- 2"t]p + + P _ exp[ - ip2t]P_, 
(4.20) 

which can again be continued into § and is the strong limit of 
its analytic continuation as 1m ~ !O. It remains to consider 
P ± exp [ - ip2(8)t]P =F' We have (x,O) 

(P _FU+ (8)P +/)(x) 

= (21T)-1/2 Loo dx' exp[ixx']e-"I2j(e-"x') 

= (21T)-1/2e -,,/21OO 

dx' exp[ - ie"xx']f(x') 

= (K(8)/) ( - x). (4.21) 

According to our findings in Sec. II, (4.21) can also be con
tinued into § with (4.21) the strong limit of this continu
ation, and in view of (4.19) the same result holds for 
P _ exp[ - ip2(8)t]P +. The other case goes similarly and 
we arrive at the following. 

Theorem: exp[ - ip2(8)t], t>O, has an analytic exten
sion exp[ - ip2(~)t] in the strip § = {~EC, 0 < 1m ~ < 1T12} 
and is the strong limit of this extension as 1m ~ W. 
{exp[ - ip2(~)t] It>O} is a bounded, strongly continuous 
semigroup. 

Proof: It remains to verify the semigroup properties. The 
extension of (4.20) is obviously strongly continuous in t>O, 
equals the identity operator for t = 0, and is bounded in 
norm by 1. The remaining terms are strongly continuous in 
t> 0 and, since IIK(~) II, I, each is bounded in norm by 1 for 
all t> O. Moreover their strong limits as t W equal zero. In 
order to see this we note that, in view of the boundedness 
property above, we only have to show this for a dense set of 
.fe,7t'. For the latter we take the analytic vectors for D. Now, 
for instance, 

P +U +(8)exp[ - ip2t] U +(8) -IP_I 

= P + exp[ - ip2e- U t]P _ U(8)1 

.'J_' tiD 

-+ P + exp[ - ip2e- 2't]P _/(~) -+ P +P _/(~) = O. 

(4.22) 
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Thus exp[ - ip2(~)t] is strongly continuous in t>O, ap
proaches 1 as t W, and is bounded in norm (by 3). The prop
erty 

exp[ - ip2(~) (tl + t2)] 

= exp[ - ip2(~)td . exp[ - ip2(~)t2] 

finally follows from the corresponding property for ~ = 8 
real, and the uniqueness of the analytic extension. 

Corollary: Let V(x) in (4.1) be time dependent, 
V(x) = V(x,t) with lV(x,t) I,K, K>O, and be strongly con
tinuousin tin the interval [O,T]. ThenH = H(t) generates a 
unitary time-evolution operator U(t,s), 1>t>s>O, with the 
usual properties, which has the additional property that 
U(t,s,8) = U( 8) U(t,s) U( 8) -I can be continued analyti
cally: 8 -+~, ~E§. 

The straightforward proof follows by noting that each 
term in the Dyson expansion for U(t,s,~) is analytic and that 
the Dyson series converges uniformly on [O,T]. (For the 
Dyson expansion see Reed and Simon,13 Sec. X.12, for the 
self-adjoint case, and Kato,I4 Theorem 4.5, for the general 
situation. ) 
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A reflecting space-time with a closed timelike curve is proved to be totally vicious. In contrast 
with this, it is shown that there exists a compact space-time that is not totally vicious. 

I. INTRODUCTION 

A space-time (M,g) is called totally ViCiOUS if 
I + (p) nI- (p) = M foreverypeM. Tiplerlhasshownthata 
totally vicious space-time is causally simple, but is not 
chronological. He has also proved that total viciousness is a 
stable property of a space-time. Furthermore, Beem and Eh
rich2 have characterized total viciousness by a Lorentzian 
distance function. 

In this paper, we shall investigate the conditions that 
imply total viciousness. In Sec. II, these conditions, each of 
which is equivalent to total viciousness, are given. In Sec. III, 
we prove that a reflecting space-time with a closed timelike 
curve is totally vicious. This is an improvement of Proposi
tion 4 in Tipler. l In Sec. IV, we present the example of a 
compact space-time that is not totally vicious. 

For notations and conventions in this paper, we refer to 
Beem and Ehrich.2 In particular, by a space-time (M,g) we 
mean a connected time-oriented C 00 Lorentzian manifold of 
dimension n + I with C 00 Lorentzian metricg. For peM, the 
chronological future I + (p) [resp. past I - (p) ] of p is the 
set of all points that can be reached from p by a future- (resp. 
past-) directed timelike curve in M. 

II. TOTALLY VICIOUS SPACE-TIMES 

Definition 2.1: A space-time (M,g) is called totally vi
cious if I + (p) nI - (p) = M for every peM, where I + (p) 
[resp. I - (p)] is the chronological future (resp. past) of p. 

We now give the conditions, each of which is equivalent 
to total viciousness. 

Proposition 2.2: The following conditions (Al)-(A4), 
(Bl), and (B2) are equivalent. 

(AI) (M,g) is totally vicious. 
(A2) For somepoeM,l + (Po) nI-(po) =M. 
(A3) For every peM, there exists a closed timelike curve 

throughp. 
(A4) For every p,qeM (p#-q), there exists a timelike 

curve betweenp and q. 
(Bl) ForeverypeM,J+(p)nJ-(p) =M. 
(B2) ForsomepoeM,J+(po)nJ-(po) =M. 
Here J + (p) [resp. J - (p)] is the causal future (resp. 

past) ofp. 
The equivalence of (Al), (A2), and (A3) has been 

pointed out by Tipler. l But it seems that (A4), (Bl), and 
(B2) have not been found in the literature. 

Proof: (Al) -+ (A2). This is obvious. 
(A2) -+ (AI). For every p,qeM, it follows from condi

tion (A2) that p,qEl+(po)nI-(po). In particular, 
qEl + (Po) and pEl- (Po), so qEl + (p). A similar argument 

shows qEl- (p). Hence qEl + (p) n r (p) for every peM. 
Since q is arbitrary, I + (p) nI - (p) = M. This is condition 
(Al). 

(AI) -+ (A3). From condition (AI ) ,pEl + (p) forevery 
peM. This yields condition (A3). 

(A3) -+ (A2). Condition (A3 ) implies pel + (p) 
nI - (p) for every peM; then 

M = U [I+(p) nI -(p)]. 
peM 

From Proposition 6.4.1 of Hawking and Ellis,3 it follows 
thatthis is the disjoint union of the sets I + (p) nI - (p). Since 
M is connected and I + (p) nI - (p) is open for every peM, 
there exists a point PoeM such that 

M = I+(po) nI-(po). 

This is condition (A2). 
(Al) -+ (A4).Fromcondition (AI),qEl+ (p) forevery 

p,qeM. This yields condition (A4). 
(A4) -+ (A3). For every peM, it follows from condition 

(A4) that 

Here I + (p) and I -(p) areopen,soI+ (p) nI- (p) #-¢ 
since M and M - (p) are connected. If we let reJ + (p) 
nI-(p), then reJ+(p) and pEl+(r), so pEl+(p). This 
yields condition (A3). 

Therefore the equivalence of (AI )-(A4) has been 
shown. The equivalence of (B 1) and (B2) can be proved in a 
way similar to proving the equivalence of (A I) and (A2). 
Hence there remains only to show that (AI) and (Bl) are 
equivalent. 

(A I ) -+ (B I ) . This is immediate from the fact that 
I+(p) CJ +(p) and I-(p) CJ-(p) for every peM. 

(BI) -+ (AI). LetpeMandp'El +(p). For every qeM, it 
follows from condition (B I ) that qEJ + (p' ). Thus qEl + (p) . 
A similar argument shows qEl- (p). Since q is arbitrary, 
I + (p) nI - (p) = M for every peM. This is condition (A I ). 

Remark: In general, the following conditions (B3) and 
(B4) do not imply total viciousness. 

(B3) For every peM, there exists a closed nonspacelike 
curve through p. 

(B4) For every p,qeM (p #- q), there exists a nonspace
like curve betweenp and q. 

For example, let (M,g) be a space-time such that 
M = SlXRandg = - dtdx, (x,t)eStXR, whereS t is the 
one-dimensional sphere. Then (M,g) satisfies conditions 
(B3) and (B4), but is nottotally vicious. 
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III. TOTAL VICIOUSNESS OF A REFLECTING SPACE
TIME 

First we shall describe the definition and some proper
ties of a reflecting space-time which were established by 
Hawking and Sachs.4 

Definition 3.1: A space-time (M,g) is called reflecting if 
(M,g) satisfies the following condition: for every p,qeM, 

1+ (p):JI + (q) iff 1- (p) CI - (q). 

Proposition 3.2: A space-time (M,g) is reflecting iff 
(M,g) satisfies the following condition: for every p,qeM, 

and 

qeClosure[I + (p)] iff peClosure[I - (q)]. 

Proof: This proposition derives from the fact that 

Closure [I + (p)] = {reM: 1+ (p) :JI + (r)} 

Closure [I - (q)] = {seM: 1- (s) CI - (q)} 

for every p,qeM. 
The following corollary is straightforward from Propo

sition 3.2. 
Corollary 3.3: A causally simple space-time (M,g) is re

flecting. [A space-time (M,g) is called causally simple if 
J + (p) and J - (p) are closed in M for every peM.] 

Tipler I has proved that a causally simple space-time 
that has a closed timelike curve is totally vicious. In the fol
lowing theorem we improve upon this. 

Theorem 3.4: A reflecting space-time (M,g) that has a 
closed timelike curve is totally vicious. 

Proof: Let y: R -+ M be a closed timelike curve such that 

y(u) = y(u + 1), 

y(v)eI+(y(u») if v> u (u,veR). 

For Po = y(O), we shall show that I + (Po) 
= Closure [I + (Po)], If we let TEClosure[I + (Po)], then it 

follows from Proposition 3.2 that poeClosure[I - (r)], so 
I-(po)CI-(r). In particular, y( -E)eI-(r), i.e., 
TEl+(y(-E») for every O<E<1. Since y(-E) 
= y(l- E), 

TEl+(y(l-E»)CI+(po)' 

Hence I + (Po) = Closure [I + (Po)], 
Now I + (Po) is always open; this means that I + (Po) is 

open and closed. Since M is connected, I + (Po) = M. A simi
lar argument shows I - (Po) = M. Hence it has been proved 
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that (M,g) satisfies condition (A2) of Proposition 2.2, i.e., 
(M,g) is totally vicious. 

For example, let (M,g) be a space-time such that 

M = RXS I - {finite points}, 

g= -dt 2 +dx2 [(x,t)eRXS I
]. 

HereS I is the one-dimensional sphere. Obviously, (M,g) has 
a closed timelike curve. But it does not seem certain that 
(M,g) is causally simple. However, it is easily seen that 
(M,g) is reflecting (cf. Fig. 1.2 of Hawking and Sachs4). 
Hence it follows from Theorem 3.4 that (M,g) is totally 
vicious. 

IV. EXAMPLE OF A COMPACT SPACE-TIME THAT IS 
NOT TOTALLY VICIOUS 

It follows from Proposition 2.2 that a totally vicious 
space-time has a closed timelike curve. On the other hand, it 
is well-known that a compact space-time has a closed time
like curve.2

,3 But a compact space-time is not necessarily 
totally vicious. We shall show that the compact space-time 
constructed by Galloways is not totally vicious. 

Example 4.1: Let (N,g) be a space-time such that 

N=R2
, 

g=cos2 x( -dt 2 +dx2
) +2sinxdtdx [(x,t)eR2

]. 

The metric g is invariant under the transformations 
(x,t) -+ (x + 21T,t) and (x,t) -+ (x,t + 1). Let Gbethegroup 
of isometries generated by these transformations. The quo
tient manifold M = N 1 G is a compact space-time that is dif
feomorphic to the two-dimensional torus. In this space-time 
(M,g), the lines x = ± 11'/2 are closed null geodesics. For 
p= (O,O)eM, 

I+(p) = {(x,t)eR2
: -1T/2<x<1T/2}/G 

(cf. Fig. I of Gallo ways). Hence (M,g) is not totally vicious. 
On the other hand, I - (p) = M. 

It follows from Theorem 3.4 that this space-time (M,g) 
is not reflecting. In fact, for p = (0,0) and q = (11'/2,0), 
1+ (p):JI + (q), butI - (p) (/:1 - (q). 

"F. J. Tipler, J. Math. Phys. 18, 1568 (1977). 
2J. K. Beem and P. E. Ehrich, Global Lorentzian Geometry (Dekker, New 
York, 1981). 

3S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time 
(Cambridge U. P., Cambridge, 1973). 

's. W. Hawking and R. K. Sachs, Commun. Math. Phys. 35, 287 ( 1974). 
5G. J. Galloway, Proc. Am. Math. Soc. 98, 119 (1986). 
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This paper contains two results. First it is shown that the three-dimensional Riemannian space, 
which is invariant under the transformations ofthe rotation group, cannot be embedded in a 
four-dimensional Euclidean space (except, of course, for the three-dimensional sphere). 
Second, the one parametric family of three-spaces with the above symmetry, which can be 
embedded in a four-dimensional unit sphere, is found and the embedding is constructed. 

I. INTRODUCTION 

In a previous paperl we developed a formalism in order 
to embed in a six-dimensional Euclidean space the three
dimensional Riemannian space invariant under the transfor
mations of the rotation group. Here we discuss two special 
questions emerging from that paper. 

More precisely, we consider the metric 

where 

p>O, q>O, r>O 

are arbitrary parameters and the one-forms 

WI, w2, w3 

satisfy the relations 

dw I = _ w2 /\ w3 , dw2 = _ w3 /\ WI, 

dw3 = - WI /\ w2
• 

We make the following two statements. 

(1.1 ) 

( 1.2) 

(1.3 ) 

( 1.4) 

Theorem 1: The metric (1.1) can be embedded in the 
four-dimensional Euclidean space E 4 if and only if 

p=q=r, (1.5) 

that is, if and only if (1.1) describes a three-sphere. [For 
p = q = r = ~ ( 1.1 ) is the metric of S 3, the three-dimensional 
sphere with unit radius.] 

Theorem 2: The metric ( 1.1 ) can be embedded in a four
dimensional sphere if and only if the parameters ( 1.2) satisfy 
the conditions 

( 1.6) 

where K- is the curvature of the ambient sphere. We prove 
Theorems 1 and 2 in Secs. II-IV and construct explicitly the 
embedding for (1.1) under condition (1.6). 

Before that, however, we introduce for later use the vec
tor fields 

XI' X 2, X3 

defined by 

WQ(Xb) = 8:, a,b = 1,2,3, 

which then satisfy the commutation relations 

( 1.7) 

( 1.8) 

Furthermore, we choose the Eulerian angles 

O<XI = X<1T, 0<X2 = y, x3 = Z<21T ( 1.10) 

as our local coordinates. As explained in Ref. 1 the one
forms (1.3) and the vector fields (1.7) are then given by 

and 

WI = cos z dx + sin x sin z dy, 

w2 = - sin zdx + sin x cosz dy, 

w3 = cos x dy + dz, 

a sinz a . a 
XI = cosz- + --- - ctgx smz-, 

ax sin x ay az 

(1.11) 

. a cosz a a 
X 2 = -smz-+----ctgxcosz- (1.12) 

ax sin x ay az' 

respectively. 

II. PROOF OF THEOREM 1 

As in Ref. 1 we use the one-forms (1.3) and the vector 
fields (1.7) as frames to span the tensor algebra of tensor 
fields, describing them by means of their frame components, 
and use the Koszul connection 

(2.1 ) 

to carry out covariant differentiation. As explained in Ref. 1 
the components of the Koszul connection are given by 

r 231 = !(p2 _ q2 + r), 
r 321 = - !(p2 + q2 - r), 
r 312 = !(p2 + q2 - r), 
rl32= -!( _p2+ q2+ r ), 
r l23 =!( - p2 + q2 + r), 
r213 = - !(p2 _ q2 + r), 

that is 

(2.2) 
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rl3 = (l/2p2) (p2 _ q2 + r), 

r~2 = - (l/2p2)(p2 + q2 - r), 

ril = (l/2q2) (p2 + q2 - r), 

ri3 = - (l/2q2)( - p2 + q2 + r), 

r~2 = (l/2r)( - p2 + q2 + r), 

nl = - (l/2r)(p2 - q2 + r), 

(2.3) 

where the lowering and the raising of the frame indices are 
carried out with the help of the frame components of the 
metric 

gab=diag(p2 q2 r) (2.4) 

and 

gab = diag(;2 ~ ~), (2.5) 

respectively. 
In order to prove Theorem 1, we show that the Gauss 

equations 

R abed = baebbd - badbbe (2.6) 

and the Codazzi-Mainardi equations 

Xebab -Xbbae + balClbe - bjbre/ + bIer ba
l = 0 (2.7) 

have a solution if and only if ( 1.5) holds, that is, if and only if 
p = q = r. Here Rabed are the frame components ofthe Rie
mann tensor of (1.1) and b ab are the components of the 
second fundamental form. 

We denote a vector field's action on a function asXf, for 
example, 

aj sinz al . al 
XII = cos z - + --- - cot x sm z - . ax sin x ay az 

A straightforward calculation shows that the non vanishing 
frame components ofthe Riemann tensor, that ofthe Ricci 
tensor and the Ricci scalar, are given by 

and 

826 

R 2323 = (l/4p2)(2p2( - p2 + q2 + r) 

_ (p2 _ q2 + r) (p2 + q2 _ r) ), 

R3131 = (l/4q2)(2q2(p2 - q2 + r) 

_ (p2 + q2 _ r)( _ p2 + q2 + r»), 

R1212 = (l/4r)(2r(p2 + q2 - r) 

_ ( _p2 + q2 + r)(p2 _ q2 + r»); (2.8) 

Rl1 = - (l/2q2r) (p2 _ q2 + r) (p2 + q2 - r), 

R22 = - (l/2rp2)(p2 + q2 _ r)( _ p2 + q2 + r), 

R33 = - (l/2p2q2) ( _p2 + q2 + r)(p2 _ q2 + r); 
(2.9) 

R = _1_ {P4 + q4 + r4 _ 2q2r _ 2rp2 _ 2p2q2} 
2p2q2r 

= _1_ {2(p4 + q4 + ~) _ (p2 + q2 + r)2} 
2p2q2r 

J. Math. Phys .• Vol. 29. No.4. April 1988 

1 = __ {(p2 + q2 _ r)2 _ 4p2q2} 
2p2q2r 

=_1_{( _p2+q2+r)2_4q2r} 
2p2q2r 

1 = __ {(p2 _ q2 + r)2 _ 4rp2} 
2p2q2r 

1 = --- (p+q+r)( -p+q+r) 
2p2q2r 

X (p - q + r) (p + q - r); 

respectively. 
We introduce the notation 

(bab )=(; ~ ~). 
E D C 

(2.10) 

(2.11 ) 

The Gauss and Codazzi-Mainardi equations have the form 

or 

(

BC-D
2 

DE-CF DF-BE) 
DE-CF AC-E2 EF-AD 

DF-BE EF-AD AB-F2 

(

R2323 0 0) 
= 0 R3131 0 

o 0 RI212 

and 

X3F - X 2E + A - (l/2q2) (p2 + q2 - r)B 

- (l/2r) (p2 - q2 + r) C = 0, 

X~ -XzD + (l/2p2)(3p2 + q2 - r)F= 0, 

X3D -X2C + (l/2p2)(3p2 - q2 + r)E = 0; 

XIE - Xy4 + (l/2q2) (p2 + 3q2 - r)F = 0, 

XID - X~ - (l/2p2)(p2 + q2 - r)A + B 

- (l/2r)( - p2 + q2 + r) C = 0, 

X IC- X 3E + (l/2q2)( -p2+3q2+ r )D=0; 

XzA - X1F + (l/2r) (p2 - q2 + 3r)E = 0, 

X2F-XIB + (l/2r) ( _p2 + q2 + 3r)D = 0, 

X2E - XID - (l/2p2) (p2 _ q2 + r)A 

- (l/2q2) ( _p2 +q2 + r)B + C= 0; 

respectively. 

(2.12) 

(2.13 ) 

We now solve the Gauss equations. Computing the ad
joints of the matrices on both sides ofEq. (2.12) we obtain 

o 
(2.14) 
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where 11 is the determinant of (2.11): 

I1=A(BC-D2) =B(AC-E2) =C(AB-F2), 
(2.15 ) 

since 

DE - CF = DF - BE = EF - AD = 0 

as a consequence of (2.12). 
The components of the Riemann tensor are given by 

(2.8). 
Combining (2.12), (2.14), and (2.15) we see that 

A 2R 2323 = R313IRI212' B2R3131 = RI212R2323' 

C
2
R1212 = R2323R3131' 

and 

aD = 0, l1E = 0, l1F= O. 

(2.16) 

(2.17) 

Equations (2.16) impose restrictions on the range of the pa
rameters (1.2). 

We distinguish two cases: 
case 1, 

R2323R 3131R 1212 #0; 

case 2, 

(2.18 ) 

R2323R313IR12I2 = O. (2.19) 

We shall see that in case 1 we are actually embedding a three
sphere in E 4 and case 2 is not possible. This then proves 
Theorem 1. 

Case 1: Inequality (2.18) implies that 

11#0. (2.20) 

Therefore A, B, Care given by (2.16) and 

D=O, E=O, F=O (2.21 ) 

as follows from (2.17). 
As a consequence of the above, the second fundamental 

form is also invariant under the left translations of the rota
tion group and the Codazzi-Mainardi equations (2.13) re
duce to algebraic equations; as a matter offact Eqs. (2.13) 
reduce to the following system of linear equations for A, B, 
andC: 

A - (1/2q2) (p2 + q2 - r)B 

- (l/2r)(p2 - q2 + r)C = 0, 

- (1/2p2) (p2 + q2 _ r)A + B (2.22) 
- (1/2r) ( - p2 + q2 + r) C = 0, 

_ (1/2p2) (p2 _ q2 + r)A 

- (1/2q2) ( _p2+ q2+ r )B+C=0. 

The determinant of this system, 

1 _ (1/4p2q2) (p2 + q2 _ r)2, (2.23 ) 

is proportional to the Ricci scalar (2.10). 
We now distinguish two subcases. 
Subcase a: For spaces with nonvanishing Ricci scalar we 

have 

(2.24) 
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as the solution of (2.22). Equations (2.8), (2.12), and 
(2.24) lead to p2 = q2 = rand (1.1) then describes a three
sphere of radius 2p. 

Subcase b: For spaces with vanishing Ricci scalar we 
have 

r=p+q, (2.25) 

say, as a consequence of (2.10). Using (2.8) and (2.12) we 
have 

BC = 2q(p + q), CA = 2p(p + q), AB = - 2pq 
(2.26) 

as Gauss equations. Equations (2.26), however, imply 
C 2 = - 2 (p + q) 2, which is not possible. 

Case 2: Equation (2.19) implies that at least two compo
nents of the Riemann tensor would have to vanish. It is easy 
to see that all of the three components cannot vanish; conse
quently the Ricci scalar is different from zero also. For the 
sake of definiteness we assume that 

R 2323 = 0 and R3131 = 0 

are the two vanishing components, leading to 

2p2( _ p2 + q2 + r) 

_ (p2 + q2 _ r) (p2 _ q2 + r) = 0, 

_ (p2 + q2 _ r) ( _ p2 + q2 + r) 

+ 2q2(p2 _ q2 + r) = O. 

(2.27) 

(2.28) 

Consider (2.28) as a homogeneous linear system for the 
"unknowns" 

_ p2 + q2 + rand p2 _ q2 + r, 

having only the trivial solution 

-~+~+r=~ ~-~+r=~ (2.29) 

since the determinant, being proportional to the Ricci scalar, 
must be different from zero. Equation (2.29), however, im
plies r = 0, which is not possible. This concludes the proof 
of Theorem 1. 

III. EMBEDDING IN A FOUR-SPHERE 

Obtaining the relevant equations from Eisenhart2 and in 
the spirit of Sec. II we have 

Rabcd = OaeObd - OadObc + K-(gaegbd - gadgbc) 

and 

(3.1) 

XeOab - XbOae + OalClbe - Ojbre/ + 0le r ba
l = 0 

(3.2) 

as Gauss and Codazzi-Mainardi equations, respectively. In
troducing the notation 

(3.3 ) 

we have the non vanishing components of Rabcd as a conse
quence of (2.4) and (2.8): 
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R Z323 = (l/4pz){2pz( - p2 + q2 + r) 

_ (p2 _ q2 + r) (p2 + q2 _ r)} _ K2q2r, 

R3131 = (l/4q2){2q2(p2 - q2 + r) (3.4) 

_(p2+q2_r)( p2+q2+r)}_~rp2, 

R1212 = (l/4r){2r(p2 + q2 r) 

_ ( _ p2 + q2 + r) (p2 _ q2 + r)} _ K2p2q2, 

where ~ is the curvature of the ambient sphere. Using the 
notation 

~) (3.5) 

the Gauss and Codazzi-Mainardi equations have the form 

adj(fiab) = diag(R2323 R3131 R 1212 ) 

or 

(

BC-D
2 

DE CF DF-BE) 
DE-CF AC E2 EF-AD 

DF-BE EF AD AB-F2 

(
R2323 0 0) 

= 0 R3131 0 
o 0 RI212 

and 

X3F -X2E +A - (l/2q2)(p2 + q2 - r)B 

- (l/2r)(p2 - q2 + r)C 0, 

X~-X2D+ O/2p2)(3p2+q2 r)F=O, 

X3D - X 2C + (l/2p2) (3p2 - q2 + r)E = 0; 

X 1E -X0 + (l/2q2)(p2 + 3q2 r)F= 0, 

XtD - X3F - (l/2p2) (p2 + q2 - r)A + B 

- (l/2r)( _p2+ q2+ r )C=0, 

X 1C- X 3E + (l/2q2) ( _p2+3q2+r)D=0; 

XzA - X1F + (l/2r) (p2 - q2 + 3r)E = 0, 

XzF-XtB + (l/2r)( _p2 + q2 + 3r)D= 0, 

X 2E - Xp - (l/2p2) (p2 -l + r)A 

_ (l/2q2) ( _ p2 + q2 + r)B + C = 0; 

respectively. 

(3.6) 

(3.7) 

The calculation of this section is very similar, but slight
ly more complicated than that of Sec. II and furnishes the 
proof of Theorem 2. 

We now solve the Gauss equations. Computing the ad
joints of the matrices on both sides ofEq. (3.6) we obtain 

(3.8) 
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where I:!. is the determinant of (3.5), 

I:!.=A(BC-D2) =B(AC-E 2) =C(AB-F2), 
(3.9) 

and the components of the Rabcd are given by (3.4). Combin
ing (3.6), (3.8), and (3.9) we see that 

and 

A 2R2323 R3131RI212' 

C
2
R1212 = R2323R3131' 

I:!.D = 0, I:!.E = 0, I:!.F O. 

(3.10) 

(3.11) 

Equations (3.10) impose restrictions on the range of the pa
rameters ( 1.2). 

We distinguish two cases: 
case 1, 

R2323R3131R 1212 #0; 

case 2, 

(3.12) 

R2323R3131R1212 = O. (3.13) 

We shall see that case 1 contains, aside from S3, the one 
parametric family mentioned above and case 2 gives a single 
member of that family to the special values of the parameters 

p=l, q 1, r=2, (3.14) 

which is the simplest and, in a certain sense, most interesting 
member of the family (1.1). 

Case 1: Inequality (3.12) implies that I:!. #0 and conse
quently, A, B, C are constants and 

D=O, E 0, F=O (3.15 ) 

hold, showing that the second fundamental form is invariant 
under the left translations of the rotation group. 

The Codazzi-Mainardi equations simplify to 

nalClbe - njbrc/ + nlcrb/ = 0 

or 

A - (l/2q2)(p2 + q2 - r)B 

- (l/2r) (p2 _ q2 + r) C = 0, 

_ (l/2p2)(p2 + q2 _ r)A +B 

_ (l/2r)( - p2 + q2 + r)C = 0, 

(l/2p2)(p2 q2 + r)A 

_ (l/2q2)( _ p2 + q2 + r)B + C = 0, 

(3.16 ) 

giving an additional linear system for A, B, C to satisfy. 
We now distinguish two subcases: 

(a) 4p2q2 _ (p2 + q2 _ r)2#0, 

(b) 4p2q2 (p2 + q2 _ r)2 = 0, 

( 3.17) 

(3.18 ) 

corresponding to the nonvanishing or vanishing of the Ricci 
scalar, respectively. 

Subcase a: Equations (3.16) and (3.17) imply 

p2=q2 =r, 

that is, the three-sphere of radius 2p. 
Subcase b: We set 

r=p+q 

and obtain 
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and 

BC = 2q(p + q)(l - (K2/2)q(p + q»), 

CA = 2p(p + q)(l - (K2/2)p(p + q»), 

AB = - 2pq(1 + (K2/2)pq), 

C/(p+q) =A/p+B/q 

(3.21 ) 

(3.22) 

On the other hand, from (2.10) we see that 

R = (l/2p4) (r - 4p2) 

and so 

r=4~p4. 

From (3.4) and (3.37), 

(3.36) 

(3.37) 

as the Gauss and Codazzi-Mainardi equations, respectively. R 1212 = p2 - r. (3.38) 
Using (3.22) to eliminate C from (3.21) we have Therefore we have to assume that 
A = 2p(1_~p2/4)112, 
B = - 2q(1 - K2q2/4) 112, (3.23) 

C = 2(p + q)[ (1 - ~p2/4)1/2 - (1 _ ~q2/4) 1/2], 

with the restriction 

(3.24 ) 

or 

~(p2 + pq + q2) = 3. (3.25 ) 

This is the desired solution in case 1. 
We construct the embedding of the corresponding fam

ily in Sec. IV, but at the moment we turn our attention to the 
following case. 

Case 2: Equations (3.10) and (3.13) imply that at least 
two of the components ofRabcd have to vanish. For the sake 
of definiteness we set 

R2323 = 0, R3131 = O. (3.26) 

Equations (3.26) and (3.4) imply 

2p2( _ p2 + q2 + r) _ (p2 + q2 _ r) (p2 _ q2 + r) 

= ~p2q2r, (3.27) 

_ (p2 + q2 _ r) ( _ p2 + q2 + r) + 2q2(p2 _ q2 + r) 

= 4K2p2q2r, 

which we intrepret as the system of linear equations for the 
"unknowns" 

_ p2 + q2 + rand p2 _ q2 + r. 

We now distinguish two subcases: 

(a) 4p2q2 _ (p2 + q2 _ r)2#0, 

(b) 4p2q2 _ (p2 + q2 _ r)2 = O. 

(3.28 ) 

(3.29) 

(3.30) 

Subcase a: Equations (3.27) and (3.29) imply, using 
(2.10), that 

The difference ofEqs. (3.31) gives 

(1 + 2K2/R)(p2 - q2) = O. 

If 

then 

p2 =q2 

and from (3.31) it follows that 

r = (2K2/R) (r _ 4p2). 
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(3.32) 

(3.33 ) 

(3.34 ) 

(3.35 ) 

R1212 #O 

in order to avoid the case of the sphere; however, then (3.10) 
implies C = 0 and (3.6) in turn implies D = 0, E = O. 

Therefore the Gauss equations read as 

C=O, D=O, E=O, AB_F2=p2_r. (3.39) 

The Codazzi-Mainardi equations are 

B = -A, X~ + (l/2p2)(r - 4p2)F= 0, 

X3F - (l/2p2) (r - 4p2)A = 0, 

XIA +X2F=0, XzA -XIF=O. 

Equations (3.39) imply 

A 2 +F2=r_p2 

and using (1.12) we have the following: 

A z = - Rp2F, Fz = Rp2A, 

Ax + (l/sin x)Fy - cot xFz = 0, 

Fx - (l/sinx)Ay +cotxAz =0. 

(3.40) 

(3.41) 

(3.42) 

Equations (3.41) and (3.42) canonlybeconsistentifR = O. 
The first two equations in (3.42) imply 

A =fcos(p2Rz) +gsin(p2Rz), 

F=fsin(p2Rz) - g sin (pZRz) , 
(3.43 ) 

wherefand g are functions of x andy only. From (3.41) it 
follows that 

f2+g2=r_p2. (3.44) 

The second two equations in (3.42) imply 

fx - gy/(sin x) - p2R cot xf = 0, 

gx + f;,/(sin x) - p2R cot xg = O. 

Equation (3.44) implies 

ffx +ggx =0, ff;, +ggy =0. 

Equation (3.45) implies 

-gfx +fgx =0. 

(3.45) 

(3.46) 

( 3.47) 

The first equation of (3.46) and (3.47) imply thatfandg are 
functions ofy only. 

Another consequence of (3.45) is 

-fgy +gf;, =p2R(F+g2)cosx, (3.48) 

which is only possible if R = 0, as already mentioned. 
If we assume that 

1 + 2K2/R =0, 

that is, 

~= -R/2, 

(3.49) 

(3.50) 
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then Eqs. (3.31) lead to 

r=p2+q2, 

implying that 

R = _ 2/(p2 + q2), K2 = 1I(p2 + q2). 

Equations (3.4) show that 

RI212 = - 2p2q2/(p2 + q2) #0. 

Equations (3.10) and (3.6) now imply 

C=O, D=O, E=O, 

AB _ F2 = _ 2p2q2/(p2 + q2), 

representing the Gauss equations. 

(3.51) 

(3.52) 

(3.53 ) 

(3.54) 

In order to find A, B, and Fwe write the Codazzi-Main-
ardi equations. 

Equation (3.7) implies 

B= -A, Xy4 =F, X3F= -A, 

XIA +X~=O, X~ -XIF=O. 

Using (1.12) we find 

A 2 + F2 = 2p2q2/(p2 + q2), 

Az =F, Fz = -A, 

(3.55) 

(3.56) 

Ax + (l/sin x)Fy - cot xFz = 0, (3.57) 

Fx - (llsin x)Ay + cot xAz = 0, 

which lead to 

A =fcosz+ gsinz, F= -fsinz+gcosz, 
(3.58) 

where f and g are functions of x and y only satisfying 

f2 + g2 = 2p2q2/(p2 + q2) (3.59) 

and 

fx + (llsin x)gy + cot xf = 0, 

gx - (llsin x)f;, + cot xg = 0. 

Equation (3.59) implies 

ffx + ggx = 0, ff;, + ggy = 0. 

A consequence of (3.60) is 

- g Ix + fgx = 0, 

(3.60) 

(3.61 ) 

implying thatfandg are functions ofy only. Another conse
quence of (3.60) is 

fgy -gf;, = - (f2 + g2)cot x, 

which is not possible. 
This shows that subcase a is not possible. 
Subcase b: Equation (3.26) and R = ° implies 

r=p+q, 

R 2323 = 2q(p + q)(1 - (~/2)q(p + q») = 0, 

R3131 = 2p(p + q)(1 - (~/2)p(p + q») = 0, 

R\2\2 = - 2pq(1 + (~/2)pq). 
In rapid succession we obtain 

p = q, r= 2p, ~ = lIp2, RI212 = - 3p2#0, 

and 

C=O, D=O, E=O, AB-F2 = - 3p2 
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as Gauss equations, and 

B= -A, xy4 =0, X3F=0, 

XIA +X~=O, X~ -XIF=O 

as Codazzi-Mainardi equations, showing that A and Fare 
constants. Since p = q we can set F = ° without restriction of 
generality. We then have 

A = .j3p, B = - .j3p, 
(3.62) 

C=O, D=O, E=O, F=O 

contained in (3.23 )-( 3.25) as the limiting case, where q -+ p. 
This concludes our discussion of the Gauss and Co

dazzi-Mainardi equations verifying the assertions made 
above. 

In Sec. IV we construct the embedding explicitly. 

IV. EMBEDDING 

Our basic idea is the following: Embedding in a four
sphere is actually embedding in a five-dimensional Euclid
ean space E 5

; as a matter of fact it is a special case of that 
embedding. We therefore develop the formalism of the em
bedding of our three-space in E 5. One has to find five func
tions 

sa = za(X,y,z), a = 1,2,3,4,5, 

satisfying the six partial differential equations 

{japzaaZPb =gab' 

where 

(4.1 ) 

(4.2) 

(4.3) 

The relevant part of the classical differential geometry2.3 
instructs us, however, to do something else: We have to in
troduce the vector fields 

1/aA, A = 4,5 

such that 

{japzaa1/PA = 0, A = 4,5, a = 1,2,3, 

and 

{jap1/aA1/PB = {jAB' A,B = 4,5, 

and integrate the linear system 

Xazab - ra/Z af = b4ab 1/a4 + bSab 1/a5 , 

X a b .fza a a 1/ 4 = - 4a f - f.la 1/ 5' 

X a - b Iza + a a 1/ 5 - - Sa f f.la 1/ 4' 

where 

b A/ = b Aahi'f, 

with the integrability conditions 

R abcd = b4acb4bd - b4adb4bc + bsacbSbd - bSadbSbc' 

Xcb4ab - Xbb4ac + b4afCfbc - b4jbrc/ + b4fc r ba
f 

= f.lbbSac - f.lcbSab' 

XcbSab -Xbbsac + bsafCfbc - bsjbrc/ + bSfcr ba
f 

= f.lc b4ab - f.lb b4ac , 

Xbf.la - Xaf.lb + f.lfCfab + (b4fa b/b - bsjbb/a ) = 0, 
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(4.11 ) 

830 



                                                                                                                                    

which are the Gauss, Codazzi-Mainardi, and Ricci equa
tions, respectively. 

Looking at Eqs. (3.1) and (3.2), making the identifica-
tion 

b4ab = flab' bSab = Kgab , 

and setting 

(4.12) 

Jla =.0, (4.13) 

we indeed see that we are dealing with a special case of em-

bedding in E s. The Ricci equations are identically satisfied 
since our b 's and g are diagonal. 

Equations (4.7) and (4.8) take the form 

Xazab - ra/Z af = b4ab'Tt4 + bSab'Tts, 

Xart4 = - b4a
fZ af , 

Xa'Tts = - bsafzaf' 

with 

(4.14) 

( 4.15) 

( 4.16) 

r23
1=(p+q)/p, r 32

1=qlp, r3/= -plq, r l /= -(p+q)/q, rl/=ql(p+q), r 21
3= -pl(p+q), 

( 4.17) 

( ( 
~ 2)112 

b4ab = diag 2p 1 - : ( 
K2q2)112 {( ~p2)112 ( ~q2)1/2}) - 2q 1--

4
- 2(p+q) 1- 4 - 1--

4
- , (4.18 ) 

( 4.19) 

( 4.20) 

(4.21 ) 

bSab = diag(Kp2 Kq2 K(p + q)2), 

(
2 ( ~ 2)112 _ q2 (1 _ ~4p2)1/2 b4a b = diag p 1 - : 

bsa b = diag(K K K), 

and the condition 

~(p2+pq+q2)=3. (4.22) 

In order to simplify future calculation we set 

and use 

p2+pq+q2=3 

(4.23) 

(4.24) 

to simplify our expressions. Straightforward calculations 
show that 

b4ab = diag(P(P + 2q) _ q(q + 2p) 

.J3 .J3 
__ 1 (p2 _ q2») , 

.J3 
(4.25) 

bSab = diag(p2 q2 (p + q)2), (4.26) 

b4a b = diag(P + 2q 
p.J3 

bs/=diag(l 1 1), 

1 P - q) (4.27) 
- .J3 p + q ' 

(4.28) 

keeping in mind (4.24)! 
Using the new expressions (4.23 )-( 4.28) we write 

(4.14 )-( 4.16) in all details. 

XIZ a
l = [pcp + 2q)/.J3ht4 + p27Jas, 

X IZ
a
2 = [ql(p + q) ]za3, 

X I Z
a
3 = - [(p + q)/q]za2, 

x2za2 = - [q(q + 2p)/.J3ha4 + q27Jas, 

X2Z
a
3 = [(p + q)/p]zal, 

X3ZQ3 = - (1/.J3)(p2 - q2)7J
Q
4 + (p + q)27J

Q
S' 

X I 7Ja4 = - [(p + 2q)/p.J3]zal, 

X27J
Q
4 = [(q + 2p)/q.J3]za2, 

X37Ja4 = (1/.J3) [(P - q)/(p + q) ]ZQ3' 
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( 4.29a) 

(4.29b) 

(4.29c) 

(4.29d) 

(4.2ge) 

(4.290 

( 4.30a) 

(4.30b) 

( 4.3Oc) 

and 

X t7Jas = - za t , 

X27Jas = - za2, 

(4.31a) 

(4.31b) 

X37Jas = - za3. (4.31c) 

Since the vector field X3 = a laz has this simple repre
sentation in our coordinate systems, we would like to obtain 
the z dependence of our functions first. 

Equation (4.290 has the form 

Zzz = (p + q)( - [(p - q)/.J3h4 + (p + q)7Js)' 
(4.32) 

(We drop the index a for simplicity of notation and denote 
partial differentiation of a function by attaching the sub
scripts x, y, or z, respectively.) 

The combination of (4.3Oc) and (4.31c) leads to 

(p + q)( - [(p - q)/.J3h4 + (p + q)7Js)z = - 4Zz' 
(4.33) 

which then implies 

Z=Scos2z+ Tsin2z+ U, (4.34) 

where S, T, U are arbitrary functions of x and y only. 
We substitute (4.34) into (4.29c) and (4.2ge) and after 

straightforward calculation we obtain the following system: 

Sy -2cosxT +sinxTx =0, 

Ty + 2 cosxS - sinxSx = 0, 

Ux = [(p - q)/(p + q) ]Sx, 

Uy = [(p - q)/(p + q) ] sin xTx ' 

The content of (4.29b) is the following system: 

(sin X)2Sxx + Syy - ~ sin 2xSx 

+ (2(sin X)2 + 4(cos X)2)S = 0, 

Istvan Ozsvath 

(4.35a) 
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(4.35c) 

(4.35d) 

( 4.36a) 
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(sinx)2Txx + Tyy -~sin2xTx 

+ (2(sin X)2 + 4(cos x)2)T = 0, 

Txx + T=O. 

(4.36b) 

(4.36c) 

Equations (4.36) are the integrability conditions of (4.35). 
Observe that the sum of (4.29a), (4.29d), and (4.29f) 

does not contain 7J4' but 

(X1X 1 + XzX2 + X~3)Z = 67J5' 

Straightforward calculation shows that 

7J5 = HZxx + cot xZx + [l/(sin X)2] 

X [Zyy - 2 cos xZzy + Zzz ] }. 

(4.37) 

(4.38 ) 

Substituting (4.34) into (4.38) using (4.35) and (4.36) we 
obtain 

7J5 = - S cos 2z - Tsin 2z 

+ H (p - q)/(p + q) ](Sxx + S) 

and from (4.32) we have 

(4.39) 

7J4 = (l/~)[ (p - q)/(p + q)](S cos 2z + Tsin 2z) 

+ (1/~)(Sxx + S). (4.40) 

We now integrate Eqs. (4.35) and (4.36). Equation 
( 4. 36c) implies that 

T=/cosx+gsinx, (4.41) 

where / and g are functions of y only. Substituting into 
(4.36b) we find 

~J +4/=0, ~;~ +g=O, 

that is, 

/=a cos 2y + b sin 2y, g= c cosy + dsiny, 

where 

a, b, c, d 

are arbitrary constants (vectors in E 5) and 

(4.42) 

(4.43 ) 

(4.44) 

T = (a cos 2y + b sin 2y)cos x 

+ (c cosy + d siny)sinx. (4.45 ) 

Substituting (4.45) into (4.35a) and (4.35b) and integrat
ing we find 

S = !(a sin 2y - b cos 2y - e)cos 2x 

+ ~(c siny - d cosy)sin 2x 

+ ~(a sin 2y - b cos 2y + je). ( 4.46) 

where e is a constant (vectorin E 5). Equations (4.35c) and 
(4.35d) give 

u= [(p-q)/(p+q)] 

X (X - a sin 2y + b cos 2y - e/3 ). 

The constant of integration is chosen so that 

7J5 = - Z 

should be satisfied! Then Z is given by 

Z=Scos2z+ Tsin2z+ [(p-q)/(p+q)] 

X (S - a sin 2y + b cos 2y - e/3). 

(4.47) 

( 4.48) 

(4.49) 

We now have to specify our constants of integration in 
order to have 7J4 and 7J5 as mutually orthogonal unit vectors. 

If we now introduce the new vectors 

a=P+qA 
2 ' 

b=P+qB c=p+qc 
2' 2' 

d=P+qD 
2 ' 

e=p+q '3E 2 "II;', 

(4.50) 

where A, B, C, D, E are mutually orthogonal unit vectors in 
E 5, we then obtain 

S=A P +
q 

(3+cos2x)sin2y-B P +
q 

(3 + cos2x)cos2y 
8 8 

+C p +
q 

sin2xsiny-D P +
q 

sin2xcosy+E P +
q ~(1-cos2x), 

4 4 8 
(4.51) 

T=A P +
q 

cosxcos2y+B P +
q 

cosxsin2y+C P +
q 

sinxcosy+D P +
q sinxsiny, 

2 2 2 2 
(4.52) 

u= -A P - q (1-cos2x)sin2y+B P - q (1-cos2x)cos2y 
8 8 

+ c P - q sin 2x siny -D P -q sin 2xcosy - E P - q _1_ (1 + 3 cos 2x), 
4 4 8 ~ 

(4.53 ) 
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Z=A {p+q (3+cos2x)sin2ycos2z+ P +
q 

cosxcos2ysin2z- P -
q 

(1-COS2x)Sin2Y} 
8 2 8 

+B{ -p+q (3 +cos2x)cos2ycos2z+ P +q cosxsin2ysin2z+ P -
q 

(I-COS2x)COS2Y} 
8 2 8 

+ c{p + q sin 2x siny cos 2z + P + q sin x cosy sin 2z + P - q sin 2x sin y } 
4 2 4 

+ D { - P + q sin 2x cos y cos 2z + P + q sin x sin y sin 2z - P - q sin 2x cos y} 
424 

+ E {P + q J3( 1 - cos 2x)cos 2z - P - q _1_ (1 + 3 cos 2x)} , 
8 8 J3 

(4.54) 

and 174 and 175 are then mutually orthogonal unit vectors. which is indeed our metric. Please remember 
Choosing A, B, C, D, E in the direction of the coordinate 

axes; denoting the Cartesian coordinates in E 5 by 5 I, 5 2, 5 3, 

5\ and 55; and introducing the notation 

(4.55 ) 

we can write our results in a pleasing form: 

5=P;q {cosxsin2z-! (3 + cos 2x)cos2z 

- p - q (1 - cos 2x»)} e
2iy

, 

p+q 

17=P;q {sin x sin 2z 

- ..!.... sin 2x(COS 2z + P - q)} eiy
, 

2 p+q 

; = p + q J3(1 - cos 2x)cos 2z 
8 

- P - q _1_ (1 + 3 cos 2x), 
8 J3 

where p and q are restricted by p2 + pq + q2 = 3! 
A straightforward calculation shows that 

(4.56) 

(4.57) 

which verifies that we are indeed embedding in the unit 
sphereS 4

• 

833 

Another straightforward calculation shows that 

(dS)2 = d5 it + d17 dfJ + (d;)2 

= {p2(COS Z)2 + q2(sin z)2}(dx)2 

+ (p2 _ q2)sin x sin 2z dx dy 

+ {(p2(sin Z)2 + q2(COS z)2)(sin X)2 

+ (p + q)2(COS x)2}(dy)2 

+ 2 (p + q) 2 cos x dy dz 

+ (p + q)2(dz)2, 

J. Math. Phys .• Vol. 29. No.4. April 1988 

(4.58) 

p2+pq+q2=3 

must hold! 

(4.59) 

The family (4.58) contains a very interesting member at 
p = q, which impliesp = q = 1 due to (4.59). The line ele
ment and the "parametric equations" (4.56) simplify as 

and 

(dS)2 = (dX)2 + (sinx)2 + 4(COSX)2)(dy)2 

+ 8 cos x dy dz + 4(dz)2 ( 4.60) 

5 = {cos x sin 2z - (i/4) (3 + cos 2x)cos 2z}e2iy
, 

17 = {sin x sin 2z - (i/2)sin 2x cos 2z}eiy
, (4.61) 

;= (J3/4)(I-cos2x)cos2z; 

respectively. 
Equation (4.60) is also a member of the one parametric 

family: 

(dS)2 = (dX)2 + (sinx)2 + r(cosx)2)(dy)2 

+ 2r cos x dy dz + r(dz)2. (4.62) 

This family has an additional symmetry generated by the 
vector field a / az in our coordinate systems. Due to this sym
metry (4.62) has other interesting features also. The space 
sections of the Taub solution4 have this symmetry. 

If we drop (4.59) we can embed (4.58) in E 5 by 

5=P;q {cos x sin 2z- ! (3 + cos 2x)cos 2z 

- p - q (1 - cos 2x»)} e2iY
, 

p+q 

17 = P ; q {sin x sin 2z - ~ sin 2x( cos 2z 

(4.63) 
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; = p + q .j3(1 - cos 2z)cos 2z 
8 

+ p - q .j3(1 - cos 2x), 
8 

without any restrictions onp and q. [See Ref. 1, with (4.63) 
the major result there.] 

The comparison with (4.56) is quite amusing. 
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It is shown that the capacity of a body, obtained by Kelvin inversion, is equal to the inverse of 
the harmonic radius of the image domain with respect to the center of inversion. Using the 
monotonicity ofthe harmonic radius and an appropriate isoperimetric inequality, lower and 
upper estimates for the capacity of an inverse ellipsoid are obtained. 

I. THEORY 

Let V be any bounded, closed, and connected domain 
of R3 with smooth boundary S. Assume that the origin of a 
coordinate system is picked up at some interior point of V, 
and that S' is the Kelvin image I of S with respect to a sphere 
of unit radius, i.e., S' is the image of S under the unique 
conformal transformation2 of R3: 

r ~r' = (1/,z)r. (1) 

The Kelvin transformation (1) maps V into the domain V' 
exterior to S ' . 

The capacity C of S is defined by3 

C = _1_ rC a'l'ds, (2) 
41T Js an 

where 'I' is a harmonic function in V C vanishing on S, and 
such that 'I' = 1 + O(r-I) asr- + 00. ThecapacityC' ofS' 
is defined similarly via a harmonic function 4/ defined on the 
exterior of S'. The capacities of Sand S' can also be obtained 
by inspection from the asymptotic expansion of the corre
sponding capacity fields at infinity. In fact, the capacity C' of 
S' appears in the monopole term of </J' as 

</J'=I-C'/r+O(1/,z), r-+oo. (3) 

On the other hand, utilizing the fact that the Kelvin transfor
mation ( 1) preserves harmonicity, we can invert the exterior 
boundary value problem that determines </J' to the interior 
problem 

/l.¢ = 0, in V, 
¢ = 0, on S, ( 4) 

</J = 1/r + 0(1), r-O + , 
in which case the expansion (3) at infinity is inverted to the 
following expansion at the origin: 

¢ = 1/r - C' + OCr), r-O +. (5) 

Consequently, the capacity of S' is given by 

C'= lim (1/r-</J). (6) 
r_O+ 

Writing (3) in the form 

</J(r) = 1/r - C' + her), (7) 

with h (0) = 0, and comparing with the expression (see Ref. 
4,p.58) 

G(r,r') = _1_ [ 1 __ 1_] + H(r,r') (8) 
41T Ir - r'l R r , 

for the Green's function, where H(r,r) = ° and Rr , is the 
harmonic radius of V with respect to r', we conclude that the 
capacity C' of the Kelvin image S' is equal to the inverse of 
the harmonic radius of V with respect to the center of inver
sion, 

Furthermore, using an isoperimetric inequality, due to 
Schiffer [see Ref. 5, formula (4.15) ], we obtain that for any 
Kelvin pair S, S " the product of the corresponding capacities 
C, C' is greater than or equal to unity, i.e., 

C'C';;;d, (9) 

The inequality (9) becomes an equality whenever S (and 
therefore S ') becomes a sphere. In this case, if a is the radius 
of S, then the radius of the sphere S' is equal to a -I, which 
implies that 

C'C' =a'a- I = 1. (10) 

Hence the minimum value of the product of the capacities of 
a body and its Kelvin image is attained whenever the body 
becomes a sphere. It can be easily shown that if the sphere of 
inversion does not have unit radius, then the product of the 
capacities of any Kelvin pair is greater than or equal to the 
square of the radius of inversion. 

II. APPLICATION 

As an application, we consider a triaxial ellipsoid S, 

xi x~ x~ -+-+-= 1, (11) 
ai a~ a~ 

with a I > a2 > a3 > 0, and its Kelvin image S', 
2 2 2 

XI X 2 X3 2 2 2 2 -+-+-= (X. +X2 +X3 ) . (12) 
ai a~ a~ 

The nonlinearity of transformation ( 1) has as a consequence 
the transformation of the quadratic surface (11) to the bi
quadratic surface (12). In view of the monotonicity of the 
harmonic radius and the maximum principle, we obtain that 
the harmonic radius R r , ( V) of a domain V with respect to a 
fixed interior point r' can be estimated to be a number 
between the minimum and the maximum distance from r' to 
the boundary of V (Ref. 4, p. 59). Consequently, the capac
ity C' of the inverse ellipsoid (12) satisfies the inequalities 

1/a l ,C',1/a3, (13) 
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while the capacity C of the ellipsoid (11) is given by6 

[f+"'( dx )]-1 (14) 
C = 2 Jo ~ x + ai ~ x + a~ ~ x + a~ 
The lower bound in (13) can be improved by using the iso
perimetric inequality (9) as follows. 

Since a 1 > a2 > a3 > 0, it follows that 

and (13), in view of (9) and (15), implies 

C fa l < I<CC'<C fa 3, 

or 

(16) 

(17) 

The estimates (17) for the capacity of the inverse ellipsoid 
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are sharp in the sense that both inequalities become equali
ties whenever a 1 = a2 = a3• 
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A construction that relates circle maps of mutually reciprocal winding number, belonging to 
the same criticality class, is presented. It is explicitly invariant under smooth conjugations of 
either map, and displays a series of remarkable properties, in spite of its simplicity. 

I. INTRODUCTION 

The subject of universality I in circle maps2.3 has been 
investigated in several papers, and a number of universal 
properties have so far been discovered, a large part of which 
concern irrational winding numbers with a periodic contin
ued fraction expansion. Much more remains to be done in 
this area, though, especially concerning circle maps with 
more general irrational winding numbers. 

In this paper I will present a rigorous construction that 
might add to the understanding of this field. The construc
tion relates in a very general way circle maps of mutually 
reciprocal winding numbers within the same universality 
class. Thus together with the trivial relation between circle 
maps differing in winding number by an integer, the com
plete unimodular group is represented. This is precisely the 
group of self-similarity transformations in the parameter 
space of a typical one-parameter set of circle maps, relating 
all rational winding numbers. 

The relation is mediated by a function which, for a large 
class of irrational winding numbers, is conjectured to be at 
least once continuously differentiable; numerical evidence 
for this is given. The construction applies to the subcritical 
regime, as well as to, e.g., cubic critical maps, and the for
malism is independent of smooth coordinate changes. 

It is interesting to note a certain relation to the renor
malization group approach of Ref. 2, where a transforma
tion is used that can be interpreted as a special case of our 
construction. 

The paper is organized as follows. Section II gives a 
review of some basic concepts relevant to the subsequent 
discussion. In Sec. III the main pieces of our construction 
are defined, and analyzed from a general point of view. Sec
tion IV gives an analysis relevant for rational winding 
numbers, while in Sec. V the case of irrational winding 
numbers, which is the interesting case, is treated. In Sec. VI, 
some numerical results are presented, and in Sec. VII, final'
ly, our conclusions are summarized. 

II. BASICS ON CIRCLE MAPS 

A circle map can be represented as a function j from R 
to R that commutes with the unit translation, 

j(x + 1) = j(x) + 1 . (1) 

Denoting the unit translation by T, this can be written as 

jT= Tj. (2) 

In this paper, we will consider circle maps that are mo
notonous and, unless otherwise stated, at least once continu-

ously differentiable. Specifically, we will be interested in sub
critical circle maps, i.e., diffeomorphisms, and cubic critical 
maps, defined as differentiable homeomorphisms with a cu
bic inflection point, by convention chosen to be at zero argu
ment. 

A characteristic property of such a circle map is that it 
has a unique winding number w, defined in the following 
way: 

w= lim [r(x) -x]!n. (3) 

As an example of a circle map, we will use the sine map, 

j(x) = x - (k /21T) sin(21Tx) + 0, (4) 

where 0 is a parameter controlling the winding number, 
while k is a nonlinearity parameter. For O<.k < 1, the map is 
subcritical, while for k = 1 it is a cubic critical map. 

A rational winding number w = P /Q implies the exis
tence of a cycle of period Q, i.e., there is an xo, such that 

jQ(xo) = Xo + P (5) 

or, formally, 

T - PjQ(xo) = Xo . (6) 

In fact, there must be two Q cycles, one attractive, the 
other one repulsive. Generically, for a one-parameter family 
of circle mapsj(x;O), such as the sine map with a fixed k > 0, 
the winding number w is rational for 0 in a set of nonzero 
measure. Typically, for a given rationalw there corresponds 
a whole interval in 0, while for an irrational w the corre
sponding 0 is unique. Plotting w as a function of 0 results in 
a complicated kind of step function, the devil' s staircase. 

For each of the Q cycles, there is another characteristic 
number: the stability index S, which is a measure of the at
traction power ofthe cycle. It is defined as 

S = ~ T - Pj Q(xo) 
ax 

=f'(xo) 'f'(f(xo)}' .... f'(fQ-I(xo») , (7) 

with Xo a cycle point, as before. Thus S is the product of the 
values off' in the N different cycle points. For the kind of 
circle maps we are considering, S is obviously a non-negative 
number. For an attractive Q cycle, S is required to be less 
than 1, while for a repulsive one, S is larger than 1. 

Thus for a rationalw, there are two additional charac
teristic numbers, Sand S I, corresponding to the stable and 
the unstable cycle, respectively. 

Typically, when varying a parameter that controls the 
winding number, like 0, over the entire interval correspond-
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ing to a given rational {J), the value of S falls from 1 to a 
minimum (which is 0 for the critical case) and rises back to 1 
again, while S' rises from 1 to a maximum, and then falls to 1 
again, in such a way that they together trace out a smooth 
closed curve, as functions of the parameter. 

The three numbers {J), S, and S' are all invariant under a 
conjugation, i.e., 

/-h/h -I (8) 

with h an arbitrary increasing diffeomorphism of the circle. 

III. CONSTRUCTION OF A RECIPROCITY RELATION 

The idea behind the construction is the following: for a 
circle map/with a rational winding number {J) = P IQ, ac
cording to Eq. (6), the combination 

T-P/Q 

has a fix point, where T as before stands for the unit transla· 
tion. On the other hand, for a map g with the inverse winding 
number {J)' = Q I P, the corresponding combination is 
T - Qg P, which is the same as 

gPT-Q 

because of the commutativity, Eq. (2). The obvious similar
ity between the two expressions suggests there might exist a 
conjugacy relating them. Thus we make the ansatz 

V/V- I = T- I , (9) 

and 

(10) 

Note 1: For this to work, the conjugating function V 
should not be a circle map, since these commute with T. 
(Thus the ansatz has no meaning in the original space, the 
circle. It is not until we represent circle maps on R that it 
makes sense.) 

Note 2: It is not completely self-evident that the above 
construction is possible, even in principle. A key observation 
is that if/is a circle map it commutes with T- I

• Thus also 
T -I and g have to commute, being conjugate to / and T- I, 

respectively. Hence only if g is also a circle map is there no 
contradiction. 

Note 3: Although we started out assuming a rational {J), 

there is no obvious reason to stick with this restriction, and 
in the following we will consider arbitrary winding numbers. 

Note 4: The above ansatz is of course interesting only if a 
smooth V can be found, i.e., at least once continuously differ
entiable. (In the cubic critical case, though, Vand V- I must 
be allowed to have inflections at some isolated points.) 

Definition: A pair of circle maps (f,g) with mutually 
inverse winding numbers will be called admissible, if/andg 
admit a relation of the above type. 

A natural question to ask is what restrictions does ad
missibility put on a pair (/,g). To that end, suppose an ad
missible pair ( f,g) is given. Then transform/and g indepen
dently by smooth (circle diffeomorphism) conjugacies A 
andB: 

f=A/A- I
, (11) 

and 
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g=BgB- I • 

By inspection, the transform of V, 

V=BVA -I, 

will do for the transformed maps. 

(12) 

(13) 

Thus admissibility is preserved under independent 
smooth conjugations of (/,g). This does not answer the 
above question completely, and we will come back to it in the 
next sections, since the answer is different for rational and 
irrational winding numbers. The same goes for questions of 
uniqueness of V, given an admissible pair (f,g). 

Instead, we make the general observation that for all 
maps we can choose the value of Varbitrarily at least in one 
point, while for critical maps we gain in smoothness for V if 
we demand it to map one ofthe critical points of/(there is 
one in each unit interval) onto a critical point of g. Both 
statements are consistent with the following subsidiary con
dition, which we adopt from now on: 

V(1) = 1. (14) 

Using Eqs. (9) and (10) we immediately obtain 

V(O) =g(1) =g(O) + I, (15) 

V(f(1») = V(f(O) + 1) = 0, (16) 

V(f(O») = g(O) . (17) 

Assuming positive winding numbers, we further ob-
serve that V,f, and g are unambiguously defined at all values, 
if V is specified on the interval from 0 to /( 1 ), with values 
ranging from g( 1) down to O. This defines a kind of "unit 
cell" in an abstract two-dimensional lattice spanned by unit 
translations in / space and g space. Here / is obtained from 
relating the interval 0 < x < 1 [g(1) > V(x) > 1] to the in
terval/(O) <x< /(1) [g(O) > V(x) >0], whilegisdefined 
in the same way from V- I. 

In what follows we will consider the restriction of V to 
this fundamental interval, to be referred to as the unit cell. 

In the critical case, we note that if Vand V- I are both 
differentiable in a neighborhood of I, V must have a cubic 
inflection at 0, and an inverse cubic point at /(1) (so that 
also V- I has a cubic inflection at 0). 

We end this section by deriving an equation that V must 
unconditionally satisfy. Recall the condition for / to be a 
circle map, 

/T= T/. 

Using Eq.(9) to substitute forf, we obtain 

V= TVTV-IT-IVT- I . 

(18) 

(19) 

We note in passing that the same equation is satisfied by 
V- I. For the restriction of V to the unit cell, this equation 
influences only the four comer points discussed above, and 
corresponds to matching conditions on V in these points. 

IV. RATIONAL WINDING NUMBER 

In this section we will briefly consider the rational case. 
Thus suppose/ has a winding number {J) = P IQ. Obviously, 
a cycle point of/must be mapped onto a cycle point of g, 
since if Xo is a cycle point of/we have 

T - P/Q(xo) . (20) 
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Acting with Von this, and using Eqs. (9) and (to) give us, 
with Yo = V(xo ), 

T-Qt'(yo)=Yo' (21) 

Next, we consider a point close to Xo' From the definition of 
the stability S, Eq.(7), we readily obtain 

(22) 

Again acting with V, and using the requirement that V be 
differentiable, gives us 

T-Qt'(Yo+EV'(Xo))=yo+SEV'(xo). (23) 

We conclude that the stability of a cycle is preserved under 
the mapping. Thus the attractive (repulsive) cycle off is 
mapped onto the attractive (repulsive) cycle of g, and the 
stabilities Sand S' are preserved. 

This provides us with a necessary condition for the ad
missibility of a pair (f,g) in the rational case: They should 
have the same S and the same S'. 

The above considerations indicate that the situation 
very much resembles the one for the well-known problem of 
conjugate circle maps, and we will not penetrate it further. 

We finish off this section by sketching the answer to the 
question of uniqueness of V, given f and g. Pick one of the 
attractive cycle points Xo' On each side it will have a repul
sive cycle point. Acting with the combination 

R = T-PfQ 

on any point in the interval between Xo and one of the neigh
boring repulsive points will result in a new point in the same 
interval, but closer to Xo' The result is, and we give it without 
further proof, that V can be chosen arbitrarily in the interval 
between such a point to the right and its image under R, and 
independently, in the interval between a similar point to the 
left and its image under R, up to restrictions on the interval 
boundaries. 

v. IRRATIONAL WINDING NUMBER 

The situation for irrational winding numbers is very 
much different. First of all, the orbit of a point is dense in the 
circle. Given f and g, a dense subset of the unit cell of V is 
generated from the starting point (1,1) alone, according to 
the following algorithm. 

Algorithm for generating v.. 
(i) Start with the point (1,1). 
(ii) Generate a new point from the old one (x,y) by 

acting with the navigators 

(J,T- 1 ) if x.;;; 1 , 

or 

(T-1,g) if x>l. 

(When x = 1, use either.) 
(iii) Go to (ii). 
We conclude that, given (f,g) and the subsidiary condi

tion V( 1) = 1 (and continuity of V), V is unique for irra
tional winding number. 

The next question to answer is for which pairs (f,g) is V 
a diffeomorphism on the interval 0 < x < f( 1 )? 

To answer this, we first note that givenJ, we can always 
construct an admissible partner g by choosing a smooth V 
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arbitrarily on the interval 0 < x < f( 0), subject to the match
ing condition V(f(O») = V(O) - 1, certifying continuity at 
f(O). 

In order also to have a continuous first derivative, V 
must in addition fulfill a differential matching condition, 
easiest obtained by differentiating Eq. (9) at O. For a subcri
tical map, we obtain 

V' (0) = /' (0)' V'(f(O», (24) 

while for a cubic critical map, V must have a cubic point at 0, 
and we have instead 

vm (0) = /'" (0)' V'(f(O») . (25) 

These conditions make sure that the first derivative of V is 
continuous at f( 0), and it is straightforward to match an 
arbitrary number of derivatives in a similar manner, pro
videdfis sufficiently differentiable. 

As an aside, this is where the similarity, but also the 
difference, to the renormalization transformation of Ref. 2 
lies; their construction slightly resembles ours, provided we 
neglect differential matching, and instead demand that Vbe 
a straight line on 0 <x < f(O). 

Having chosen Von the interval O<x<f(O) in the 
above way, we can generate the values of V in the intervals 
f(O) <x < f 2(0), f2(0) <x < f 3 (0), etc., until we reach 
f(1 ), by using 

V(f"(x») = Vex) - n, (26) 

which follows from Eq. (9) by iteration. The step from 1 to 
f( 1) will in the critical case force V to have an inverse cubic 
point atf( 1). 

Having thus defined V in the whole unit cell, we are 
ready to extract g from 

g(V(x») = Vex - 1) . (27) 

For x = 1, g will in the critical case pick up a cubic point at 
1 = V(1), due to the cubic point of Vat O. Similarly, for 
x = j( 1 ), due to the inverse cubic point of Vat f( 1 ), g will 
pick up a cubic point at 0 = V (f( 1 »). 

From the above considerations, it should be clear that g 
can be constructed to be as smooth asfis. 

Thus we have proved two things for critical and subcriti
cal maps with irrational winding numbers. 

(i) For every f there exists a g such that the pair ( f,g) is 
admissible. 

(ii) The two maps f and g are either both subcritical, or 
both critical. 

We can combine this result with a conjecture from Ref. 
2, applying to winding numbers (i) in a certain subset A (in
troduced by Herman4

) of the irrationals in the unit interval 
that has Lebesgue measure 1, and stating that for two generic 
critical maps having (i) in A as a winding number, there exists 
a once continuously differentiable diffeomorphism, relating 
the two maps with a conjugation. If this conjecture is true, so 
is the following one. 

Conjecture: For (i) in Herman's set, and for two arbitrary 
critical maps with winding numbers (i) and (i) - 1, respective
ly, the two maps can be related through the construction 
presented in this paper, with a V that is at least once differen
tiable in the interior of the unit cell. 
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2 

xl 

o 
o 2 3 vex) 

FIG. I. V(x) for subcritical golden mean (g.m.) sine map, kf = k. = 0.5. 

VI. NUMERICAL RESULTS 

I have carried out numerical calculations of V, using 
sine maps of various criticality, at two different irrational 
winding numbers, golden mean and 11/4, of which at least 
the former belongs to Herman's set. Using the algorithm of 
Sec. V, I have in every case generated 800 points, using dou
ble precision arithmetics on the NORD-570 computer of the 
Physics Institutions in Lund. I have chosen different combi
nations of critical and subcritical maps for both winding 
numbers, and the data are presented in graphical form. 

For the subcritical case of g.m. (golden mean) winding 
number, the unit cell of Vis shown, for two choices of nonlin
earity parameter k, in Figs. 1 and 2. 

For the far more interesting critical case, the g.m. V is 
shown in Fig. 3(a). Note the isolated cubic inflection points 
at the end points of the unit cell. The importance of the sub
sidiary condition V(1) = 1 is demonstrated in Fig. 3 (b), 
where this condition is relaxed. 

The fundamental difference between critical and sub
critical maps is illustrated in Figs. 4 and 5, where two exam
ples off and g of different type are shown, for g.m. winding 
number. Note the appearance of numerous inflection points 
over the whole interval. 

For winding number 17/2, the analog of Figs. 1,3 (a), 4, 

2 

xl 

o 

FIG. 2. Same as Fig. 1, but with kf = 0.3 and k. = 0.7. 
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xl 
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o 2 3 y=vex) 

FIG. 3. (a) V(x) for critical g.m. sine map. (b) Same as (a), but without 
the subsidiary condition V(1) = I. Here, V(1) = 1.3. 

2f-

o 
o 2 3 vex) 

FIG. 4. V(x) for mixed (subcriticalf Icritical g) g.m. sine map. kf = 0.5. 

2.0~ -

FIG.S. V(x) for mixed (criticalf Isubcritical g) g.m. sine map. kg = 0.5. 
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o 
o 3 vex) 

FIG. 6. V(x) for (J) = 1T14 subcritical sine map. k, = kg = 0.5. 

2 -

xII-

\ 
o 

o 2 3 vex) 

FIG. 7. V(x) for (J) = 1T14 critical sine map. 

21-

xl 

o 
o I 2 3 vex) 

FIG. 8. V(x) for (J) = 1T14 mixed (subcrit./lcrit. g) sine map. k, = 0.5. 

I 

2.0 

FIG. 9. V(x) for (J) = 1T14 mixed (crit.f Isubcrit. g) sine map. kg = 0.5. 
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FIG. 10. dV Idx (num.) for critical g.m. sine map. 
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FIG. II. dV Idx (num.) for critical1T14 sine map. 

20 

10 

" >-
v 0 
;. 

-10 

-20 
I -L......_ ---1.....--L-

0 2 
y 

FIG. 12. d 2 V Idr (num.) for critical g.m. sine map. 
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FIG. 13. d 2 V Idr (num.) for Critical1T/4 sine map. 
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and 5 are shown in Figs. fr.9, with qualitatively similar re
sults. 

For the critical case, and for both winding numbers con
sidered above, I have furthermore computed the two first 
derivatives of V numerically, simply by using the slope 
between neighboring data points. The results are shown in 
Figs. 10 and 11 for the first derivative, and in Figs. 12 and 13 
for the second. There is a wiggly structure in Fig. 10; this is 
probably due to numerical truncation errors, effectively 
biasing the winding number. Without this bias, the second 
derivatives would probably be smoother. 

Thus the results for both winding numbers indicate an 
at least once differentiable V when! and g belong to the same 
class, and an obviously nondifferentiable V for! and g in 
different classes, or, in the critical case, when the subsidiary 
condition V( 1) = 1 is not fulfilled. 

VII. CONCLUSIONS 

I have presented a construction that relates circle maps 
in a common criticality class, having mutually reciprocal 

842 J. Math. Phys .• Vol. 29. No.4. April 1988 

winding numbers. The construction, in spite of its simplicity, 
has a number of remarkable properties. One of these is that it 
seems to have all the properties of a conjugation-except the 
property of being one. It applies to subcritical as well as cubic 
maps, and is explicitly invariant under conjugations of either 
of the maps involved. 

This construction thus provides a novel tool that might 
prove useful for the continuing efforts to acquire a full un
derstanding of the universality in circle maps. 
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The complete integrability of a new system of nonlinear equations using the technique of 
Painleve analysis has been investigated. The system essentially represents a coupling of 
Boussinesq and Schrooinger equations through nonlinear terms. While the arbitrariness of the 
expansion coefficients are proved (for a particular branch) in the formalism of Weiss et al. [J. 
Math. Phys. 24, 522 (1983)], with the reduced ansatz of Kruskal, the consistency of the 
truncation is proved by a combination of the methodology due to Weiss [J. Math. Phys. 25, 13, 
2226 (1984)] and Hirota [Lecture Notes in Physics, Vol. 515 (Springer, Berlin, 1976)]. On the 
other hand, the Backlund transformation for the equations are obtained via the truncation 
procedure, without the use of Kruskal's simplification. 

I. INTRODUCTION 

At present two important approaches exist for the anal
ysis of the nonlinear partial differential equation in two di
mensions. One is the method of inverse scattering transform, 
starting from a Lax pairl associated with starting the nonlin
ear equation for the actual solution of the problem, and the 
other is a critical analysis of integrability formulated along 
the line ofPainleve by Ablowitz et al.,2 Weiss etal.,3 Ward,4 
and Jimbo et al.5 It has already been observed that some 
systems exhibit soliton solutions yet they may not be com
pletely integrable or they may not conform to the criterion of 
Painleve. At this point it can be commented that even 
though a partial differential equation (PDE) passes the test, 
it may not be completely integrable.6 Actually, examples al
ready exist illustrating the fact that equations conforming to 
the Painleve criterion are not integrable. It can only be said 
that in many cases the test works. Researchers are trying to 
understand the properties of more complicated nonlinear 
systems involving various diverse natures of influence. It has 
already been observed that KdV, mKdV, sine-Gordon, and 
Boussinesq 7 equations all are completely integrable. On the 
other hand, people have observed that the famous equations 
of Langmuir solitons are not completely integrable but only 
an approximate version of these can be put into the Lax 
form,8 though Ma9 has obtained by Hirota's approach the N
soliton solution of the original set. Later Goldstein and In
feld 10 made a Painleve analysis to show (they have used a 
simplified version of Weiss's approach as suggested by Krus
kal) that in spite of the existence of N-soliton solutions these 
equations (the unapproximated version) of Langmuir soli
tons do not pass the Painleve test of Weiss et al. 

In the wake of such diverse types of results we thought 
that it is of immense interest to ascertain how integrable 
systems behave if they are coupled nonlinearly. Of course 
only those combinations that occur in physical reality will be 
of interest. Such a system is closely resembled by the equa
tions governing the Whistler mode propagation in a plas
ma. II The equations are essentially a Boussinesq equation 
coupled to a Schrooinger equation through a nonlinear term. 

Thus far, to the authors' knowledge, only one soliton solu
tion of such equations has been obtained with no bearing on 
the question of complete integrability. So here in this com
munication we have made an analysis of the above-men
tioned equation following the approach of Weiss et al. Actu
ally, we have sometimes used a variant of this 
above-mentioned formalism. The arbitrariness of the expan
sion coefficients has been proved with a reduced ansatz due 
to Kruskal,12 by setting t/J = x - f (t). Two branches arise. 
One of the two branches passes the Painleve test whereas the 
other does not. Finally the Backlund transformation is ob
tained by the use of the full machinery of Painleve analysis 
and Hirota's 13 technique of bilinearization, without any as
sumption about t/J(x,t). 

II. FORMULATION 

The equations under consideration read 

(
a 2 a2 ua 4 ) a 2

2 a 2 2 
------ u-u-(u) =-(ltPl ), 
at 2 ax2 3 ax4 ax2 ax2 

(1) 

( . a a2 
) 

I - + -2 + A + u tP = o. 
at ax 

For convenience we write this set as 

( 
a2 a 2 u a 4) a 2 a 2 
------ u-u- (u2) =- (tPX), 
at 2 ax2 3 ax4 ax2 ax2 

( i!... + a 22 + A + u) tP = 0, 
at ax 

(2) 

( . a a2 
) 

- I at + ax2 + A + u X = O. 

The singularity analysis starts by adopting the ansatz 

"" 
u = L u/x,t)t/Ja+j(x,t) , 

j=O 

"" tP = L tPj(x,t)t/JP+j(x,t), 
j=O 

(3) 

"" X = L Xj(x,t)t/Jy+j(x,t). 
j=O 
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The singularity manifold is given as </J(x,t) = 0. For the 
leading order analysis we set 

U - uo(x,t)</Ja(x,t), tP- tPo(x,t)</J p(x,t), 

X-Xo(x,t)</JY(x,t). (4) 

Then we can have two alternative branches. 
(a) a= -2, /3=r= -1, Uo= -2</J!, (tPo,Xo) 

arbitrary. Matching terms are 

(u/3)uxxxx + u(u2)xx = 0, 

tPxx + utP = 0, 

Xxx + ux = 0. 

(5a) 

(5b) 

(5c) 

(b) a= -2, /3=r= -2, uo= -6</J!, tPoXo 
- 24u</J!. Dominant terms are 

(u/3)uxxxx + u(u2)xx = - (tPX)xx' 

tPxx + utP = 0, 

Xxx +uX=O. 

(6a) 

(6b) 

(6c) 

At this point it can be mentioned that in the determina
tion of the leading-order coefficients in case (a) the fields tP, 

X become decoupled in leading-order terms but not in case 
(b). But it can be mentioned that a similar situation is seen to 
occur in the Hirota-Satsuma case. 14 Here we also observe 
two branches, but for the case in which (please refer to the 
Appendix of Ref. 13) a = - 2, /3= - 1, a = - 2</J!, 
b = arbitrary, the dominant terms are 

- A(UUx + uxxx ) = 0, vxxx + 3uvx = 0, 

and it is important to note that only this branch passes the 
Painleve test and not the other branch that retains the cou
pling to leading order. Our case is exactly similar to this 
situation. 

III. RESONANCE DETERMINATION 

In the following calculation we first consider case (a) 
and then (b). So we now set 

00 

U = L uj</Jj- 2, 
j=O 

00 00 

tP = L tPj</Jj-1, X = L Xj</Jj-l 
j=O j=O 

(7) 

in Eq. (2) and equate the same power of </J to get the follow
ing recursion relation: 

[

{- (0/3)( - 2+m)( -3 + m)( -4+m)( - 5 +m) +40( -4+m)( - 5+m)¢!} 

1/10 
Xo 

[(-1+m)(~2+m)-2]¢; ~ 1 
o ¢;[(-1+m)(-2+m)-2] 

= T (the system matrix) (8) 

along with 

T( ~:) = (O:~;j:-:h::h) . 
Xm J<m 

(9) 

Now resonances are those values of m for which different arbitrary functions may enter into the expansion u, tP, X. These can 
be obtained by demanding that the characteristic determinant (the determinant of the system matrix) is equal to zero. So if we 
set 

det(nm=r=o =0, 

we get 

r(r+ 1)(r-3)2(r-4)(r-5)(r-6) =0. 

So we have resonance at 

r = 0,0, - 1,3,3,4,5,6. 

For the branch (b) we have the system matrix 

(10) 

(

(013)[ - (- 2 + m)( - 3 + m)( -4 + m)( - 5 + m) + 36( - 4 + m)( - 5 + m)] ¢! [- ( - 4 + m)( - 5 + m) ¢;Xo1 
s= 1/10 [(-2+m)(-3+m)-6]¢; 

~ 0 

[- (-4+m)~ - 5 + m) 1,6;1/101) 

[( - 2 + m)( - 3 + m) - 6] 1,6; 
(11 ) 

and the recursion relation 

s( ~:) = (te~s. involving uj,tPj etc.) . (12) 
wlthJ<m 

Xm 
Again, setting det[S] at m = r = ° we arrive at the reso
nance positions 
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r = 0, - 1, - 3,4,5,5,6,8. 

In the following we will show that only the first branch 
passes the Painleve test but the second branch does not. Also 
it may be pointed out that until this stage of the calculation 
we have never used the simplified ansatz </J = x - f (t). As a 
further remark we may add that the resonance at r = - 3 
does not seem to contribute to the existence of an arbitrary 
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expansion coefficient in (7). Significance of such negative 
resonances has been studied by Steeb and Louw for ordinary 
differential equations. 15 Thus we can have seven arbitrary 
functions corresponding to the resonances at 
r = 0, - 1,4,5,5,6,8 whereas according to the Cauchy
Kowalevski theorem we should have the number of reso
nances equal to the number of arbitrary functions. Now we 
have an indication regarding the failure of the Painleve test. 

In Ref. 15 Steeb and Louw studied an expansion around 
infinity and made interesting observations. Here one could 
also assume that 

00 00 

~ ,I,-j-2 
U = £.. U_j'fJ , tP = L tP - j,p - j - I; 

j=O j=O 

00 

X = LX _j,p-j-I, 

j=O 

and use them in (2) in order to get the significance of the 
resonance r = - 3 that we get in our case. Before proceed
ing further one may note an important point regarding ra
tional resonances. 16 It is known that algebraic constants of 
motion correspond to rational resonances in the case of ordi
nary differential equations. 16(a),16(b) This can be extended to 
partial differential equations,16(C) This theorem can be ap
plied to Eq. (5a), 

~uxxxx + (u 2 )xx = 0. 

This equation is scale invariant under X-+E-IX, u-+ilu. 
Since 

~ [~Uxxx + (U2)x] = 0, 
ax 3 

we find [with 1= juxxx + (u2)x] that 

I(ilu,cux'''') = ~I(u,ux'''')' 
Thus r = 5 must be a resonance. Furthermore, for Eq. (6a) 
this method can be applied to find a resonance. Equation 
(6a) is scale invariant under X-+E-IX, u-+ilu, tP-+iltP, 
X-+ilX' 

As before, aI'lax = 0, where I' = juxxx + (u2)x 
- (tPX)x' We find 

I'(ilu,c ux, ... ,iltP,ilX,"') = ~I(u, ux,''''tP,X), 

so that r = 5 is a resonance. In our above calculation one can 
see that we really obtained these resonances. 

IV. ARBITRARINESS OF THE COEFFICIENTS 

We now write out in full the recursion relations (9) and 
(12) and try to observe what the situations are with the 
coefficients at the resonance position. We may add that here 
we take the Kruskal prescription ,p = x-I (t). 

For branch (a) we get 

where 

A = - u(m_4)11 + 2U(m_3),(m - 5)/, 

- Um_ 2 (m - 4)(m - 5)/: 

+ Um_ 3 '(m - 5)/'1 + u(m_2) (m - 4)(m - 5) 
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( 13) 

m-I 
+ U L um_sus(m - 4)(m - 5) 

s= I 

m-2 
+ L tPm-s-2 (m - 4)(m - 5), 

s=O 

B = - itP(m-2lt + itP(m_l) (m ~ 2)/, 
m-I 

- ).,tPm-2 - L um-stPs' 
s= I 

C = iX(m-2) - iX(m-l) (m - 2)/, - ).,Xm-2 
m-I 

- L um-sXs' 
s=1 

On the other hand, for branch (b) we get 

D= -u(m_4)tt+2(m-5)/,u(m_3)1 

- um_ 2 (m - 4)(m - 5)/: 

(14) 

(15) 

+ um- 3 (m - 5)/'1 + u(m_2) (m - 4)(m - 5) 

m-I 
+ U L um_sus(m - 4)(m - 5) 

s= I 

m-I 

+ L tPm_sXs(m-4)(m-5), 
s= I 

E= - itP(m-2), + itP(m-O (m - 3)/, 
m-I 

- ).,tP(m-2) - L um-stPs, 
s= I 

F= iX(m-2)1 - iXm-1 (m - 3)/, 
m-I 

- ).,X(m-2) - L um-sXs' 
s= 1 

(16) 

Branch {a}: m = - 1 corresponds to arbitrary l(t). 
Here we get the following: double resonance m = ° corre
sponds to arbitrary ).,0' Xo; Uo = - 2. 

m = 1: U I = 0, tPl = (i/2) /'tPo, 
XI = - (i/2)Xo/', (17) 

m=2: u2= (l/4u)[2/:+ (tPoXo-2>], 

tP2 = (tPoI8u) [ 21; + (tPoXo - 2) + 4).,u] + (i/2) tPoo 

X2 = (XoI8u) [ 21: + (tPoXo - 2) + 4).,u ] - (i/2) Xoo 

m = 3: U3 = (l/2u) /'1' 

u3tPo + i tPlI - itP2 /, + )"tPl + U2tPi = 0, 

U3XO - i XII + iX2 /, + ).,XI + u2KI = 0. 

(18) 

(19) 

It is easy to observe that use of the first equation of ( 19) with 
(17) and (18) leads tou = 1, where all of them are identical
ly satisfied. Thus the resonance at this position dictates that 
the Pproperty is not shown in this branch for u,# 1 and that 
for u = 1 we do have tP3 and X3 arbitrary. 

m = 4: This leads to only two equations instead of three 
as the coefficients in the first row of ( 13) cancel and we get 
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+ U3rPi + U2rP2 ], 

X4 = -![ - iX2t + 2iX3 I, + AX2 + U4XO 

+ U3XI + U2X2 ], 

U4 = arbitrary. (20) 

~ Here also the coefficients of the first row of ( 13 ) 
cancel and we are left with 

rPs = - io(irP3t - 3irP4 I, + ArP3 + usrPo + U4rPi 

+ U3rP2 + U2rP3)' 

Xs = - to< - iX3t + 3iX4 I, + AX3 + usXo + U4XI 

+ U3X2 + U2X3)' 
Us = arbitrary. (21) 

m = 6: The coefficients collected from the first row of 
( 13) do not contain U6, rP6' X 6 and yield a relation which on 
use of previous results leads to 0- = 1 again. Those obtained 
from (13) are 

rP6 = - -h(irP4t - 4irP5 I, + ArP4 + u6rPo + USrPl 

+ U4rP2 + U3rP3 + U2rP4) , 

X6 = - -h< - i X4t + 4iXs I, + AX4 + u6Xo + U5XI 

+ U4X2 + U3X3 + U2X4), 
U6 = arbitrary. (22) 

From our above analysis we conclude that for 0- = 1, I (t), 
U4, U5, u6, rPo' X 0' rP3' X 3 remain arbitrary (equal in number to 
the number of resonances) satisfying the Cauchy-Kow
lavski theorem. Hence at least for branch (a) we can con
clude that the equation passes the Painleve test in the sense of 
Weiss et al. only for 0- = 1. 

Branch (b): For the second branch we can also follow a 
similar method of computation as above and our results are 
as follows. Resonance at m = - 1 corresponds to arbitrary 
l(t). For m = 0 we get 

Uo = - 6, XorPo = - 240-. (23) 

This resonance corresponds to the arbitrariness of rPo. Now 
from the recursion relation we obtain the following. 

m= 1: 

ul = 0, rPl = !irPo 1" XI = - !iXo 1,. (24) 

m = 2: This yields 

u2=r/600-+ (11200-) [(6-20-)/;-8)..0--2], 

rP2 = (i/6) rPOt + rPo 

X {_r_ [(6 - 120-)/; + lUo-- 6] } 
3600- + 1200- ' 

X2 = - (i/6) XOt + Xo 

X {_r_ [(6 - 120-)/; + lUo-- 6] } 
3600- + 1200- ' 

with r = iX orPOt. 
(25) 

m = 3: This yields 

U3 = [(20-+ 3)/100- ]1,,, 

.1. ( 0- - 1) I, i I, { r 
'1'3 = - 200- rPo I,t -12 rPOt + 12 600-
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+ _1_ [(6 - 20-)/; + lUo-- 6]} rPo, 
200-

(0- - 1) I, il, { r 
X3= - 200- XO!.t - 12 XOt -12 600-

+_I_[(6-20-)/;+IUo--6]}Xo. (26) 
200-

m = 4: Here the coefficients of the first row of (15) can
cel and we get only two equations, 

rP4 =!(i rP2t - irP3 I, + ArP2 + U3rPi + U2rP2 + rPOU4), 

X4 =!( - i X2t + iX3 I, + AX2 + U3XI + U2X2 + XOU4) , 

(27) 
where U4 is arbitrary. 

m = 5: Again the coefficients collected from the first 
row of ( 15) cancel and we are left with 

rPous = - (i rP3t - 2irP4 I, + ArP3 + U4rPi 

+ U3rP2 + U2rP3)' 

Xous = - ( - i X3t + 2iX4 I, + AX3 + U4XI 

+ u3X2 + U2X3)' 

So we conclude that U5 = 0, rP5' X5 arbitrary. 

(28) 

To check the consistency between these two equations 
we eliminate U5 and then use the previous results to get 

i(o- - 1) [61,tt + 5Aln = O. (29a) 

For 0-=1= 1, I becomes fixed. On the other hand, for 0- = 1, 
I can be arbitrary, so that for 0- = 1 we really have Us = 0, 

rP5' X 5 arbitrary as mentioned above. So if we consider 0- = 1, 
we can proceed further and see what happens at m = 6,7,8. 

It is interesting to note that Eq. (29a) for 0-=1= 1 passes 
the Painleve test for ODE's.2 The analysis is as follows. 

The equation is 

61,tt + SAl: = o. (29b) 

The leading-order analysis with 1-1o(t - to)a leads to 
a = O. The difficulty is avoided through a transformation 
I, = p when Eq. (29b) reduces to 

(29c) 

Now in the leading-order analysis withp-Po(t - to)a one 
can get only one branch given by 

a = - 1, SA p~ + 12 = O. (29d) 

We look for a Laurent expansion (in the neighborhood of to) 
of the form 

a 

p = L Pj (t - to) j - 1. 

j=O 

(2ge) 

In order to find the resonance positions we substitute into 
the equation composed ofleading terms (6ptt + 5Ap3 = 0) 
the following form of p: 

(29f) 

The resonances are the roots of the coefficient of 
p, (t - to)'- 3 = 0, and are given by r = - 1,4, where 
r = - 1 corresponds to the arbitrariness of to. After substi
tuting (2ge) into (29c) and equating the coefficients of dif
ferent powers of (t - to) to zero it may be checked that 
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PI = 0, P2 = 0, P3 = 0, P4 = arbitrary. 

So the expansion (2ge) satisfies the Kovalvskaya criterion, 
and thus (29c) and hence (29b) may be said to pass the 
Painleve test. 

For m = 6: (u = 1, Us = 0), 

U6 = arbitrary, 

"'6 = - ("'oufi6) - !(i"'4t - 3i",s /, + A"'4 + U4"'2 

+ U3"'3 + U2"'4)' (30) 

X6 = - (Xoufi6) - !( - i X4t + 3iXs /, + AX4 + U4X2 

+ U3X3 + U2X4), 

and the compatibility condition written below 

- i/,(Xo"'s - "'oXs) + i(Xo "'4t - "'OX4t) 

+ (A 13 )(XO"'4 + "'oX4) + (u4/3 )(XO"'2 + "'oX2) 

+ (u~3 )(XO"'3 + "'oX3) + (u2/3 )(XO"'4 + "'oX4) 

= - U2tt + 2U3t/' + ( - 2/; + 2 + 4uu2)U4 + u3/'t 

+ 2uu; + 2("'sXI + "'IXs) + 2("'4X2 + "'2X4) 

+2"'3X3' (31) 

which is satisfied by previous results. 
For m = 7: (u = 1, Us = 0), 

U7 = -b{ - [u3tt - 4u4t /, - 2u4/'t - 12u3u4] 

+ 6("'7XO + "'oX7) + 6("'6XI + "'IX6) 

+ 6("'SX2 + "'2Xs) + 6("'4X3 + "'3X4)}' 

"'7 = - -h ( - i"'st - 4i"'6/' + A"'s + U6"'1 + U4"'3 

+ U3"'4 + u2"'s + "'ou7 ), 

X7 = - -h( - iXst + 4iX6/' + AXs + U6XI 

+ U4X3 + U3X4 + u2Xs + XOu7)· 
Form = 8: (u= 1, Us =0), 

Us = arbitrary, 

"'S = -14[i"'6t - 5i"'7/' + A"'6 + U7"'1 
+ (U6"'2 + U2"'6) + u3"'s + U4"'4 + Us "'0]' 

Xs = -14[ - iX6t + 5iX7/' +AX6 + U7XI 

(32) 

+ (U6X2 + U2X6) + u3Xs + U4X4 + usXo], (33) 

and the compatibility condition 

U4tt + 12u6 I; - 12u6 - 12(2u6u2 + u~) 
= - !{i(Xo "'6t - "'OX6t) - 5i(XO"'7 - "'oX7) /, 

+ (A + u2) (XO"'6 + "'oX6) + U6(XO"'2 + "'oX2) 

+ U4(XO"'4 + "'oX4) + u3(Xo"'s + "'oXs)} 

+ 12("'7XI + "'IX7) + 12("'sX3 + "'3XS) + 12"'4X4, 
(34) 

which is identically satisfied by our previous results. 
However, this branch has a resonance at r = - 3, 

which does not contribute to the introduction of arbitrary 
functions. So here we have eight resonances and seven arbi
trary functions: Ao (corresponding to r = 0); 1 (t) (corre
sponding to r = - 1); U4 (corresponding to r = 4); "'5' X 5 
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(corresponding to r = 5); U6 (corresponding to r = 6), U8 
(corresponding to r = 8), so that the number of arbitrary 
functions is one less than the number of resonances and one 
cannot conclude that this branch exhibits the Painleve prop
erty. 

v. TRUNCATION OF THE EXPANSION 

One of the most important aspects of the Painleve analy
sis due to Weiss et al. is that sometimes it may be possible to 
truncate the expansion over the singular manifold at a finite 
number of terms. But in that case one has an overdetermined 
set of equations whose consistency is not at all obvious. Let 
us start from Eqs. (3) and set U3 = U4 = .. , = 0, "'i = Xi 
= 0 for j>2 leading to the following (in all these calcula

tions we set u = 1): 

j= 1: UI = 2",xx' (35) 

j = 2: - 12tP!u2 + 6 tP; - 6 tP! - 8 tPxtPxxx 

+ 6tP!x + 3",oXo = 0, (36) 

j = 3: 24tPxtPttPxt + 6 tPxxtP; + 6 tP!tPtt - 36 tP!tPxx 

- [18 tP!tPxxxx - 6 tP"!x + 72 tP!tPxx U2 

+ 24 tP"! u2x ] + 9( "'oXo) xtPx = 0, (37) 

j = 4: - 12 tP!t - 12 tPxtPxtt - 12 tPttPxxt - 6 tPxxtPtt 

+ 18 tP!x + 24 tPxtPxxx - [4 tP!xx 

- 6 tPxxtPxxxx - 12 tPxtPxxxxx - 12 tP!u2xx 

- 36 tP!xU2 - 48 tPxtPxxxU2 - 72 tPxU2xtPxx] 

= (3",oXo)xx - 6 tPx ("'oXl + "'IXo) x 

- 3("'oXl + "'IXo) tPxx, (38) 
j = 5: 6tPxxtt - 6tPxxxx - (2 tPxxxxxx + 12 tPxx U2xx 

+ 12 tPxxxxU2 + 32 u2x tPxxx) 

= 3 ("'IXo + XI"'O) xx' 
j = 6: lastly, forj = 6 we have 

(39) 

u2tt - U2xx - iUlxxxx - (ui)xx = ("'IXI) xx' (40) 

Similarly, if we again start from the second and third equa
tions of (2) we get the following. 

Atj= 1: 

- i"'o tPt - 2",ox tPx + "'otPxx - 2 tP! "'I = 0, 

iXo tPt - 2Xox tPx + XotPxx - 2 tP!XI = O. 

Atj = 2: We get 

i"'ol + "'oxx + A"'o + 2 tPxx "'I + u2"'0 = 0, 

- iXol + XOxx + AXo + 2 tPxxXI + u2Xo = O. 

Atj= 3: 

i"'ll + "'lxx + A"'I + U2"'1 = 0, 

- iXII + Xlxx + AXl + U2Xl = O. 

(41) 

(42a) 

(42b) 

(43a) 

(43b) 

It is also useful to note the following relation that has been 
repeatedly used in our subsequent calculation: 

tP!(XO"'1 + "'oXI) = ("'oXo)tPxx - ("'oXo) xtPx· (44) 

Now after the truncation, we get 
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u = 2(log rP )xx + U2, '" = "'oIrP + "'I' 
1'= xoirP + XI' 

(45) 

It is also interesting to observe that (U 2''''I'X I) satisfy the 
same set ofPDE's as (u,"',X). But the whole process oftrun
cation can only be justified if and only if it can be shown that 
Eqs. (35)-(39) and (40)-(44) are all mutually consistent. 
In the following section we set out to prove this compatibility 
in stages. 

VI. COMPATIBILITY OF THE OVERDETERMINED SET 

At first we observe that 

(42a) XXo + (43a) X "'0 
~ - 2( "'oXo) Ax + 2( "'oXo) rPxx 

- 2rP; (1'0"'1 + "'oXl) = 0, (46) 

or 

- ("'oXo)Ax + ("'oXo) rPxx = rP; (1'0"'1 + "'oXl)' 

Also (37)-(36) XrPxx + [a lax (36)] XrPx implies 

rP; [6 rPlI - 6 rPxx - 2 rPxxxx - 12 rPxx U2 

- 3(1'0"'1 + "'oXl) ] = 0. (47) 

For ease of computation we now set rP (x,t) = x - I (t). 
From Eq. (36) we get 

U2 = -b[6/; - 6 + 3(",oXo)]' (48) 

From (42a) and (43a) we obtain 

"'I = Hi"'oft - 2",ox]' XI =! [ - iXo ft - 2Xox]' 
(49) 

along with 

1'0"'1 + "'01'1 = - ("'oXo) x' (50) 

So we now substitute these in 

i"'I' + "'Ixx + ).,"'1 + U2"'1 
of ( 43a). To see that this expression vanishes identically if 
and only if U2x - !ft, = 0, we deduce as follows. We have 
from (37), 

6ft, + 24 U2x = 9(",oXo) x' 

But we also have 

("'oXo)x = - (1'0"'1 + "'oXl)' 
So from (47), 

2ft, = - (1'0"'1 + "'oXl) 

(51) 

(52) 

leads to U2x - !ft, = 0, which is merely a consequence of 
Eq. (43a). It is not very difficult to observe that in this way it 
can be shown that all of these overdetermined sets of equa
tions are compatible with each other. 

VII. A GENERALIZED PROOF VIA HIROTA'S 
APPROACH 

A general proof of the truncation, and thereby a proof of 
the justification of the associated Backlund transformation, 
can be made if we convert our full set of equations to bilinear 
form. If we set 
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u= (210g/)xx =D;J-Ilj2, ",=glJ, X=hll 

(53) 

in Eqs. (2) then we can write these as 

(D; -D; - (0'13) D! +p)/'I=gh, 

where p is a constant of integration, along with 

(54) 

(iD, +D; +)")g'I=O, (55) 
(-iD, +D; +)")h'I=O, 

An important observation that encourages us to combine the 
techniques of Hirota and Weiss is that the Backlund trans
formation (45) can be written in a neat form 

I (n) - .I. I (n - I) 
- '('(n-I) , 

g(n) = .1. I(n - I) + .I. g(n - I) 
'('0 '('(n-I) , 

h(n)-X I(n-I)+.I. h(n-I) - ° '('(n-I) , 

(56) 

We now assume that if the set (In, gn, h n) satisfies the 
Hirota set of equations (54) and (55), then also (In-I, 
gn - I, h n - I) if and only if the overdetermined system of 
equations obtained from the Weiss analysis is satisfied, To 
proceed with the induction procedure we substitute (56) in 
(54) and (55) when (J, g, h) are replaced by (I n, gn, h n), 

for 0' = 1: 

D;(rPn_1 r-I'rPn-1 r- I) 

or 

- D;(rPn_1 r-I'rPn-1 r- I) 

- !D!(rPn_1 r-I'rPn-1 r- I
) 

+P(rPn-1 r-I'rPn-1 r- I) 

= ("'0 r- I +rPn-lgn-I)(Xo r- I +rPn_l hn - l ) 

(57) 

{2 [rP(n _ I) rP(n _ 1)11 - rP~n _ I), ] (I n - 1)2 

or 

+ rP!_ID;(ln-lf n- I)} - {2[ rP(n-l)rP(n-I)XX 

- rP~n-l)x] (In-I)2 + rP!_ID; [/n-I'r- I]) 

+ - H 2rP(n - I) rP(n - 1)= - 8 rP(n - I)xrP(n - I)xxx 

+ 6 rP~n-l)xx] (In-I)2 - H2 rP(n-l)rP(n-l) 

- 2 rP~n-l)x] [2/ n- 1 I~-I - 2(/~-1)2] 

- !rP!_ID! (In-I'ln-l) 

+ P(rPn-1 In-I'rPn_1 In-I) 

= "'oXo(ln-I)2 + (In-I)2rPn _ 1 [Xo( gn-'lln-I) 

+ "'o(h"-III"- I)] +rP~I_l)gn-lh"-1 (58) 

2[ rP(II-l)rP(II-I)tt - rP~II-I),] (/"-1)2 

- 2[ rP(II-l)rP(II-I)XX - rP~II-I)X] (/"-1)2 

- H 2rP(lI_ I) rP(lI- I)xxxx 

- 8rP(n _ I)A(II- I)xxx + 6 rP~lI- I)xx ] (/"- 1)2 

- H2 rP(lI- I) rP(II-I)XX - 2 rP~lI- I)X] 

X [2/"- 1 I~-I - 2(1:- 1)2] 
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+ [1,6~n-l) (D~ - D; - !D! + p)(fn-I-jn-I) 

-1,6~n-1) 'g"-Ih n
-

I ] 

= "'oXo(f n- I)2 + (fn-I)2I,6n_1 [Xo(g"-llf n- l ) 

+"'o(hn-Ilf n- I)]. (59) 

Now the terms in the last bracket on the left-hand side equal 
zero, and if we now divide by (f n - I) 2 on both sides then we 
get 

2[ l,6(n - 1)I,6(n - I)tt -1,6~n - I)t] 

- 2[ l,6(n - 1)I,6(n -I)xx -1,6~n -I)X] 

- ! [21,6(n - I )1,6(n - I )xxxx - 81,6(n - I )xl,6(n - I)xxx 

+ 61,6~n -I)XX] - H21,6(n -1)I,6(n - I)xx - 21,67n -I)X] 

. [2fn -If~x-I- 2(/~ -1)2]. [1/(/n-I)2] 

= "'oXo +l,6n -I [XO(g" - Ilf n - I) 

+"'o(hn-Ilf n- I)]. (60) 

Now it is easy to observe that 

2[fn-l·fn-l- (fn-I)2] 
xx x 2(1 fn-I) (61) [fn-I]2 = n xx=U2, 

and then by rewriting 1,6 for I,6n _ I and "'I for g" - Ilf n - I and 
XI for h n-Ilf n- I, we have 

2(l,6l,6tt -1,6;) -2(l,6l,6xx -1,6;) -!(¥l,6xxxx 

- 81,6xl,6xxx + 6fxx) - 2[ 21,61,6xx - 21,6; ] U2 

= I,6(XO"'1 + "'oXI) + "'oXo' 

So we can write 

6(l,6l,6tt -1,6;) - 6(l,6l,6xx -1,6;) - (21,6l,6xxxx 

- 81,6xl,6xxx + 61,6!x) - 6[ 21,61,6xx - 21,6; ] U2 

= 3",oXo + 31,6(Xo"'l + "'oXI)' 

so that 

1,6 [ 6I,6tt - 6I,6xx - 21,6xxxx - 121,6xxu2 

- 3 (XO'" I + "'oXI)] - [6 f, - 61,6; - 81,6Axxx 

+ 6fxx - 121,6;u2 + 3",oXo] = 0, 

(62) 

(63) 

(64) 

and this equation is identically satisfied if and only if the 
expression in each of the brackets vanishes individually, 
which is obtained from Eqs. (36) and (37). 

Let us differentiate Eq. (36) with respect tox and multi
ply by I,6x to get 

12fxu2x = - 241,6;l,6xx U2 + 121,6xl,6tl,6xt - 121,6;l,6xx 

+ 41,6xl,6xxl,6xxx - 8 fxl,6xxxx + 31,6x ("'OX o)x· 

(65) 

Also by multiplying (36) by I,6xx and by rearranging we get 

6I,6xA; = 121,6;l,6xxu2 + 61,6;l,6xx 

+ 8I,6x<Pxx<Pxxx - 6<p;x - 3<pxx("'oXo)' (66) 

Now using (65), (66), and (37) we arrive at 

6I,6tt - 6I,6xx - 2<pxxxx - 12<pxxu2 - 3(Xo"'l + "'oXI) = O. 

It is then easily observed that (64) is identically satisfied 
when (36) and (37) are used. We similarly get 
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<pU"'Ot + "'oxx + "'ou2 + 2<pxx"'l + A"'o) 

+ ( - i"'o<pt + "'0 <Pxx - 2"'ox<Px - 2 <p; "'I) = 0 (67) 

along with 

<p( - iXo +Xoxx + XOU2 + 2<PxxXI + AXo) 

+ UXo<Pt + Xo<Pxx - 2XOx<Px - 2 <P;XI) = 0, (68) 

which are identically satisfied when Eqs. (41) and (42) are 
satisfied. 

VIII. BACKLUND TRANSFORMATION 

Since (u,u2), ("""'I'X,X I) form, respectively, two sets of 
equations for the same equation we can try to iterate the 
Backlund transformation BT to construct the new nontrivial 
solution by starting from a trivial one. Since the starting 
solution looks similar in both of the formalisms, we start 
from the Hirota set of equations (53) and (55), and set 

f (0) = I + Efl + c/z + "', 
g(O) = Aei(kx- wt) [1 + Eg

I 
+ cg2 + ... ], (69) 

h (0) =Be- i(kx-wt)[1 + Ehl + Ch2 + ... ], 
which immediately leads to 

ft = - hI = - gl' fltt - ftxx - !ftxxxx + 2pft = 0, 

fix -flftxx =0, (D~-D; -!D!)fl·fl=O. (70) 

To obtain a general solution we set 

ft = p(x)q(t) = P eax + bt + Qeax - bt, (71) 

b = (k - 2p)1/2, a2 + a4/3 = k. But the third equation of 
(70) sets either P or Q equal to zero. So finally we obtain 

fl = Peox +bt, gl = - fl' hI = - fl' 

f (0) = 1 + P eQX + bt, AB = p, 

g(O) =Aei(kx-wt)[I_Peox+bt], 

h (0) = Be - i(kx - wt) [1 _ P eQX + bt], 

b=~k-2p, 3a2 +a4 =3k, w-k 2 +A=0, 

2a2Peax + bt (72) 
U= , 

(1 + Peax+btf 

A [1_Peax +bt ]ei(kx-wt) 

'" = (1 + P eax + bt) 
B [1_Peax +bt ]e- i(kx-wt) 

X = (1 + P eax + bt) , 

which is nothing but the one-soliton solution. Since in the 
previous section we have proved the equivalence of the for
malism of Weiss et al. and that of Hirota for u = 1, this 
solution is actually the solution of the BT determined by the 
truncation. Actually, as observed by Steeb et al. 13(b) and lat
er by Gibbon et al. 13

(C) (through a more detailed investiga
tion) the truncation in Weiss formalism and in the formal
ism of Hirota is identical. 
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The present paper deals with the scattering of waves in two-dimensional space by the random 
surface of a circular object, which is meant to be a preliminary study for treating three
dimensional scattering by a random sphere. The theory is formulated using a stochastic 
functional method and a group-theoretic consideration related to the rotation of the circle, in a 
manner analogous to the authors' previous treatment of the scattering by a planar random 
surface [Radio Sci. 15, 1049 (1980); J. Math. Phys. 22, 471 (1981); Radio Sci. 16,831,847 
( 1981 ); J. Opt. Soc. Am. A 2, 2208 (1985)]. First, the randomly scattered wave for 
cylindrical wave injection is given in terms of the Wiener-Hermite functional of the random 
field on the circle, and then the scattered field for plane-wave injection is synthesized by 
superposing cylindrical waves. The differential cross sections for the coherent and incoherent 
scattering are obtained, and a statistical version of the optical theorem is shown to hold. Some 
numerical calculations are made for the Mie scattering by the random circular surface with 
Dirichlet and Neumann conditions. 

I. INTRODUCTION 

The problem of wave scattering by a sphere with ran
dom surface is often encountered in practical problems, such 
as light scattering by interplanetary dust particles, 1-3 Raman 
scattering by microcrystalline particles,4-5 the radio-wave 
scattering by distorted rain drops,6 and radio-wave propaga
tion along the spherically curved irregular surface of the 
earth. The present work has been motivated actually by the 
need of theoretical analysis for such scattering phenomena, 
which also is a theoretically interesting problem as the sto
chastic scattering by a random spherical object. 

On the other hand, the problem of the scattering by a 
random planar surface, including theories and applications, 
has been studied so far by a number of scholars using various 
techniques such as the small-perturbation method,7 Kirch
hoff approximation,8 renormalization techniques,9-14 etc.; 
theoretical difficulty being mainly due to the multiple scat
tering. In a series of preceding works of the authors, 15-18 the 
scattering of a plane wave by a random planar surface has 
been treated successfully by means of the stochastic func
tional approach, which was previously introduced in the the
ory of propagation in random media. 19,20 In those works, the 
random planar surface is regarded as a statistically homo
geneous Gaussian random field, and the scatterred wave 
field is regarded as a stochastic nonlinear functional of the 
Gaussian random surface. A nonlinear functional of a Gaus
sian process can be dealt with by means of Wiener-Hermite 
functionals; the theory originally due to Wiener and oth
ers21-24 has found diverse applications such as the turbu
lence25-27 and system theory.28-30 By a group-theoretic con
sideration on the stochastic homogeneity of the random 
surface, the random wave field scattered by it is shown to 
have a specific form analogous to the Ploquet theorem for a 
periodic surface. The wave field as a stochastic functional is 
then developed into a series of orthogonal Wiener-Hermite 
(WH) functionals satisfying the wave equation, and as a 
result the boundary condition on the random surface is 
transformed into the hierarchy of equations for the expan
sion coefficients, so-called Wiener kernels, which can be 

solved approximately assuming the roughness to be small. 
The statistical quantities of the random wave field involving 
the effect of multiple scattering, such as the coherent ampli
tude (average part) and the angular distribution or the dif
ferential cross section for the incoherent scattering (random 
part), can be easily calculated from the stochastic functional 
solution so obtained. Notice that the divergence difficulty 
arising in the perturbation theory7 can be circumvented in 
the present method without recourse to the renormalization 
technique (e.g., the scalar wave with Neumann surface,31 
electromagnetic wave with perfectly conducting surface, 17 
and surface plasmon mode of silver film. 32 A treatment 
based on the WH functional calculus was recently given by 
Ref. 33. 

Although the scattering by a random sphere has been 
treated in several ways by assuming a suitable model for a 
random spherical surface, 1-3,34 no work has yet been made of 
the theoretical formulation as a spherical scattering problem 
just like the well-known scattering theory for a nonrandom 
sphere;35 it is perhaps because of the lack of techniques to 
handle a random field on the sphere and partly because of the 
complex manipulation of spherical functions in the pertur
bation calculus. In the present paper we intend to develop 
such a formulation based on the stochastic functional ap
proach, which is particularly essential when we deal with the 
Mie scattering for a random sphere. However, before going 
into the three-dimensional (3-D) scattering by a random 
sphere, we start with the simpler problem of 2-D scattering; 
that is, the scattering by a random circular surface in 2-D 
space. Though such a problem may not be practical at the 
moment, it will serve as a preliminary model for a more com
plicated spherical problem: an experimental work is report
ed of the light scattering by a metallic wire with random 
cylindrical surface,36 The circular problem is theoretically 
much simpler than the spherical one without the knowledge 
of the rotation group,37 and is easily comprehensible because 
of the similarity of various theoretical formulas between the 
cases of random planar surfacel5,16 and the random circular 
surface in the present paper. In the 2-D analysis, the random 
circular surface is assumed to be a Gaussian random field 
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statistically homogeneous with respect to circular rotations, 
and the random wave field that undergoes the transforma
tion as an irreducible representation of the rotational mo
tions gives the stochastic analog of the Floquet theorem. 
Therefore, we first solve the scattering problem for the cylin
drical wave injection corresponding to an irreducible repre
sentation and then obtain the wave field for plane-wave in
jection by superposing the stochastic cylindrical solutions; 
this implies the decomposition into irreducible components. 
The stochastic Floquet solution, as a functional of the ran
dom surface, is again expanded in terms of the WH function
als, and the boundary condition on the circular random sur
face is solved to yield the expansion coefficients. From the 
stochastic solution the statistical properties ofthe scattering 
are easily calculated, such as the differential cross sections 
for the coherent and incoherent scatterings, and the stochas
tic version of the optical theorem which gives the relation
ship between the total cross section and the coherent ampli
tude for the forward scattering. 

At this point it should be noted that there is some simi
larity between the two cases for the planar random surface 
and the circular one: this is basically a result of the fact that 
the underlying groups, i.e., the translational motions on the 
plane and the rotational motions of the circle, are both com
mutative additive groups and that the irreducible represen
tations are given by 1-0 exponential functions/8 which are 
trivially easy for multiplicative calculations. In the case of a 
random sphere, however, we have to deal with the noncom
mutative rotation group associated with the rotational ho
mogeneity of the random field on the sphere, where the mul
tiplication of the irreducible components involves a more 
intricate calculus. 37,38 It will be shown in a succeeding paper 
that the representation theory of the rotation group plays an 
important role in the theoretical formulation of the stochas
tic scattering by a random sphere, which is to be compared 
with the 2-0 case in the present paper. The theory and the 
results in the present paper, therefore, will be very helpful for 
the understanding of the more complex 3-0 formulation and 
for the comparison of the results as well. 

II. HOMOGENEOUS RANDOM FIELD ON A CIRCLE 

The formulas and the arguments in the following are 
quite analogous to those in the planar case15

,16 (see also Refs. 
19 and 20). Let the homogeneous random field on a circle S2 
(0.;;;0 < 217') be denoted by 

r = f( O,w ), (f( O,w » = 0, ( 1) 

where WEn indicates the probability parameter denoting the 
sample point in the sample space nand ( ) denotes the 
probabilistic average over n. For a strictly homogeneous 
random field on the circle, we can define the group of mea
sure-preserving transformations TIJ (0: mod 217') on n such 
that 

(2) 

where the transformations T a (O.;;;a < 217') have the proper
ties 

852 

Ta'Ta,= Ta,+a" [Ta]-I = T- a, 

TO = 1 (a: mod 217'), 
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(3) 

which gives a representation of the additive group on a circle 
S2, namely, the group of rotational motions. 

Let 1/I(O,w) be a random field on the circle generated by 
the homogeneous random field (1) and define the shift 
transformation of the random field 1/1 ( O,w) by 

Da1/l(O,w) =1/1(0 + a,T -aw ), a: mod 217', (4) 

Da'Da, = D a, +a" [Da] -I = D -a, 

DO = 1, a: mod 217', (5) 

where (5) again gives a representation of the rotation group 
on S2 similar to (3). 

Now a D a -invariant random field u (O,w) such that 

Dau(O,w) = u(O + a,T -aw ) = u(O,w) (6) 

is a homogeneous random field on S2; namely, 

u (O,w) = u( TIJw), u(w) =u (O,w), (7) 

which is of the same form with (2). The random field 
<Pm (O,w), which gives the 1-0 representation (group index 
eirna ) of the transformations D a such that 

D a<prn (O,w) = <Pm (0 + a,T - aw ) 

= eima<pm (O,w), mod 217', 

can be written in the form 

(8) 

<Pm (O,w) = eimIJurn (TIJw), m = 0, ± 1, ± 2,.... (9) 

Generally speaking a random field on the cirIce 1/I(O,w) can 
be decomposed into the sum of the random fields of the form 
(9); 

00 

1/I(O,w) = L eimIJurn(TIJw), (10) 
m= - 00 

where the homogeneous random field Urn (T"'w) can be giv
en by 

1 i21T 

. urn (TIJw) = - e- 1maD a 1/l(0,w)da. 
217' ° 

(11 ) 

The homogeneous random field (2) with zero mean has 
the following spectral representation: 

00 

f(O,w) =f( TIJw) = L einIJFnBn (w), (12) 
n = - 00 

where Bn (w), n = integer, denotes a set of normalized or
thogonal random variables with zero means: 

(Bn(w» =0, 

< Bn (w)Bm (w» = ~nm' n,m = 0, ± 1, ± 2, ... , 
(13) 

the overbar indicating the complex conjugate quantity. It 
should be noted that B n = B _ n' and F n = F _ n because of 
real-valued! The spectral representation of the correlation 
function readily follows from (12) and (13); 

00 

R(O) = (f(w)f(TIJw» = L einIJ lFnl 2
, (14) 

n = - 00 

so that IFn 12 corresponds to the so-called power spectrum, 
which we will call it also in the present case. The orthogo
nality (13) is a consequence of the homogeneity of the ran
dom field, and can be derived also from the random variable 
FnBn (w) given by the Fourier transform: 
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(15) 

In what follows we assume fix,OJ) to be a Gaussian random 
field so that B n 's are a set of independent complex Gaussian 
random variables with zero means, that is, a complex se
quence of Gaussian white noise. By ( 15) it is shown that the 
random variable B n (OJ) is transformed under D Q or TQ like 

DQBn(OJ) =Bn(T-aOJ) =e-inaBn(OJ), (16) 

that is, Bn (OJ) is an eigenvector of D a with the eigenvalue 
e- ina• 

III. SCATTERING BY A CIRCULAR CYLINDER WITH 
HOMOGENEOUS RANDOM SURFACE 

Homogeneous random cylindrical surface: Let the cylin
drical coordinates in a 2-D space be denoted by (r,O) and a 
homogeneous random field on a circle with radius a be 

r = a + I(TIJOJ), (/(TIJOJ» = 0, (17) 

where I( TIJOJ ) denotes a homogeneous Gaussian random 
field on the circle with the spectral representation given by 
(12)-(14). We regard the variance of the random surface, 
i.e., 

00 

a2=R(O) = (1/(OJ)1 2
) = L IFn1 2

, (18) 
n = - 00 

as the parameter describing the surface roughness. 
Wave equation and the boundary condition: Let the 2-D 

Helmholtz equation for the random wave field ",(kr,O,OJ) be 
given by 

(V2 + k 2)",(kr,0,OJ) = 0, (19) 

k being the wave number. We consider the two kinds ofho
mogeneous boundary conditions on the circular random 
surface defined by (17): 

",(kr,O,OJ) = 0; r = a + I(O,OJ) (Dirichlet), (20) 

a",(kr,O,OJ) =0. r=a+ji(O,OJ) (Neumann), (21) 
an ' 

where a/an denotes the normal derivative on the random 
surface. The boundary condition on the random surface 
(20) or (21) can be represented by the approximated 
boundary condition on the surface r = a as follows: 

[ '" + I ~~ ] r ~ a = 0 (Dirichlet) , (22) 

[ 
a", _ ~ al a", a 2", ] = 0 
ar r ao ao +1 ar r~a (Neumann), 

(23) 

which we will use as a model of the random boundary condi
tion on the circle. 

Cylindrical-wave expansion 01 a plane wave: The plane 
I 

wave with the wave vector k = (k,a) can be expanded into 
cylindrical waves by the formula 

(24) 
m= - 00 

r = (r,O) denoting the position vector, andJm (z) the Bessel 
function. Therefore, the wave solution for the plane-wave 
incidence can be given by superposing the solutions for the 
injection of cylindrical waves J m (kr) eimIJ, m = integer. 

Unperturbed field (primary wave): In the nonrandom 
case with a2 = 0 (smooth cylinder), as well known, the un
perturbed wave field for the cylindrical wave injection can be 
given by 

",c;,,(kr,O) = [Jm(kr) +ac;"H~)(kr>]eimIJ (25) 

= H H~)(kr) + e2i6mH ~)(kr) ]eimIJ, (26) 

ac;" =iei6m sin 8m 

- Jm (ka)/H ~)(ka) (Dirichlet) 

- jm (ka)/iI~)(ka) (Neumann), 

(27) 

(28) 

where the overdot indicates the differentiation; j m (z) 

= dJm (z)/dz, and H ~)(z) denotes the Hankel function of 
the first kind. The first and the second term of (26) gives the 
incident cylindrical wave and the scattered wave, respective
ly, and 8m denotes the phase shift defined by (27) and (28). 

It should be noticed that the cylindrical wave ",c;" (kr,O) 
(independent of OJ) is transformed under the shift (rotation) 
Daas 

Da",c;" (kr,O) = ",c;" (kr,O + a) = eima",c;" (kr,O), (29) 

that is, it is an eigenfunction (basis of an irreducible repre
sentation) with the eigenvalue (group index) eima (Ref. 38). 

Perturbed wave field (secondary wave): In the case of 
random surface (a2 > 0), let the total wave field for cylindri
cal wave injection be 

'" m (kr,O,OJ) = ",c;" (kr,O) + '" :.. (kr,O,OJ). (30) 

We note here that the wave equation (19) and the boundary 
condition (20), or (21), associated with the homogeneous 
random surface (2) are invariant under the operation D a 

because of (6), so that the wave solution (30) and therefore 
the perturbed field "':.. undergoes the same transformation 
as (29); which means the transformation (8), 

D a",:.. (kr,O,OJ) ="':.. (kr,O + a,T - aOJ) 

= eima",:.. (kr,O,OJ). (31) 

Wiener-Hermite expansion 01 the perturbed field: The 
perturbed wave field is a nonlinear functional of the Gaus
sian random surface represented as (12), and therefore, is 
expressible as a functional of the complex Guassian random 
sequence B n (OJ). We represent it as a WH expansion in the 
form 

00 00 

"':.. (kr,O,OJ) = L L ~ An(. ·)H(1) (k)i(m+i,+···+in)IJHA.(B B) 
£.. m jl,···,jn m+j, + ... +in r e n i, , ... , in 

n=Oj. = - 00 j,,= - 00 

j= - 00 

00 

+ L ~ A2 (j" j. )H(l) . . (kr)ei(m+ i,+i2) IJH (B B.) + ... 
~ m.' 2 m+JI +12 2 1.' 12 ' (32) 

i. = - 00 i2 = - 00 
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where A ;:, (jl, ... ,jn)' which we call the WH coefficient, de
notes the n-variate coefficient symmetric with respect to its n 
arguments, and it (Xj, , ... ,xjn ) is the n-variate complex Her
mite polynomial, some lowest-order polynomials of which 
are 

Ho = 1, HI(x) =X, H2(xj,,xj,) =xj,Xj, -(jj,_j" .... 
(33) 

[For the WH expansion and multivariate Hermite polyno
mials, see the Appendices of Refs. 15, 16, and 19, and the 
references therein. Equation (32) corresponds to a discrete 
version of the WH expansion. For more details, see Ref. 39.] 
The first term of the expansion (32) gives the average (co
herent) part and the second term, and the following are the 
random (incoherent) part with zero average which we de
note by 7/liC in the following. In view of the transformation 

'" rule of Hn (Bj, , ... ,Bjn) under D a, that is, 

D aH'" (B B) - i(j, + ... + j.)aH'" (B B) 
n il , ... , ill = e n il , ... , in ' (34) 

we note that the nth-order term of the WH expansion (32), 
i.e., 

A. (k 0 )-H(I) (k) (m+j,+"'+jn)(J 
'I'm r"w = m+j,+···+j. r e 

'" XHn (Bj" ... ,Bj), (35) 

which is a cylindrical wave satisfying the wave equation 
( 19), obeys the same transformation rule as (8) or (31): 

D al/J;:' (kr,O,w) = eimal/J;:' (kr,O,w). (36) 

Scattered wave field for cylindrical wave injection: To 
summarize, the total wave field 7/lm for the cylindrical wave 
injection can be written 

7/lm (kr,O,w) = t/?", (kr,O) + ¢1m (kr,O,w) (37) 

= ¢fm (kr,O) + til:.. (kr,O,w), (til:..) = 0, 
(38) 

where 

7/I"m (kr,O) = [Jm (kr) + amH~)(kr) ]eiml1, (39) 

co 

til:.. (kr,O,w)-= L L'" LA;:'(jI, ... ,jn)l/J;:'(kr,O,w), 
n = 1 i. in 

(41) 

¢fm gives the coherent part and 7/1~ the incoherent part for 
cylindrical wave injection. We call am the coherent scatter
ing coefficient. 

Scattered wave field for plane-wave injection: The total 
wave field for plane-wave incidence with the wave vector 
k = (k,a) can be obtained by superposing 7/lm in m accord
ing to (24), which implies the decomposition (10). Corre
sponding to the equations (37) - ( 41 ), we have 

7/I(kr,O,w) = 7/lO(kr,O) + ¢I(kr,O,w) (42) 

-=7/lC(kr,O) + tIIC(kr,O,w), (7/liC) = 0, (43) 

where 
co 

7/lC(kr,O) -= L ;m¢fm (kr,O)e - ima (44) 
m= - 00 
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co 

L ;m[Jm(kr) +amH~)(kr>]eim(l1-a), 
m= - 00 

co 

tIIC(kr,O,w) = L ;m7/l~(kr,O,w)e-ima 
m= - 00 

m=~ co ;me-
ima

[ ~A ~ (j)H~~j(kr) 
X ei(m + MHI (Bj ) 

+ LLA;"(jI,j2)H~~j,+j2(kr) 
i, i2 

Xei(m+ j,+j,)I1H (B. B.) + ... ]. 
2 )1' 12 

IV. STATISTICAL CHARACTERISTICS OF THE 
SCATTERED WAVE FIELD 

(45) 

(46) 

(47) 

Coherent scattering amplitude: Without loss of gener
ality we assume that the direction of incidence of the plane 
wave is in the z axis, that is, a = O. The asymptotic form at 
r-+ 00 of the coherent scattered wave t/r. (kr,O), which is giv
en by the second term of ( 45) without the incident wave, is 
given by 

co 

t/r.(kr,O) = L ;mamH~)(kr)eiml1 (48) 
m= - 00 

_ ~ 2 ei(kr- (l/4)1r) f a meiml1 
11'kr m = - co 

eikr 
-=- <1>(0), 

Ii-
(49) 

~
co 

<1>(0) = - ~ a eiml1 
k11'i m=~ co m , 

(50) 

where <1>(0) gives the coherent scattering amplitude. 
Total coherent power flow: The total power flow due to 

~, which is integrated over a surrounding circle with radius 
r, can be evaluated at r-+ 00; 

Sc = lim ~ r21T 

Im[ ~ a~]dO 
r-co k Jo ar 
1 co 

=- L (-I+ll+2am I2 ) 
r m=-oo 

(51) 

(52) 

Total incoherent power: The total power flow due to 7/liC, 
integrated over a surrounding circle, is shown to be constant 
with probability 1, so that it equals to its average, which can 
be similarly evaluated at infinity: 

(53) 

(54) 
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Power flow conservation law: If we apply the Gauss 
theorem to the circular region with radius r surrounding the 
random circle, we obtain the conservation law of the total 
power flow Sc + Uic = 0 with probability 1 (regardless of 
the random surface), that is, 

4 00 [ - L Ream + lam l2 

k m=-oo 

+ i n! L .,. L IA ;:'(jl, ... ,jn)12
] =0. (55) 

n = I i, i. 

Total scattering cross section: The second term in the 
bracket of (55) gives the power flow Uc due to the coherent 
scattered wave 1/1'. (kr,O). Hence, the sum of Uc and uic gives 
the total scattering cross section: 

4 00 [ 

S=uc +uic ="k m=~oo lam l2 

+ i nl ~ ... L IA;:' (jl>···,jn )12] . 
n = I J, i. 

(56) 

Optical theorem: In view of (50) and (56), the power
flow conservation law (55) can be rewritten in the following 
form: 

S = ~81Tlk Im(<I>(O)/Ji) (57) 

that is, the total scattering cross section is given in terms of 
the imaginary part of the coherent foward-scattering ampli
tude; this is an extended version of the optical theorem to a 
random surface scattering. 

Angular distribution of coherent scattering (differential 
cross section for coherent scattering): From (49) we obtain 

Uc(O)dO=I<I>(O)12dO=~\ i ameim9\2dO. (58) 
1Tk m= - 00 

Angular distribution of incoherent scattering (differen
tial cross section for incoherent scattering): From (35), (47), 
and (53), we obtain 

2 00 

uic(O)dO =- L n! L '" L 
1Tk n = I j, j, 

X \ m =~ 00 A;:' UI,.··,jn )e
im9 \2 dO. (59) 

Equations (58) and (59), when integrated, give U c and uic ' 
respectively. 

Power conservation law for cylindrical wave injection: It 
is shown that the power conservation law for the plane-wave 
incidence (55) does hold termwise for each m, correspond
ing to the conservation law for the cylindrical wave injection. 
We express this in the form of (51 ) : 

00 

1 = 11 + 2am 1
2 + 4 L n! L ... L IA ;:'UI,···,jn)1 2

, 
n = I i, i. 

(60) 

where the left-hand side gives the total incident power of the 
cylindrical wave, whereas the first term in the right-hand 
side represents the total power of the coherent scattering Pc, 
and the second term including the summation gives the total 
power of the incoherent scattering PiC' so that (60) can be 
expressed as 1 = Pc + PiC' The power conservation law (60) 
as well as the optical theorem (57) could be used to check 
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the validity range of approximate solutions. 

V. METHOD OF APPROXIMATE SOLUTION FOR THE 
BOUNDARY CONDITION 

Dirichlet condition: The boundary condition (22), that 
is, 

(61) 

can be transformed into the hierarchical set of equations for 
determining the WH coefficients A ;:, (jl, ... ,jn ), if we substi
tute (12) forfand (37)-(41) for f/!m followed by using the 
recurrence formula and the orthogonality relations for com
plex multivariate Hermite polynomials; 

A 

BiBn (Bj , ,Bi.,···,Bj .) 
A 

=Bn + 1 (Bi,Bi,,···,Bj .) 

(62) 

~~n)= L II ~ivj,., (64) 
all pair (volt) 

where ~mn denotes the Kronecker delta, and the sum in (64) 
is to be taken over all distinct products of n Kronecker deltas 
~ivj,., iv and jJl. being taken from i= (il, ... ,in ) and 
j= UI, ... ,jn), respectively; hence (64) contains n! terms. 
Omitting the details of the calculation, we show the first 
three equations for the WH coefficients: 

00 

Bn(ka)A 0", + L k FjiIm+j(ka)A~U) =0 
j= - 00 

(n=O), (65) 

B m+J, (ka)A ~ UI) + kFj, [im (ka) + amHm (ka)] 

+2 i k FjiIm+j,+J(ka)A~UI,j) =0 
j= - 00 

(n = 1), (66) 

B m+1, +1. (ka)A;" UI,j2) + H k Fj,Hm+i • (ka)A ~ (2) 

+ k Fj.Hm+io (ka)A ~ (jl>] 
00 

+ 3 L k FjHm+io +1z+J(ka)A ~ Ul>j2,j) = 0 
j= - 00 

(n = 2), (67) 

where we have used the abbreviation Bm (kr) =B!!.)(kr). 
The first equation (65) for n = 0 corresponds to the average 
part of (61). We assume the small roughness, i.e., ku<l. 
Since kFj is of the order of ku, A 0", and A ;:, (n;;:' 1 ) are of the 
order of (kU)2 and (ku)n, respectively. Therefore, neglect
ing A ~ in (67), we can easily obtain an approximate solu
tion for A ;" . Substituting this into (66) and neglecting terms 
of the order (kU)3 compared to ku, we obtain an approxi
mate solution for A ~ : 

A~UI)S!!l- kFj,(ka)[im(ka.) +amHm(ka)] , 
[1 + M(m + h) 1B m +J, (ka) 

(68) 

M(m+jl)= - Hm+J,(ka) L IkFjI2 Hm +Jo+J(ka). 
B m +i , (ka) i Hm+Jo +j(ka) 

(69) 
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If necessary, the approximate solution (68) can be corrected 
taking account of the discarded terms. Thus M(m + j), giv
en by (69), which corresponds to the mass operator in the 
renormalization theory, gives the term of the order of (ku) 2. 

Equation (69) for M(m + j) can be slightly corrected if we 
take A ~ into account; the corrected equation is shown be
low. 

where the right-hand equality is due to the Lommel formula. 
Now, substituting (68) and (70) into (65), we obtain 

AO = 2i M{m) 
m 1TkaHm (ka)Hm (ka) 1 + M(m) , 

where 

M(m) = - Hm (ka) L IkFjl2 Hm+i(ka) 
Hm (ka) i Hm+j(ka) 

1 x-----
1 +M(m +j) 

(72) 

(73) 

The mass operator representing the effect of multiple 
scattering plays an important role to suppress the divergence 
in the case of a random planar surface with Neumann condi
tion31 orin the presence of a surface wave mode.32 However, 
in the case of circular surface, we never have H m + i, (ka) = 0 
in (68) (no resonance for real m and ka), so that when 
(ku) 2 is sufficiently small enough we can neglect 
M( m + j) « 1 in (68). Furthermore, in the numerator of 
(68), the coherent scattering coefficient 

am = a~ +A ~ = - Jm (ka)IHm (ka) +A ~ (70) 

gives an equation for the mass operator, which is reduced to 
Eq. (69) whenM(m + j) is neglected in the right-hand side. 
If we further neglect M (m) in the denominator of (72), we 
get the single-scattering approximation 

A ~ ~2iM{m)l1TkaHm (ka)Hm (ka). (74) involves A ~ of the order of (kU)2, which gives rise to the 
term of the order of (ku) 3 in (68). Therefore, neglecting 
M(m + j) andA ~ in (68), we get the solution for the single
scattering approximation: 

Neumann condition: In the same manner as above we 
can solve the boundary condition (23); 

kFj, [jm (ka) + a~Hm (ka)] 
A ~ (jl) "'" - ---':..:...=...-------~ 

Hm+it (ka) 
[ atPm _ ~ af atPm + fa 2tPm ] = O. (75) 

ar r ao ao ar r = a 

2ikFj, =-------="'-----
1TkaHm (ka)Hm+it (ka) 

(71) 
Substituting (12), (30), and (32) into (75), we obtain a set 
of equations for WH coefficients. The first three equations 
are 

00 

kHm(ka)A~- L F i [ (1!a2)j{m+j)Hm+i{ka)-k2Hm+j(ka))Am(j) =0 (n=O), 
j= - CCI 

kHm+i{ka)Am(jl) +Fj,V~';' [Jm(ka) +amHm{ka)) +k 2[Im(ka) +amHm{ka))} 

- 2 i=~ 00 F i[ j(m +~I + j) Hm+it +i(ka) - k 2Hm+it + j(ka)]A;, (jl,j) = 0 (n = 1), 

kH' k A2 .. IF[jl(m+ j2)H k k 2H" k ]AI . m+it+J,( a) m{h,h) +2 i, a2 m+i,( a) + m+J,{ a) m{J2) 

IF[j2{m+ j l )H (k k 2H·· (k ]A I (. + 2 i, a2 m + i, a) + m + i, a) m h) 

- ~ F i[ j(m + j~; j2 + j) Hm+i, +J,+i{ka) - k2Hm+i+it +J, (ka)]A ~ (j1,j2,j) = 0 

where 

am =a~ +A~ = -jm (ka)IHm (ka) +A~. 

(n = 2), 

(76) 

(77) 

(78) 

(79) 

Now we substitute (78) with A ~ = 0 into (77) and use the Lommel formulas as to obtain an approximation solution for A ~ : 

I • - 2iFj, (jIm + m2 - k 2a2) Fj, [jlmHm (ka) + k 2a2Hm (ka)] 0 
A m (j I) = 2 . . Am' (80) 

1Ta(ka) Hm (ka)Hm+i, (ka) [1 + M(m + jl)] ka2Hm+i' (ka) [1 + M(m + jl)] 

and similarly, substituting this into (76), we obtain 

A o __ 1 -2i ~ IkFjl2 [jm+m2-k2a~[j(m+j)Hm+/ka)-k2a2flm+i(ka)] 
£.. (81) 

m 1+M(m)1T(kanHm(ka>]2 i Hm+i(ka) l+M(m+j) 

where the mass operator equation is given by 

~ IkFj 12[j(m + j)Hm +i(ka) - k 2a2Hm +i(ka)] [jmHm (ka) + k 2a2Hm (ka)] 
M(m) = £.. .. ,(82) 

i (ka)4Hm(ka)Hm+J (ka)[1 +M(m +j)] 
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which can be approximately evaluated, by neglecting 
M(m + j) in the right-hand side, or by iterating substitu
tions for better evaluation. 

Particularly, in the single-scattering approximation to 
neglect M in (80) and (81), we obtain 

VI. NUMERICAL EVALUATIONS FOR SCATTERING 
CHARACTERISTICS 

Once the approximate solutions are obtained for zeroth
and first-order WH coefficients A ~ and A ~ as in (68) and 
(72) for the Dirichlet condition, and (80) and (81) for the 
Neumann condition, we can evaluate various scattering 
characteristics using the formulas (48) to (60) with an ap
propriate power spectrum for the random surface. As is well 
known, the cylindrical-wave expansion of the type (45) and 
( 47) is only effective in the Mie scattering range, so that the 
Mie parameter is chosen to be ka = 1, 2 in the following 
numerical calculation. 

Although there is no typical power spectrum known for 
the random field on a circle, we assume the power spectrum 
to be of the Gaussian form for the numerical calculation: 

IFn 12 = (crl{l)e- K 'n'12, n = 0, ± 1, ± 2, ... , (85) 

where 

(86) 

{lex) denoting the theta function. The correlation function 
is given by 

DIRICHLET ka = 1.0 

m = 0 

K = 0.6 

0+--r~~T--r-.--r-.--+ 

0.0 0.1 0.2 0.3 O.ll 
ko' 

FIG. 1. Power flow conservation for a cylindrical wave incidence (Dirich
let, m = 0, ka = I, K = 0.6). Here Pc and PIC denote the total coherent 
power flow and the incoherent power flow, respectively. For a rigorous so
lution, Pc + P;c = 1. 
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NEUMANN 

0.0 0.1 

ka = 2.0 

m = 0 

K = 0.6 

0.2 kO' 0.3 O.ll 

FIG. 2. Power flow conservation for a cylindrical wave incidence (Neu
mann, m = 0, ka = I, K = 0.6). Here Pc and P;c denote the total coherent 
power flow and the incoherent power flow, respectively. For rigorous solu
tion, Pc + Pic = 1. 

R(O) = cr {fii f exp[ - ~ (0 + 21Tn)2] , 
{l K n=-<x> 2K 

(87) 

which can be approximated by a single Gaussian term with 
n = 0 if K is small enough; then the parameter K ( < 217') can 
be regarded as the correlation distance (rad) on the circle, 
and we assume K = 0.2, 0.6 in the following calculation. 

We then first check the validity ofthe approximate solu
tions by means ofthe power flow conservation (60) for the 
mth cylindrical wave injection: 

(88) 

where in the present approximation with small roughness, 
the total coherent power Pc and the total incoherent power 
Pic can be written as 

Pc "",II +2(a~ +A~)12, PiC "",4 L IA~(j)12. 
j 

(89) 

An example for m = 0 is shown in Figs. 1 and 2 for the 
Dirichlet and Neumann cases, respectively, where Pc + Pic 
is plotted against the roughness parameter ku; the equality 

2+---'-_..L--'-_.l....---'-_'---L.-+ 

o 
V) 

..... 
V) 

DIRICHLET ka = 1.0 

K = 0.6 -K = 0.2 

O+--.-~-.-r--.-r--'--+ 

0.0 0.1 0.2 0.3 O.ll 
ko' 

FIG. 3. Optical theorem for a plane-wave incidence (Dirichlet, ka = 1.0, 
K = 0.2,0.6). Here S denotes the total cross section calculated by (56) and 
So the right-hand side of (57) due to the imaginary part of the forward
scattering amplitude. S ISo = 1 for rigorous solution. 
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2 

NEUMANN ka = 2.0 

0 
Vl 
...... 
Vl 

K = 0.6 

O+-----r-.----.---,-..,.-----r-.---+ 
0.0 0.1 0.2 0.3 O.IJ 

kcr 

FIG. 4. Optical theorem for plane-wave incidence (Neumann, ka = 1.0, 
K = 0.2,0.6). Here S denotes the total cross section calculated by (56) and 
So the right-hand side of (57) due to the imaginary part of the forward
scattering amplitUde. For rigorous solution, S ISo = I. 

(88) is nearly satisfied for ku < 0.2. It is shown by numerical 
calculations that 1 - Pc and PiC rapidly approach 0 for larg
er m, so that in the Mie scattering range, the equality (55) 
consisting of the sum over m does hold for plane-wave inci
dence. However, to check the power equality in the plane
wave case, we can make use of the optical theorem (57), 
namely, S = So, S denoting the total cross section (56) and 
So the right-hand member of (57) due to the coherent for-

2.0 

NEUMANN ka = 2.0 

kcr = 0.1 

CD r-
~u 

ward-scattering amplitUde. Figs. 3 and 4 shows the ratio o. 0 +---r-,.----.-,--.-,---.-+ 

ka = 2.0 

k(J = 0.2 

____ K = 0.6 

--- K = 0.2 

-- kcr = 0 

o . 0 +---,.--,----,.-.,---,-.,----,--+ 

o 

DIRICHELT 

a 

90 8 deg 

ka = 1.0 

kcr = 0.2 

---- K = 0.6 
--- K = 0.2 

--kcr = 0 

90 8 deg 

180 

180 

FIG. 5. Angular distribution of the coherent scattering for a plane wave 
incident in the direction e = 0 (Dirichlet, ka = 1.0,2.0, ku = 0.2, 
K = 0.2,0.6). The solid line shows the case of smooth surface with ku = O. 

858 J. Math. Phys., Vol. 29, No.4, April 1988 

o 90 8 deg 180 

FIG. 6. Angular distribution of the coherent scattering for a plane wave 
incident in the direction e = 0 (Neumann, ka = 1.0,2.0, ku = 0.1, 
K = 0.2,0.6). The solid line shows the case of smooth surface with ku = O. 

S ISo plotted against ku, which nearly equals 1 within 
ku < 0.2 for the parameter values shown in the figures. 

We are then ready to calculate the angular distributions 
of coherent scattering (58) for a plane-wave injection, which 
are shown in Figs. 5 and 6 for the Dirichlet and Neumann 
case, respectively, with ka = 1,2 and ku = 0.2. Correspond
ingly, the angular distributions of the incoherent scattering 
calculated by (59) are shown in Figs. 7 and 8, respectively, 
which show that the incoherent scattering is generally 
stronger in the backward direction than in the forward in 
either case. 

In the Mie scattering such as ka = I or 2, the single
scattering approximation actually does not differ apprecia
bly from the results shown if ku is so small. This means that 
the multiple scattering due to small roughness does not pro
duce an appreciable effect on the Mie scattering because of 
the absence of real resonance or surface modes on a circular 
surface. On the other hand, in the case of planar random 
surface, which should correspond to the limiting case 
ka -+ 00, the mUltiple scattering has an important effect on 
the scattering characteristics even if the roughness ku> 0 is 
negligibly small (scalar wave with Neumann surface,31 elec
tromagnetic wave with perfectly conducting surface,17 and 
surface plasmon mode32

). Therefore, the multiple scattering 
is expected to become more and more effective as radius of 
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DIRICHLET 
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o 180 90 
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FIG. 7. Angular distribution of the coherent scattering for a plane-wave 
incidence (Dirichlet, ka = 1.0,2.0, ku = 0.2, K = 0.2,0.6). 

O.OS+-~--~~--~~--~~--+ 

NEUMANN 

ka = 2.0 

kc1 = 0.1 

K = 0.6 

O.OO+--.--.-~--.--r--.--r--+ 

o 90 8 deg 
180 

0.02+-~--L-~~--~~--L--+ 

NEUMANN 

ka = 1.0 

ko' = 0.1 

---
/ 

./ 

/ 
/ 

/ 
/ 

....... 

/K = 0 6 / . 

/ K = 0.2 

0.00+--.--.--.--.--.--,--.--+ 

o 90 8 deg 180 

FIG. 8. Angular distribution of the incoherent scattering for the plane-wave 
incidence (Neumann, ka = 1.0,2.0, ku = 0.1, K = 0.2,0.6). 
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the circle, i.e., ka, is made much larger beyond the Mie scat
tering range. The analysis of scattering for such large ka will 
be reported in a succeeding paper. 

It is important to mention that for rougher surfaces, i.e., 
for larger ku, we have to take into account the terms due to 
A ~ or higher-order WH coefficients, which, however, could 
be obtained in many intractable forms from higher-order 
equations similar to (65)-(67) or (76)-(78). Another 
point is that our approximate boundary condition (22) or 
(23), which retains only linear terms in! to model a slightly 
random surface, is not sufficient enough to deal with the 
scattering by a very rough surface. In the very rough case 
involving higher-order WH coefficients, therefore, the 
boundary condition has to be treated differently along the 
line suggested by Nakayama40 and also their recent work 
based on the WH expansion by Meecham and Lin. 33 
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Distorted wave Born series are derived for the impedance equation 
[A -I(d /dx)A(d /dx) + k2]p = 0, where A is a piecewise differentiable function. The first 
and second orders are given explicitly. They hold for impedances A, which include 
discontinuities, before and/or after perturbation, so that the problem could not be reduced to 
the Schrodinger one. The results are used for discussing homogenizations currently practiced 
in modeling discontinuous media. 

I. INTRODUCTION 

Wave propagation in discontinuous media is observed 
in several domains of physics. Obvious examples include 
heat conduction, neutron transport theory, electromagnetic 
waves, acoustic waves, elastic waves, etc. For the sake of 
simplicity, modeling these problems reduces the medium ei
ther to a multilayered one, with homogeneous layers (inside 
each layer the parameters are constant) or to a continuously 
varying one (mathematical simplicity usually requires that 
the parameters are twice differentiable). These approxima
tions are certainly not "innocent" since (a) they lead to 
quite different analyses in spectral problems I; (b) the reflec
tion coefficient from a discontinuous medium does not go to 
zero at high frequency (it is an almost periodical function); 
and (c) in two-dimensional or three-dimensional cases, the 
difference between continuous and discontinuous media is 
dramatic: surface waves can be generated and propagate 
along discontinuity surfaces and they considerably modify 
the results of a sounding. In acoustical microscopy for in
stance, the resolving length for layered media is very differ
ent from that for continuously varying media. 

Now, a glance at any drilling situation shows that (un
less layers are very thin) homogeneous assumptions are un
founded and that there are many discontinuities. 

In the present paper, we begin a study of this modeling 
in the simplest case, that of one dimension. In Sec. II we 
construct the mathematical tools to be used: the essential 
tool being a distorted wave Born series valid altogether for 
(small) discontinuous and (small) continuous perturba
tions. The term "distorted wave" means that we start from 
the solution of an (arbitrary) reference model-which may 
or may not be continuous. This tool is used in Sec. III to 
analyze the "homogenization" problem's "intra" layers. 

For a general reference on the one-dimensional wave 
equations and their application in geophysics, the reader is 
suggested to refer to papers by Newton,2 Howard,3 and Sa
batier.4 The physical domain of applicability for these classi
cal models is that of wave frequencies up to, but not includ
ing, infrared or optical frequencies, where quantum 
many-body effects become important. For a first derivation 
of the central equations of wave propagation through a dis
continuous impedance, the reader is referred to the papers by 
Sabatier·6 and Degasperis and Sabatier.7 

II. DISTORTED WAVE BORN SERIES IN 
DISCONTINUOUS CASES 

In the one-dimensional model studied here, we assume 
that the "wave equation" is replaced by the "impedance 
equation": 

(A -I ~A ~ + k 2\n(k,x) = 0, p,A dp continuous, 
dx dx r dx 

(2.1) 

where A = a2 is a positive function of x, everywhere twice 
differentiable except at the finite number of points 
XO<XI < .•• <XN, where A and A' show jumps, and such 
that, for any xEtS = {xn }, 

(2.2) 

is a "potential" whose properties guarantee the usual scat
tering theory [say, UeL: = {UIS::::: (1 + It I)U(t)ldt 
< 00 ]. These conditions guarantee the "impedance theory" 
developed by one of us in previous papers.5

-
7 We assume also 

that the impedance factor a has been chosen in the class of 
"standard equivalent" ones 7 so that it goes to the constant 1 
asxgoesto + 00. 

At each "singular" point x n we define the transmission 
factor tn' the reflection factor rn , and the slope factor Sn by 
the following formulas, where a n+ stands for a (x: ), a~ + 

fora'(x:), etc.: 

(2.3a) 

(2.3b) 

(2.3c) 

For X<Xo or x>xN , or more generally at each "regular" 
point, setting p = a -1 in (2.1) yields the Schrodinger 
equation 

(2.4) 

thus the impedance equation could also be considered as a 
certain chain of Schrodinger equations with the particular 
conserved quantities p and A dpldx at each discontinuity. 
Hence we can define, for real k, the Jost solutions of (2.1) by 
their asymptotic behavior 
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p+ (k,x) _a- 1 exp(ikx) (x-+ + 00) , 

p_(k,x)_a- J exp( -ikx) (x-+ - 00). 
(2.5) 

The basic property oflinearly independent solutions enables 
us to define the reflection coefficient R (k) and the transmis
sion coefficient T( k) : 

T(k)p_(k,x) =p+( -k,x) +R(k)p+(k,x). (2.6) 

They can be expressed in terms of the Wronskian 
p+p'_ - p_p'+ ofp+ andp_. In particular, 

T(k) = 2ik[a(x)] -2[ W(P_(k,x),p+(k,x»)] -I. (2.7) 

Note that a 2 W does not depend on x. These equations can be 
used, for instance, in a model of the sounding of a one-dimen
sional medium by electromagnetic or elastic waves; R (k) is 
then the result to be used for parameter identification. 

Now let the "unperturbed" problem be characterized by 
a potential UeL: and a set of singular points S, with the 
corresponding reflection, transmission, and slope factors, all 
this together being equivalent to giving the unperturbed im
pedance factor a. We assume thatthe Jost solutionsp ± and 
the reflection and transmission coefficients Rand T have 
been calculated for this problem. Let the perturbed problem 
be characterized by U, S, and singular data, and let the corre
sponding functions be p ± ' R, and T. Let SUS = S. The set S 
contains subsets where every point of S is associated with a 
corresponding point ofS, which may be identical with itself 
(we call it a double point, and denote their subset as SJ) or 
not identical (we call the two points a pair and denote their 
subset as S2)' Let S3 be the set of all the other points of S. In 
the following, we assume that the reflection and slope factors 
of all points of S3 are of order E (this meaning, for example, 
that they have been obtained by multiplying fixed numbers, 
of order 1 or less, by a factor E that need not be written down 
in our formulas). Also, for a pair of points of SI' we assume 
that the reflection and slope factor of the S point and that of 
the S point differ by numbers of order E-and make a similar 
assumption on the two components of a double point of S2' 

We also assume that the distances between two points of S2 
associated in pairs are of order E. Now our aim is to show a 
way for obtaining P±, R(k), and T(k) up to any orders 
O(eP), and to write down explicitly the first order (which 
could also be called a distorted wave Born approximation). 
It is important to remark that there is not any Schrooinger 
equation that is equivalent to (2.1) and that enables one to 
derive the standard generalized Born series. This is because 
the~' distributions that appear after blindly using (2.2) can
not be multiplied by (piecewise) continuous functions and 
none of the usual terms of the generalized Born series will be 
obtained. As a matter of fact, in the derivations to follow, we 
shall be cautious never to introduce anything more singular 
than Dirac measures at the given discrete points of S, and 
then to multiply them only by functions that are continuous 
at their point support (of course they may have discontinui
ties elsewhere). 

A. Basic formulas 

Now, from (2.5), with f = ± k, and since 
a(oo) =a(oo) = l,anda'(oo) =a'(oo) =0, we see that 
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lim W(p+(k,x),p+ (f,x» = {02"k- ~ff k = f, _ (2.8) 
x_ 00 I, 1 k = - k. 
This result and (2.6) can be used to prove that 

lim W(P_(k,x),P_(k,x») 
x_ 00 

= 2ik [R(k) - R(k) ]!T(k)T(k) , 

lim W[{P_(k,x) -p_(k,x),p+(k,x)] 

= 2ik [T(k) - T(k) ]!T(k) T(k) . 

B. Basic equation for the Jost solution 

(2.9) 

(2.10) 

We need to calculate p _ (k,x). Following Ref. 7 (where 
it was called iT), we first introduce the singular data function 
a, which is constant on each regular interval. It shows at 
each singular point (i.e., each discontinuity of a or a'l the 
reflection and transmission factors of a, and is normalized 
by a( 00) = 1. It can be written explicitly as 

a(x) = exp [ - ~ pj 8(xj - x) ] , (2.11) 

where 8 is the Heaviside function and 

Pj = log [ (1 + rj )Itj] = pog[ (l + rj )/0 - rj )} . 
(2.12) 

The functions a and a enable us to write the equations for 

p = ap_Ia, p = ap_Ia. (2.13) 

They read7 

[.!!....~.!!....+~(k2_ U) + L U(X;)~(X-X;)] 
dx dx xfES 

Xp(k,x) = ° , (2.14) 

[.!!.... ij-Z.!!.... + ij-Z(k 2 - l!) + L u(Xj )8(x - Xj )] 

dx dx xt'S 

Xp(k,x) =0, (2.15) 

where 

u(x;)=2a(x/)a(x; )t; lSi> (2.16) 

and a similar formula holds for u(xj ). In the following it is 
convenient to number the singularities as an increasing se
quence XO,X1, ... inside SUS = S. In each regular interval be
tween the points ofS, both Eqs. (2.14) and (2.15) do not 
contain the Dirac measures. Setting 

r(k,x) = p(k,x)lp(k,x) (2.17) 

inside (2.15) and using the identity 

d ("-.2 d ) -1 d ( 2"-.2 dr) + d "-.2 dp - a--pr =p - p 0'- 'T-O'-, 
dx dx dx dx dx dx 

we obtain on each of these regular intervals 

.!!....(p2ij-Z dr) + p2ij-Z( U _ U)r = ° . 
dx dx 

(2.18) 

(2.19) 

It is tedious but very easy to calculate directly the disconti
nuities of p2ij-Z(drldxH = ij-ZW(p,p)] across each point of 
S, it being understood that if a (resp. a) is continuously 
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differentiable at x,,, then I" (resp. 1" ) is equal to I, whereas 
T", s" (resp. '''' $" ) vanish. The result is 

[ 
2~dr]x.+ k) P (1"- = - w"r( ,x" , 

dx x.-
(2.20) 

where 

(2.2Ia) 

(2.2Ib) 

Combining (2.19) and (2.20) yields the equation 

[~ p2cr ~ + p2cr( U - fJ) + L w"t5(x - X,,)] 
dx dx x.eS 

Xr(k,x) = O. (2.22) 

Integrating (2.22) twice yields a Volterra integral equa
tion for r( k,x) (the fixed parameter k is omitted) : 

rex) = r - f: 00 dt p-2(t)a-2(t) 

x f~ 00 dsp2(s)r(s)w(s), (2.23a) 

= r - f: 00 ds p2(s)w(s)r(s) f dt p-2(t)a-2(t) , 

(2.23b) 

where 

r=r( - 00) =0'( - oo)/a( - 00), (2.24) 

w(s) = cr(s)(U(s) - U(s») 

+ L a(x,,+ )a(x,,- )aJ"t5(s - x,,) . (2.25) 
x.eS 

C. Iterative solution of the Integral equation 

The convergence of the iterative solution of (2.23b) is 
guaranteed by that of the iterative solution of a majorant 
equation. It is easy to see that there exists, in general, a func
tion w(s) in L : and constants C, w., w2,. .. ,w" , such that 

If.xdtp-2(t)a-2(t) I 
<Clx-sl<C[1 + IxIO(x)][1 + IsIO( -s)J 

(s<x) , (2.26) 

Ip2W(S) I <w(s) + L w"t5(x" - s) . (2.27) 
x.eS 

Thus a majorant equation for (2.23b) isS 

1'(x) = Irl + O(x) f: 00 ds 1'(s){3(s) , (2.28) 
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with 

a(x) = C [I + IxIO(x) J , (2.29a) 

{3( x) = [I + IxIO( - x) J [W(X) + L w"t5(x" - X)] . 
x.eS 

(2.29b) 
The iterative solution to (2.28) is easy to write explicitly 
since 

1'(x) = Irl + a(x) f: 00 exp [f.
xa

(t){3(t)dt ]{3(S)dS. 

(2.30) 

Hence the convergence is uniform for any fixed x, provided 
that I V I eL :. The series can also be differentiated and r' (x) 
can be calculated readily. If there were no pairs of singular 
points, it would be obvious that the nth term of the iterated 
series would be O(E" ). For x" eSl' W" is also of order e [triv
ially from (2.2Ia) J. Let us consider a pair of points in S2' 
say, x,,, x" + I' The values of w" and w" + I are O( I) only, 
but, since Ix" - x" + I I = O(e), one easily shows that 
Ip(x,,) - p(x,,+ I) I and la(x,,+) - a~,;-+ I) I are O(e). 
Supposing, for instance, x"eS, x" + I eS, we obtain from 
(2.21a) and (2.3) the following formulas: 

2( )[-( ]2{ 1$" T,,(a'(X,,+)+a'(x,,-») w -p x 0' X ---- ---'--'-
" " " t" t" a(x,,-) a (x,,+ ) 

_ 2T" (a
2
p'_) (x" )/p(x" ) } (2.31) 

t" a(x,,- )a(x,,+) , 

X{2 $,,+1 +2 ',,+1 a'(x,,+I) 

1,,+1 1,,+1 a(x,,+I) 

+ 2 '11+ I (a
2
p'_) (x" + ')/p- (x" + I)}. (2.32) 

1"+1 a 2(x,,+I) , 

and after some algebra, using (2.3) yields 

{
S(l+T) a'(x+) 

W" = -2fJ2 (x,,)[iT(X,,)]2" " + " 
t~ a (x,,+ ) 

T" (1 + T,,) T" (1 + T,,) (a2p'_ /p_) (X,,)} 
X + , 

t 2 t 2 a 2 (x +) 
" "" (2.33 ) 

W,,+I = -w,,[1+0(e)]. (2.34) 

Now we easily show that if a function FI (x) has the property 

IF. (x) I = O(e), IFI (x) - F. (y) I = O(e) Ix - yl , 
(2.35) 

then the function F2 defined by 

F2(x) = f[W"t5(S-X,,) +W,,+It5(S-X,,+I)] 

X [FI(x) -FI(s)] , (2.36) 

wherew" satisfies (2.34) and IX"+I -x,,1 =O(e),hasthe 
property 

1F2(x) 1= 0(e2), !F2(X) - F2(y) 1= 0(e2) Ix - yl . 
(2.37) 
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The function f: dt p-2(t)fr-2(t), which is given in (2.23b), 
is equal to F(x) - F(s), where F has the property of FlO and 
the property (2.34) is not modified if w n is multiplied by a 
piecewise differential function. Using these remarks in the 
iterated terms of the solution of (2.23b), it is not difficult to 
show that the first term is O(E) and the remainder is O(E2). 

D. Generalized Born approximation 

Noticing that fr-2(t) = a-2(t) [1 + O(E)], we can 
use in the first iterated term the approximate value of F(x): 

F(x) ~ fXdt p-2(t)a-2(t) = fXdt a-2(t) [p- (t)] - 2 

=_I_p_(-k,x) (2.38) 
2ik p_(k,x) 

Using also (2.13) and keeping only the 0 (E) terms, we ob
tain the Born approximation for jJ _ (k,x) and jJ'_ (k,x): 

jJ_(k,x) = r(x)p_(k,x) - -. ds a 2(s)a-2(s) 1 IX 
21k - co 

Xw(s)p_(k,s) [p_ (k,s)p_( - k,x) 

- p_ (k,x)p_ ( - k,s)] + O(c) , (2.39) 

jJ'_ (k,x) = r(x)p'_ (k,x) + r'(x)p_(k,x) 

- - ds a2(s)a- 2(s)w(s)p_ (k,s) 1 IX 
2ik - co 

X [p_ (k,s)p'_ ( - k,x) 

- p'_ (k,x)p_ ( - k,s)] + O(E2) , (2.40) 

where 

rex) = r(fr/a)(a/a). (2.41 ) 

Inserting (2.39) and (2.40) into (2.9) and (2.10) shows 
that r(k) = T(k)(1 + O(E» and that, up to O(c), 

2ik R(k) - R(k) 
[T(k) ]2 

= - f-+ OOCO ds a2(s)a-2(s) [p- (k,s) f 

X [fr2(S)(U(S) - U(S») + L fr(x: )fr(Xn-) 
XneS 

XWn (k)c5(s - Xn) ] , (2.42a) 

which is the Born approximation for R(k) - R(k). It can 
also be written, up to the same order, as 

2ik R(k) - R(k) 
T2(k) 

= - f-+ COCO ds[p_ (k,s) ]2{a2(s)(U(S) - U(s») 

+ La(Xn+)a(X';-)Wn(k)c5(S-Xn)}. (2.42b) 
XneS 
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E. Study of the other Jost solution 

A quite similar analysis can be done for p + (k,x). Set
ting 

p= ap+/a, P= ajJ+/fr, T= P /P, (2.43) 

we easily derive the integral equation for T(k,x): 

T(x) = 1 - Loo ds p2(S)T(S) W(s) f P -2(t)fr-2(t)dt, 

(2.44) 

where 

W(s) = fr2(s)(U(s) - U(s») 

+ L fr(xn+ )fr(xn- )On c5(x - x n) , (2.45) 
XnES 

(2.46) 

The Born approximation for jJ + (k,x) is 

p+ (k,x) = r(x)p+ (k,x) - -. ds a 2(s)a- 2(s) - 1 lco 
21k x 

X W(s)p(k,s) [p+ (k,s)p+( - k,x) 

-p+( - k,s)p+(k,x)] + O(E2), (2.47) 

where 

rex) = (fr/a) (a/a) . 

F. Second order approximation 

Let us set for the sake of simplicity, 

w(x) = Vex) + L vnc5(x - x n) , 
XnES 

Vex) = fr2(x)(U(x) - U(X»), 

Vn = fr( x n+ ) fr( x n- )Wn , 

and notice that from (2.38), 

2ik LX dt p-2(t)fr-2(t) 

_ p_ ( - k,x)a2(x) p_ ( - k,s) a2(s) 

- p_ (k,x)fr2(x) p_ (k,s) fr2(s) 

(2.48) 

(2.49a) 

(2.49b) 

(2.49c) 

" p_( - k,xn ) + ~ tln [O(x - Xn) - O(s - Xn )] 
XneS p_ (k,xn ) 

= 2ikF(x,s) , (2.50) 

where 

a(xn+ )a(xn-) rn - rn 
71 = - 2 -'---'--"""'------'----

n fr(xn+ )fr(Xn-) tn In 
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Then we calculate the second order iterative solution of 
(2.23b), namely, 

XF(x,s) f~ ~ dtp2(t)W(t)F(s,t) + O(~) , 

rex) = r- r f~ ~ dSp2(S)W(s)F(x,s) 

(2.51) 

by using (2.49) and the formula (2.50) each timeF(x,s) is 
multiplied by piecewise continuous functions, but not when 
it is multiplied by Dirac measures. 

Our aim is to obtain an approximation of rex) contain
ing the O(c) terms and neglecting O(~), so that in the last 
term of (2.51) we can replace a by a. The result is 

Using (2.13) and (2.17) we obtain, for X>XN, 

p_(k,x) - r(x)rp_(k,x) 

= _ r(~)r fX ds ~(S) V(s)p_(k,s) [ ~(X) p_( _ k,x)p_(k,s) _ ~(S)p_( - k,S)P_(k,x)] 
21k _ ~ u-(s) u-(x) u-(s) 

- r(~)r LP_(k,x) p-( - k,xn) l1n fX. dt p2(t) V(t) - r(x)r LP- (k,x)p2(Xn )Vn IX dt p-2(t)a-2(t) 
21k x.,eS p _ (k,xn) - ~ x.eS Jx. 

- r(x~r fX ds c::(S) w(s)[p_ ( - k,x)p_ (k,s) - p_ ( - k,s)p_ (k,x)] 
4k _ ~ u-(s) 

f

s a2(t) 
X dt~w(t)p_(k,t)[p_( - k,s)p_(k,t) - p_( - k,t)p_(k,s)] , 

- ~ U" (t) 
(2.53 ) 

and the derived formula for p'_ (k,x). Using rex) --1 and r(x) ..... o as x ..... 00, it is not difficult to calculate the limit 
Wronskian that appears in the left-hand side of (2.9) and (2.10). Hence we obtain 

2ik R(k) __ R(k) = -rf+~ ds
a2

(s) (J2(s) [U(s) - U(S)]p2_ (k,s) 
T(k) T(k) - ~ ~(s) 

(
a)2 - - 1 f+ ~ a 2

(s) l~ a 2
(t) - r L - (xn )a(xn+ )a(xn- )wn p2_ (k,xn) + -.- ~w(s)ds ~ w(t)p_(k,s) 

X.ES a 21k - ~ u-(s) s U" (t) 

X[p_( -k,s)p_(k,t) -p_( -k,t)p_(k,s)]p_(k,t)dt+O(~), (2.54) 

2ik -_- - -- = 2ik _r_ - ds a2(s) [U(s) - U(s) ]p2_ (k,s) (
1 1) -1 R+(-k)f+~ -

T(k) T(k) T(k) T( - k) - ~ 

+ -- ds a 2(s) [U(s) - U(s) ]p_ (k,s)p_ ( - k,s) 1 f+~ 
T(k) - ~ 

R + ( - k) (a)2 2 
- T( _ k) X~ Vn -; (xn)p - (k,xn) 

+ _1_ L Vn(!!...)2 (xn )p_(k,xn )p_( - k,xn) + O(c) . 
T(k) x.eS a 

(2.55) 

Using (2.6) and (2.49) we can simplify this formula to 

2ik(...J- - _1_) = 2ikr - I - f+ ~ds~(S) w(s)p_(k,s)p+(k,s) + O(e2) . 
T(k) T(k) T(k) - ~ u-(s) 

(2.56) 

Hence we obtain 2ik[R(k) - R(k) ]/T2(k) up to order O(e3
) if we multiply the right-hand side of (2.54) by 
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2 - r + (2ik) -1T(k) f-+",,"" ds u-2(s)a2(s)w(s)p_ (k,s)p+ (k,s) . 

Since r(2 - r) is equal to I up to O(c), we finally obtain 

. R(k) - R(k) f+ "" a
2
(s) - - (a)2 

21k T2(k) = - _ "" ds files) cr(s) [U(s) - U(s) ]p2_ (k,s) - x~ -;- (xn )u(x: )u( X n- )wn (k)p2_ (k,xn) 

T(k) f+ "" a 2 (s) f+ "" 
- -2'k ds ~W(S)p2_ (k,s) dt a 2(t)w(t)p_ (k,t)p+ (k,t) 

I - "" u- (s) - "" ., 

1 f + "" a
2
(s) L"" 2(t) + 2'k ~ w(s) dt ~ w(t)g(k,s,t) + O(~) , 

I - "" u-(s) s u-(t) 
(2.57) 

where 

Needless to say, the reader will observe that the Born ap
proximation (2.42) could be derived from this further ap
proximation. We have preferred to give a separate derivation 
of the Born approximation for the sake of clarity and simpli
city. 

III. THE HOMOGENIZATION PROBLEM 

In practical descriptions of heterogeneous or discontin
uous media one tries to replace them at least by "partially" 
homogeneous ones, i.e., either media whose parameter var
iations are everywhere smooth ( "smooth media" ) or 
piecewise homogeneous media, with parameters that are 
constant inside the layers ("layered media"). These so
called (generalized) homogenizations, sometimes feasible 
only at the price of modifying the structure of the wave equa
tion, are justified if the observed property of interest is practi
cally not modified. Here this property is the function R(k), 
and we wish to keep the structure of the wave equation. 

Let us first observe that the exact result (which could be 
calculated from the recurrence formulas of Ref. 5) as well as 
the Born approximation (2.42) show that the asymptotic 
behavior of R (k) always gives evidence for the existence and 
nature of singular points. At a point Xn of S3' for instance, if 
rn #0, the factors (a2p'_ )(xn )p_(xn ) appearing in 
(2.2Ia) introduce in the right-hand side of (2.42) for the 
asymptotic behavior of R (k) in the k plane a term 
(2ik) r n [p _ (k,x n ) ] 21l n' and hence an oscillating variation 
of R(k)/[ T(k)]2 at ± 00, which is the Born approximation 
for the modification of the exact almost-periodic structure of 
R (k) at ± 00. If r n = 0, introducing a point x n into S3 
yields a variation of the asymptotic behavior of R (k), which 
goes to zero at 00 like k -I, and hence decreases more slowly 
than the asymptotic behavior due to any regular potential U. 
Hence if we talk of "exact" results, no homogenization is ever 
possible. Homogenization becomes possible if (a) we allow 
small errors on the measurements of the reflection coeffi
cients, and (b) we "observe" R(k) through a filter. Needless 
to say, these assumptions are physically sound in all prob
lems. Now, suppose we start from a known problem charac
terized by U and singular data, and that a set of perturba
tions of the singular data is introduced, like in Sec. II, that is 
sufficiently small to allow Born approximation. 
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(I) A "continuous" homogenization is obtained if these 
perturbations may be replaced by a perturbation 
l) U = fJ - U of the regular potential in such a way that the 
calculated reflection coefficients obtained by either pertur
bation cannot be distinguished from each other. The homog
enization is useful only if l) U is smooth enough. Hence, if we 
assume that a band filter has the effect of multiplying 
R - R = l)R by a factor Y (k) equal to lfor Ik I < a -I, and 
is rapidly vanishing for I k I > a - I, e.g., exp [ - k 2 a 2 ], it is 
sound to assume that fJ - U = l)U is such that for any keR 

I (Y(k) - Ilf_+ ",,"" ds[p_ (k,s) j2a2(s)l)U(s) I ~ ~ e' , 

(3.1 ) 

where e' is the error allowed on measurements. Thus a suffi
cient condition for "e' -homogenizing" by means of l)U is 

IL+",,"" dSp2_ (k,s)a2(s)l)U(s) 

+ Y(k) L a(x: )a(xn- )wn (k)p2_ (k,xn) I ~! e' . 
x.eS 

(3.2) 

If the unperturbed problem is a continuous one, the inver
sion formula8 for the transform 

f+ "" 
2ikg(k) = _ "" dsf2_ (k,s)g(s)ds, (3.3) 

wheref_ is the Jost solution, is simply 

L"" f+ "" 
- x g(t)dt = 1T-

I 
_ "" dkf2+ (k,x)g(k) . (3.4) 

Since, in our previous reference,8 these formulas were reob
tained by algebraic transformation methods, it is very likely 
that they hold even if the background is not continuous, 
providing that f _ is replaced by ap _ and f + by ap +. We 
shall not try to clarify this point in the present application; 
we will simply assume that the background is such that the 
inversion formulas hold and that l)U(x) is given by 
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r"" c5U(t)dt = (2i1r) -I lim 
Jx E-O+ 

f+ "" dk 
X --. p2+ (k,x)a2(x)Y(k) 

-"" k+l£ 

x La(x: )a(xn- )Wn(k)p2_ (k,xn)· 
x.eS 

(3.5) 

It is clear that the filtering effect of Y (k) amounts to a 
convolution of the distribution of singularities by a smooth
ing function that washes out details oflength smaller than 6.. 
To be more precise, let us study the simplest case, where the 
background is zero, so that a(x)p ± (k,x) is simply 
exp [ ± ikx], and where we introduce perturbing disconti
nuities to a (the "hardest" discontinuities) so that 
Wn (k) = - 2ik rnlln' Hence the formula (3.5) becomes [if 
Y(k) is the filter mentioned above] 

- 1"" c5U(t)dt 

-1/2A-I" rn [- (X-Xn)2] 
= 'IT ~ ~ - exp 2 ' 

n 1n 6. 
(3.6) 

which makes clear that the discontinuities are integrated 
over length intervals of order 6.. It follows that 

r 
- c5U(x) = 211"-1126. -3 L(X - xn) -.!!.. 

n 1n 

[ 
- (x - Xn )2] 

Xexp 6.2 • (3.7) 

For small 6., the right-hand side of ( 3.7) would approach the 
c5' distribution supposedly equivalent to the hard disconti
nuities-the convolution effects being clear in (3.7). Hence 
allowing a filter and resonable measurement errors enables a 
first order homogenization between strong discontinuities 
by means of a continuous potential-the main condition be
ing that the discontinuities, after they are integrated on in
tervals of length 6., yield a function of smooth variations. 

(2) However, the usual way of processing data assumes 
that the parameters are constant between strong discontinu
ities. The underlying idea obviously is that between what 
could be called "structural discontinuities," reflection fac
tors (and others) of a given sign are balanced by reflection 
factors (or others) of the opposite sign, with all of them 
being distributed in a random way. It clearly follows from 
our analysis that this "constant" behavior between strong 
discontinuities may hold only in peculiar cases, where the 
random perturbations are, so to say, "unbiased." 

Thus, to clarify this point, let us again assume that, 
starting from a reference model, we establish small discon
tinuities at fixed locations X n • Since a continuously differen
tiable impedance would correspond to the choice 
rn = sn =·0, the number of fixed locations can always be 
supposed large and dense enough to be sufficiently general. 
One may even choose a so-called Goupillaud model charac
terized by a short discretization length hand Xn = nh. Now 
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we obtain from (2.57), up to the third order of the additional 
discontinuities, 

R(k) - R(k) 
T2(k) 

= L Rn p2_ (k,xn) - T(k) L Rn p2_ (k,xn) 

where 

n n 

XL Rjp_ (k,xj )p+ (k,xj ) 
j 

(3.8) 

2 

Rn = - (2ik) -I~ (Xn )a( Xn+ )a( x; )Wn (k) , (3.9) 

g(k,xn,xp) =p_(k,xn) [p-( -k,xn)p_(k,xp) 

- p_ ( - k,xp )p_ (k,xn )]p_ (k,xp) . 
(3.10) 

We assume nothing about Rn except that there exists for 
each location xn a positive measure Pn (x)dx such that 
I -: :Pn (x)dx = 1,and thatRn hasaprobabilitYPn (x)dxof 
having its value between x and x + dx. In addition, as it has 
been stated above, we assume that the reference model was 
chosen in such a way that all biases are removed, i.e., 
I: :: XPn (x )dx = O. This means that a first order contin
uous partial homogenization has been done "intra" layers. It 
then follows from (3.8) that the expectation value of 
R (k) - R (k) does not vanish in general, being equal to 

- T3(k) ~p3_ (k,xn )p+(k,xn) f-+",,"" x2Pn (x)dx. 

(3.11 ) 

This result can still be important if the mean squares of dis
continuities are important. Notice that if we start from a 
continuous model [a(x) = 1], and introduce only hard dis
continuities (rn :;60, sn = 0), the Wn (k)'s are simply related 
to the rn's (from 2.21): 

k 
rn[a'(Xn+) a'(x;) 

Wn ( ) = - + ---=~..;.. 
1n a(xn-) a(xn+ ) 

2 (a2p'_ ) (xn )/p- (X n )] + , 
a (xn- )a(xn+) 

(3.12) 

where the factor orr nil n reduces to - 2ik if the reference 
model is zero (a = 1). Hence it is easily seen that a large 
number of small discontinuities can give a significant contri
bution. In geophysical problems, a strong discontinuity cor
responds to 'n -0.1, a small one to 'n -0.01, and a com
pletely negligible one (according to authors) to 'n -0.001. 
But lOS negligible randomly distributed discontinuities can 
make as much of a contribution as a strong one. If there is a 
bias, and discontinuities concur, this figure may reduce 
down to 1Q2! 

IV. CONCLUSION 

As stated in the Introduction, this paper is the beginning 
of a series in which we try to understand the importance of 
discontinuities in the one- or several-dimensional impedance 
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problem. The first provisional conclusion is that even in the 
one-dimensional case, while taking into account a filter and 
measurement errors in data interpretation, only a contin
uous (but not constant) homogenization between "non-neg
ligible" discontinuities can be justified in general, and to be 
careful, it should include an appraisal of second order terms 
as we have outlined above. 
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The twisted product off unctions on R2N is extended to a *-algebra of tempered distributions 
that contains the rapidly decreasing smooth functions, the distributions of compact support, 
and all polynomials, and moreover is invariant under the Fourier transformation. The 
regularity properties of the twisted product are investigated. A matrix presentation of the 
twisted product is given, with respect to an appropriate orthonormal basis, which is used to 
construct a family of Banach algebras under this product. 

I. INTRODUCTION 

This is the first of two papers whose aim is to give a 
rigorous formulation to the Weyl-Wigner-Groenewold
Moyal or phase-space approach to quantum mechanics of 
spinless, nonrelativistic particles. (In a future article, we will 
show how spin may be incorporated also in this formalism. ) 
In recent years, this approach has received increasing atten
tion. I

-
5 However, much remains to be done to unify its dif

ferent strands. On the one hand, much useful quantum phys
ics can be done using the distribution functions in the sense 
ofWigner.4 On the other hand, most mathematical attention 
has centered on the Weyl operator calculus.6-9 As 
Groenewold JO and Moyal ll have shown, one can work with 
functions on the classical phase space only, in a self-con
tained way, using the "twisted product" concept. Similarly, 
the practitioners of "deformation theory,,2 have given a 
promising axiomatic basis for quantum mechanics, but with 
mathematical tools rather different from the usual func
tional-analytic methods of quantum theory. 

We attempt here to establish a mathematically rigorous 
and physically manageable formulation for quantum me
chanics in phase space. To obtain the right mathematical 
context, we must, for example, specify those pairs of func
tions whose twisted product may be formed; and a suitable 
function space should include as many observables of phys
ical interest as possible. To include the basic observables of 
position and momentum, we must leave aside the algebra of 
bounded operators on a Hilbert space: in rigorizing the 
phase-space approach, one soon finds that it is useful to work 
with locally convex topological vector spaces that are not 
necessarily Banach spaces. 

The paper is organized as follows. In Sec. II, we review 
the properties of the twisted product and convolution in the 
Schwartz space .9'(R2N). In Sec. III, we dualize these no
tions to the case where one or both factors are tempered 
distributions, and identify the Moyal algebra JI, that is, the 
largest *-algebra of distributions where these operations are 
defined and associative. We show that JI is invariant under 
Fourier transformations. In Sec. IV, we consider the regular
ity properties of the twisted product and convolution, and 
show that distributions of compact support belong to the 
Moyal algebra. In Sec. V, we construct an orthonormal basis 
in .9'(R2N ); using this basis, we show that the twisted prod
uct may be presented as a matrix product of double se
quences. As a consequence, we construct a net of Sobolev-

like spaces of tempered distributions, some of which are 
Banach algebras with respect to the twisted product; these 
permit a more detailed examination of the Moyal algebra 
JI. 

II. THE ALGEBRAS (.9' 2,X) and (.9'2,0) 

Throughout this paper, we work with certain spaces of 
functions and distributions over R2N, regarded as the phase 
space T*(RN). For u, v eR2N, we write u'v and u'Jv for the 
ordinary and symplectic scalar products of u and v. Choos
ing and fixing an orthonormal symplectic basis for R2N, we 
write 

u = (U I,U2,···,U2N ) = (ql, ... ,qN,PI, ... ,PN) 

and 

v = (V I,V2,···,V2N ) = ((1I, ... ,iiN,PI"",PN)' 

where explicitly 
N N 

u'v: = 2: (q;ii; + p;p;), 
;=1 

u'Jv: = 2: (q;p; - p;ii;), 
;=1 

where J is the matrix ( _ °IN ~N) in the chosen basis. Note that 
v'Ju = - u'Jv and u'Ju = O. 

We define .9'2: = .9'(R2N) as the Schwartz space of 
smooth rapidly decreasing functions on R2N. If.fe.9' 2' seR2N, 

and 1<I<2N, we define /*(u): = feu), feu): =/( - u), 
and also 

and 

(/-Lj/)(u): = uj/(u), ajf = a/ , 
aUj 

(rs/)(u): =/(u - s), (Es/)(U): = e;SJ,,/(u) , 

a.f: = {aj+J. if l<j<N, 
J _ aj _ N/' if N < j<2N. 

We make three normalizations which are a little uncon
ventional. First, for integrals over R2N we use the Haar mea
suredx: = (217) -N d 2NX, whered 2Nx is the Lebesgue mea
sure. (This gets rid of powers of 217 in Fourier transforms. 12) 
In particular, f e-x'12 dx = 1. Second, we use the bilinear 
form 

(/,g): = f /(x)g(x)dx 

and the sesquilinear form 
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(flg):=2- N(f*,g) =2- Nf f(x)g(x)dx 

whenever the integrals converge. ForfEL 2(R2N), we will use 
the norm II fll: = (fl f) 1/2. Third, for Planck's constant we 
take Ii = 2 (rather than the usual Ii = 1). 

We define an ordinary Fourier transform Y and two 
symplectic Fourier transforms 13 F and l' by 

(Yf)(u): = f f(t)e-it'Udt, 

(Ff)(u): = f f(t)e-it'JU dt, 

(Ff)(u): = f f(t)eit'JU dt. 

The transforms Y, F, and l' are commuting isomorphisms 
(ofFrechet spaces) of Y 2 onto Y 2' and satisfy the following 
formulas: 

Ff(u) = Yf(Ju) , Ff(u) = Yf( - Ju), 

F2 = 1'2 = Id, Ff= (Ff) v = F(!), (Ff)* = F(f*), 

F( Tsf) = E _sFf, F(Esf) = T _sFf, 

F(ajf) = - ip.jFf, F(p.jf) = /ajFf, 

(Ff,g) = (f,Fg), (Fflg) = (fIFg). 

Definition 1: Iff,g eY 2' the twisted product f Xg is de
fined by 

(fxg)(u): = f f f(v)g(w) 

Xexp(i(u'Jv + v'Jw + w'Ju»)dv dw 

= f f f(v + s)g(u + t)eis'Jt ds dt. (1) 

The twisted convolution fOg is defined by 

(fOg)(u): = f feu - t)g(t)e-iU'Jt dt. (2) 

Remarks: (1) It was von Neumann 14 who introduced 
the twisted convolution (although he gave it no name) in 
order to establish the uniqueness of the Schrooinger repre
sentation. It has been used by Kastler and others13,15,16 to 
study the canonical commutation relations. 

(2) The twisted product is nothing but the Weyl func
tional calculus7 seen from another point of view. As in 
Ref. 1 and elsewhere, one may regard it as fxg 
= Y-I(YfOYg); but perhaps a more natural motivation 

is the following. The pointwise productf( u )g( u) is not suit-
able for quantum mechanics since the uncertainty principle 
forbids localization at a point in phase space. Following 
S1awianowski, 17 we seek to replace it by some other product 
that is translation and symplectic equivariant, associative, 
and nonlocal. In Ref. 3 it is shown that the only integral 
kernels satisfying translation and symplectic equivariance 
and associativity are ac5(s)c5(t) (for the pointwise product) 
and beiCs' Jt, where a, b, and c are constants which we may set 
equal to 1. 

Proposition 1: If f,geY2, thenfxgeY2, (f,g)I-+/xg 
is a continuous bilinear operation on Y 2' and 
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(3) 
p./fxg) =fXp.jg+ ;'ajfxg =p.jfxg- ifXajg. 

Proof: The Leibniz formula follows by differentiating 
( 1) under the integral sign, and (3) is a straightforward 
calculation. By induction on these formulas, f Xg lies in Y 2' 

If a= (al, ... ,a2N)eN2N, we write aa=af" . ·a~;.: and 
similarly define p'a, a a. Then 

p'a aY(fxg) = L L ( - i)IPI (a)(r) 
p<;.a E<;'Y P E 

xp'a- P aY-'ixa p aEg. 

From (1) we get IIfxgli co <llflll IIgIlI' Since the topology 
of Y 2 is given by the seminorms Pay ( f): = IIp.a a 'i II co or 
by qay (f): = IIp.a a 'ill I' the estimates 

with 'l]j = PH N for allj, show that (f,g)t-+fxg is jointly 
continuous for the topology of Y 2' • 

The various Fourier transforms intertwine X and 0, 
just as with "ordinary" products and convolutions. In fact, 
even more is true: by applying a symplectic Fourier trans
form to one side only, we can interchange the operations X 
and O. This allows us to work with the operation most con
venient to any particular calculation, transferring the result 
to the other one by Fourier invariance of Y 2' Explicitly, we 
find 

fxg = FfOg =fOFg, fOg=FfXg=fXFg, (4) 

since, for example, 

(fxg)(u) = f f f(v)g(w)e-iv'J(U-W)eiW'JUdvdw 

= f Ff(u - w)g(w)e-iU'JW dw = (FfOg)(u). 

We also find 

Y(fxg) = YfOYg, Y(fOg) = YfxYg, (5) 

and exactly analogous formulas with Y replaced by For F. 
Also, 

(fXg) Xh =fx (gxh), (fOg)Oh =fO(gOh), (6) 

since 

(fOg)Oh )(u) 

= J J feu - t - s)g(s)h(t)e- i(u'Jt+ (u - t)'Js) ds dt 

= J J feu - v)g(v - t)h(t)e-i(u'Jv-t'JV) dtdv 

= (fO(gOh»)(u) 

and applying (5) yields the associativity of X. Next, 

(/xg)* =g*xf*, (fOg)* =g*Of*, 

since, for instance, 
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(/xg)*(u) = f f I*(u + s)g*(u + t)e-is'JI ds dt 

= f f g*(u + t)/*(u + s)eil'Js dt d$ 

= (g*XI*)(u). 

A fact offundamental importance is the following iden
tity. 

Proposition 2: If I,geY 2' then 

f (/xg)(u)du = f(gX I)(u)du = f I(u)g(u)du. 

(7) 

Proof: 

f (/xg)(u)du =Y(/xg)(O) = (Y/OYg)(O) 

= f YI( - t)Yg(t)dt 

= (YI*Yg)(O) =Y(lg)(O) 

= f I(u)g(u)du, 

where * denotes ordinary convolution. • 
The cyclicity inherent in the tracial identity (7) is what 

allows us to push through the extension via duality. We note 
an important consequence of (7). 

Proposition 3: Iff, g, hEY 2' then 

(/xg,h) = (/,gXh ) = (g,h XI), 

(/Og,h) = (/JOh) = (g,hO]), 

(h I/xg) = (/*Xh Ig) = (h xg*Ij)· 

(8) 

(9) 

Proof: From (7) and the associativity (6), we find that 
all three expressions in (8) equal H/xgxh) (u)du. Now 
(9) follows from (4), and the third formula is immediate .• 

III. DUALITY AND THE MOYAL ALGEBRA 

Having established a calculus for functions in Y 2 with 
twisted product and convolution, we now extend it to a larg
er algebra of tempered distributions. First we consider the 
twisted product or convolution of a tempered distribution 
and a test function. 

For TEYi, hEY2, we write (T,h): = T(h). We also 
extend our previous notation in the usual way: 

(YT,h): = (T,Yh), (t,h): = (T,h), 

(Tlh): = 2 -N (T*,h): = 2 -N (T,h *)*, 

(FT,h): = (T,Fh), (Fr,h): = (T,Fh), 

(ajT,h): = - (T,ajh), (p,jT,h): = (T,ltjh). 

Definition 2: For TEYi, f,hEY 2' we define T X f, 
Ix T, TOf, 10Tin Yi by 

(TXf,h): = (T,fxh), (/XT,h): = (T,h xl), 
v v (10) 

(TOf,h): = (T,fOh), (/OT,h): = (T,hO/)· 

The continuity of X and 0 in Y 2 implies that each right
hand side is continuous and linear in h and thus defines an 
element of Y i. By (8) and (9), these are extensions of the 
corresponding operations on Y 2' 
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Throughout this paper, every dual space E' of a locally 
convex space E is topologized by the strong dual topology, 
that of uniform convergence on bounded subsets of E. Then 
the four bilinear maps: Y ~ X Y 2 ..... Y ~ defined above are 
hypocontinous. Indeed, since Y 2 and Yi are barreled it 
sufficesl8

•
19 to check separate continuity. For example, for 

fixed T, the map/ ....... (T,lxh )is continuous, uniformly so 
for h in a bounded subset of Y 2 (by the joint continuity ofl 
and h), so thatl ....... T X I is continuous from Y 2 to Y ~ . For 
fixed f, T ....... T X I is the transpose of the continuous map 
h.......1 X h of Y 2 into Y 2' and as such is continuous from Yi 
toYi· 

All formulas of Sec. II involving I and g extend to anal
ogous formulas for T and I (e.g., T X 1= FTOI = TOFj). 
This is easily checked since A = B in Y~ iff (A,h ) = (B,h) 
for all hEY 2' and we may reduce to the Y 2 case using ( 10). 

We write I for the constant function with value 1, and l> 
for the Dirac measure of mass 1 supported at O. These are the 
identities for the operations X and 0: 

Ix/=/xl =f, l>O/=/Ol>=f 

This follows from (I X f,h ) = (I,f X h ) 
= H/Xh)(u)du = (f,h) by (7): thus IX/=/as ele
ments of Y ~. We show below that I X I is continuous, so 
I X 1= I as functions in Y 2' The other half of the equation 
follows from (5), since Fl> = Fl> = Yl> = I. From (4) we 
also obtain the formulas 

10/=l>X/=Ff, 101 =/Xl>=Ff (11) 

Using the fact that uj = Itj I, we obtain from (3) the impor
tant identities 

uj X 1= Itj 1+ i ilj f, I X uj = Itj 1- i ilj f, 
which, in the (q,p) notation, become 

q'X/=(q.+i~)f, 
J J apj 

IXq· = (q. - i ~)f, 
J J apj 

If TEYi andjEY 2' the ordinary convolution T */is 18.20 

a smooth function in dc, whereas the ordinary product TI 
is a "rapidly decreasing distribution" in debut need not be 
smooth. In contrast, (5) (extended to Y~) shows that the 
twisted product and twisted convolution have similar prop
erties of smoothness and of growth at infinity. To see this, we 
first note that (2) may be rewritten as 

(/Og)(u) = (E_uTuf,g) = (f,EuTug)· 

Thus in convolution formulas, such as ( T *1)( u) 
= (T,Tu])' the translations Tu are replaced by EuTu or 
E_uTu' 

Theorem 1: If TEY~, lEY 2' then T X f, I X T, 
TOf, and/OTare smooth functions on R2N

, given by 

(TX/)(u) = (T,EuTuFI), 

(/Xn(u) = (T,E_uTuFI), 

(TO/)(u) = (T,EuTuf>, 

(/on(u) = (T,E _ uTuf>. 

J. M. Gracia-Sandia and J. C. Varilly 

(13) 

(14) 

871 



                                                                                                                                    

uous from R2N to Y 2' so the right-hand sides of these formu
las are jointly continuous in u and! By transposition, since 
(T,Eu'Tu 'j) = (E _ u 'Tu T,f), they are also continuous in T. 
These right-hand sides define separately continuous exten
sions to Yi X Y 2 of the twisted product and convolution on 
the dense subspace Y 2 X Y 2; since these extensions are nec
essarily unique, they coincide with T xf, etc., as defined ear
lier. 
Now 

ajh(u) = ±limc-1(h(u+cej ) -h(u»), 
c-O 

where ek is the k th basis vector in R2N
, whenever this limit 

exists. By calculation, we find that 

lim c- 1(T,Eu + ce.'Tu + ceFI - Eu'TuFI) 
c-o J J 

= (ajT X/)(u) + (T Xaj/)(u) 

as expected, so by induction T X I is infinitely differentia
ble, with the Leibniz formula aj ( T X I) = aj T X I 
+ T X aj I holding as an equality between smooth func
tions. The other three cases are similar. • 

Let '!! 2 denote the space of smooth functions on R2N, 
with the topology of uniform convergence of all derivatives 
on compact sets. Ordinary convolution operators are pre
cisely those that commute with translations; we may charac
terize the twisted convolution operators as those that com
mute with "twisted translations." 

Theorem 2: Let L: Y 2-+ '!! 2 be linear and continuous; 
then there is a unique TeYi with L ( I) = T X I for all 
leY2 iff L commutes with {Eu'Tu:ueR2N

}. 

Proof: From (14) we find that 

Ev'Tv (T X/)(u) = eiv'JU( T X/)(u - v) 

= eiv'JU(T,Eu _ v'Tu _ vFI) 

= eiv'JU(T,tl---H!i(u-v)'JtFI(t - u + v» 

= (T,t l---H!i(u'Jt- v'J(t- ul)E _ vFI(t - u» 

= (T,t l---H!iu'Jt'T _ vE _ vFIU - u» 

= (T,Eu'TuF(Ev'Tvl», 

so that/t--+T xl commutes with any Ev'Tv. 
On the other hand, given L: Y 2 -+ '!! 2 which commutes 

with all Ev'Tv, we define TeYi by (T,h): = L(Fh)(O). (So T 
is unique.) For ueR2N,feY 2' we then obtain 

(TX/)(u) = (T,Eu'TuFI) = (T,F(E_u'T -ul» 

=L(E_u'T _ul)(O) =E_u'T _u(LI)(O) 

='T _u(LI)(O) = (LI)(u). • 

We can now define the Moyal *-algebra1. We define it 
as the intersection of two spaces 1 Land 1 R' which, to the 
best of our knowledge, were first considered by Antonets.21 

Definition 3: 
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(1) 1 L: = {YeYi: S X leY2, for all leY2}; 

(2) 1 R: = {ReY~:/XReY2' for all jEY2}; 

(3) 1: = 1 L n1 R. 

NotethatSEvN' Liff S*EvN' R since (S X 1)* =1*xS*. 
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Since Y 2 is a Frechet space, the maps I t--+S X I, I t--+I X R 
are continuous from Y 2 to Y 2 by the closed graph theorem. 

It is clear that Y 2C1 and that lEvN'o Formulas (11) 
show that 8eJI. Now, if SEvN' L,feY 2' we have 

ajs X 1= aj(S X I) - S XajJ, 

J.ljS X 1= J.lj(S X I) + is xajJ, 

and so ajSEvN'L and J.ljSEvN' L; thus 1 L' and similarly 1 R 

and 1, is closed under partial differentiation and multipli
cation by polynomials. Hence, in particular, all polynomials 
lie in 1. 

We now extend the twisted product to the case of one 
distribution in 1 and one in Yi (so that Yi is an 1 
bimodule). 

Definition 4: If REvN' R , SEvN'L' TeYi, we define T X S, 
R XTinYi by 

(T XS,h): = (T,S Xh), (R X T,h ): = (T,h XR ), 
(15) 

for all heY 2. Since the right-hand sides are continuous in h, 
T xS and R X T are defined in Yi. 

IfR,SEvN', TeYi, andl,g,heY2, we may compute 

«Tx/)Xg,h) = (Txl,gXh) = (T,fxgxh) 

= (T X (/xg),h), 

«R XS)XJ,h) = (R xS,fxh) = (R,S X/Xh) 

= (R X (S Xj),h). 

In particular, (R xS)x/eY2 for leY2, so R xSEvN'L. 
Then «T XR) XS,h) = (T XR,S Xh ) = (T,R xS Xh ) 
= (TX(R XS),h). We conclude that 1 is an associative 
algebra; in fact, it is a *-algebra since, for R,SEvN', 

«R XS)*,h) = (R XS,h *)* = (R,S Xh *)* 

= (R *,h XS*) = (S*XR *,h). 

We may also note that since SOl = S XFJ, 
lOR = FI X R, we have 

1 L = {SeYi: SOjEY 2' V/eY 2}' 

1 R = {ReYi: IOReY2, V/eY2}, 

so 1 is also a *-algebra under 0, where we define 
(TOS,h): = (T,SOh), (ROT,h): = (T,hOR). The in
variance of 1 under the several Fourier transforms now 
follows easily. One easily checks that the formulas of Sec. II 
remain valid whenl,g are replaced by R,SEvN'. 

Remarks: (1) We show below that {/xg: l,geY2} 
equals Y 2. Thus 1 is the maximal *-algebra which we may 
define by duality. For, if TeYi with T xl, Ix TEvN', 
V/eY2, then by writing I=gxh we see that Txf,/xT 
both lie in Y 2, since TX/= (Txg)Xh and IXT 
= gX (h X T); hence TEvN'. 

(2) 1, 1 L , 1 R , and Y i are distinct spaces of distri
butions. 

IV. REGULARITY PROPERTIES 

In this section we consider in more detail the growth 
conditions on resultants of twisted products or convolutions. 
We identify a space of smooth functions, tl To which contains 
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all functions defined by ( 13) and ( 14) , and we show that fj T 

is a nonnal space of distributions. As a consequence its dual 
space fj T contains all distributions of compact support and 
is contained in JI. 

If (E;) ieJ is a collection of locally convex spaces, the 
projective topology on the intersection E: = n ieJE; is the 
weakest locally convex topology such that all inclusions 
ECE; are continuous. The inductive topology on the union 
F: = U ieJE; is the strongest locally convex topology such 
that all inclusions E; CF are continuous. We shall use the 
projective topology on decreasing intersections, and the in
ductive topology on increasing unions, without further com
ment. 

For.feC m (R2N), k,meN, let 

h.m (f) 

:=sup{(1+u2)-k- laI/2Ia af(u)l: ueR2N
, lalo;;;;m} 

(16) 

(where u2 = u'u = ui + ... + UiN)' and let r'k be the 
space of all.feC m such that (1 + u2 ) - k - lal/2 a af( u) van
ishes at infinity for all lal o;;;;m, nonned by h.m' Now let 

r k: = n r'k, fj T: = U r k· (17) 
mEN kEN 

Let 

qk.m (f): = sup{(1 + u2) - k laaf(u) I: ueR2N, lalo;;;;m}; 

then 

{.feC m: (1 +u2)-ka af(u) vanishes at infinity for 
lalo;;;;m}, 

nonned by q/c.m' is Horvath's space18 Y~ k' Using the nota
tions of Ref. 18, we have 

Y -k:= nY~k' fjc:= uY -k' 
mEN kEN 

(18) 
fj~: = U Y~k' fj M: = n fj~. 

kEN mEN 

Here fj M consists of smooth functions for which each deriv
ative is polynomially bounded; fj c is a subset of fj M' where
in the degree of the polynomial bound is independent of the 
derivative; and fj T is the subset of fj M wherein that degree 
increases linearly with the order of the derivative. Indeed, 
this leads to the following proposition. 

Proposition 4: fj c C fj T C fj M with continuous inclu
sions. 

The proof is easy and will be omitted. 
Theorem 3: If TeYi, .feY 2, then T X f, f X T, 

TOf, andfOT all lie in fj T" Moreover, these four bilinear 
maps of Yi X Y 2 into fj T are separately continuous. 

Proof: It suffices to consider the case of TO! 
Differentiating the equality E u T u ( TOf) 

= TO(EuTu f), with u = tJep at t = 0, we get 

(aj + ipj)( TOf) = To(aj + ipj)f, 

so that 

aj(TOf) = To(aj +ipj)f-ipj(TOf), 

and by induction we get, for aeN2N, 

aa(TOf)(u) = IPp(u)(TOfp)(u), 
p<:.a 
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(19) 

where P p (u) is a polynomial of degree at most 1f3 I, and 
fpeY 2' for f3o;;;;a. From (16), we need only show that TOfis 
polynomially bounded. 

Any TeYi can be written20 as T = a rQ, with yeN2N, 
where Q is a polynomially bounded continuous function on 
R2N. Recalling (3), ajQOf= a/QOf) + ipjf, and by iter
ation 

TOf=arQOf= I a"(QOg,,), (20) 
"<:.r 

for certaing"eY 2' Combining this with (19), we need only 
show that QOfis polynomially bounded. 

If IQ(t) lo;;;;C(1 + t 2)\ then 

I(QOf)(u)1 = I f Q(t)e;U'J,/(u - t)dt I 

o;;;;f C(1+t 2)klf(u-t)ldt 

o;;;;f2kC(1 + u2)k(1 + (u - t)2)klf(u - t)ldt 

= K(1 + u2
)\ 

where 

is finite since feY 2' 
Since K depends continuously on f, the map f r-+QOf 

is continuous from Y 2 into r k + l' Since each g" in (20) 
depends continuously of f, and since h,m (aj f) 
o;;;;h _ l.m + 1 (f), so that aj : r k _ 1 -+ r k is continuous, 
we conclude that f r-+ TOf is continous from Y 2 into 
r k + Irl + 1 and hence from Y 2 into fj T' 

Now fix feY 2 and let T vary in Y i. Then K 
is a multiple of C, so if V is a neighborhood of zero 
in fj T> then vn r k + Irl + 1 is a zero-neighborhood in 
r k + Irl + 1 and thus contains all TOf with T = a rQ, 
IQ(t) I o;;;;C(1 + t 2)\ for Co;;;;ckr with ckr small enough. Let 

B:= {heY2: f (1 +u2)'la ah(u)lduo;;;;_I_, 
Cra 

VI'EN, vaeN2N } . 

Then B is bounded in Y 2 and its polar BOis a neighborhood 
in Yi such that TOfeVwhenever TeB°. • 

Remark: The fact that T xfefj M has been noted in 
Ref. 7. 

A normal space of distributions 18 (on R2N) is a locally 
convex space!!ll, where iP c!!ll C iP' with continuous inclu
sions and iP is dense in !!ll. (Here iP is the space oftest 
functions of compact support on R2N.) 

Lemma 1: r'k is a nonnal space of distributions. 
Proof' We adapt the analogous proof of Horvath 18 for 

Y~k' TakegeiP withg(u) = 1 foru 2 O;;;;1 and O<g(u) 0;;;; 1, 
VueR2N. Set g" (u): = g(EU) for E> O. Then for fer,!: we 
havefgEeiPm (the space of cm functions of compact sup
port) and from (16) we get 
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Pk.m (I - IgE) = sup { (1 + U2) - k-lal/2 13~( ;)la a- 13(1- g(Eu»)a 13l(u) I: lal<m, ueR2N} 

<CSUP{(1 +U2)-k- 1al12 L (a)l a13l(u)l: lal<m, U2>E- 2} 
l3<a P 

<2mc SUp{(1 + U2) - k-1131/2Ial3l(u) I: IP 1 < m, U2>E- 2}, 

where we may take 

C= 1 + sup{larg(u) I: Irl<m, ueR2N}. 

Thus/gE-.I in 'Y'k as E-.O, and so ~m is dense in 'Y'k. 
Hence ~ is dense in 'Y'k since it is dense in ~ m. On the other 
hand, since q k+ m,m ( I) <Pk.m ( I) <q k,m (I) for 
leC m(R2N), we get a chain of continuous inclusions: 

~eY~ke'Y'keY~k_me~'. • 
Lemma 2: Let (&I k ) keN be a sequence of normal spaces 

of distributions. Then (1) if &I k + 1 e &I k with a continuous 
inclusion for all k, and if &I: = n kEN &I k with the projective 
topology, or (2) if &I k e &I k + 1 with a continuous inclusion 
for all k, and if &I: = U keN &I k with the inductive topology, 
then &I is a normal space of distributions. 

Proof: (1) Wehave~ e&le&lk e~', VkeN. The first 
inclusion is continuous since &I has the projective topology 
and each ~ e &I k is continuous; the continuity of the other 
inclusions is clear. If V is a neighborhood of 0 in &I and if 
le&l, then V = Vk n&l, where Vk is a O-neighborhood in 
some &I k; then 1+ Vk contains some ge~, and hence 
ge(1 + V): so ~ is dense in &I. 

(2) we have ~ e&lk e&le~', VkeN. The third in
clusion is continuous since &I has the inductive topology and 
each &I k e ~' is continous; the continuity of the other inclu
sions is clear. If V is a neighborhood of 0 in &I and if le&l, 
then le&l k for some k and vn &I k is a O-neighborhood in 
some &I k; then 1+ (Vn &I k) contains some ge~, and 
hence gEe 1+ V): so ~ is dense in &I. • 

Already in Ref. 18, tJ c has been shown to be a normal 
space of distributions, where the proof technique is essential
ly the application of Lemma 2 to the definition of tJ c 
[ (18) ]. From (18) we also obtain the normality of tJ M' 

Combining the two lemmas with the definition (17) of tJ T> 

we get normality of tJ T' Thus each inclusion in the chain 

~etJ cetJ TetJ Me~' 

is continuous and has dense image (since ~ is dense in all 
these spaces). Thus the transposed maps 

~ etJMetJ~etJCe~' 

are one-to-one and continuous. We identify each dual space 
with its image in ~'. Since we can interpolate Y 2 and Y~ 
into both chains, the dual spaces consist of tempered distri
butions. 

The space of distributions of compact support20 on R2N 
is the dual space 5'~ of 5'2' We can now show that it is 
contained in the Moyal algebra. 

Theorem 4: The spaces 5' ~, tJ M' and tJ ~ are contained 
in.4. 

Proof: Transposing tJ T e tJ M e 5' 2' we get 5' ~ e tJ M 
e tJ~, so we need only check that tJ~e.4. 
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If SetJ ~ and TeY ~, we may define S X T, T X S by 
transposition: 

(S X T,h): = (S,T Xh), (T XS,h): = (S,h X T), 
(21) 

for heY 2; since the right-hand sides are continuous in h, by 
Theorem 3, S X Tand T XSare defined in Y~. 

Moreover, for a fixed heY 2' the maps TI-+ T X h, 
TI-+h X Tare continuous: Y~ -. tJ T by Theorem 3, so they 
transposetocontinuousmapsSl-+h XS,SI-+S Xh fromtJ~ 
into (Y~)' = Y 2, via 

(h XS,T): = (S,T Xh), (S Xh,T): = (S,h X T). 
(22) 

Combining (21) and (22), we get 

(TXS,h): = (T,S Xh), (S XT,h): = (T,h XS), 
(23) 

for TeY~, SetJ~, heS2• We have shown that S xheY2, 
h xSeY2, whenever heY2, SetJ~; these are resultants of 
separately continuous extensions to tJ ~ X Y 2 of the twisted 
product on Y 2, and since Y 2 is dense in tJ ~ these extensions 
are unique. Since (23) is formally identical with (15), the 
twisted products (21), (22) are consistent with previous 
ones, and we conclude that tJ~e.4. Since lE£tJ~, we have 
tJ~#.4. • 

Corollary: The space tJ c is contained in .4. In particu
lar, the (ordinary) convolution of any function in Y 2 with 
any tempered distribution belongs to .4 . 

Prool: Since tJ c is reflexive,22 it is enough to note that 
Y(tJM) = tJ c' Then use Theorem 4. Also,18 T*I belongs 
to tJ c if/eY 2' TeY~. • 

If R,SeY ~, their tensor product R ® SeY' (R4N) is giv
en by 

(R ®S,j®g): = (R,j) (S,g). 

If R,Se.4, we have 

(ROS,h) = (R,SOh ) = (R,UI-+(S,E _ u1' _ uh» 

= (R ®S,(u,v)t-+e;U'Jvh(u + v». 

Writing h2(u,v): = e- ;U'Jvh(u + v), we find that 

a~ a~h2(U,V) 

= L L iIEI-II3I(a)(r)(JV)I3(JU)Ee-;u'JV 
l3<a E<r P E 
X (a~-13 a~-Eh) (u + v). (24) 

Thus h I-+h2 is continuous: 5'2 -.5' (R4N). Since 
(R,S)I-+R ®S is jointly continuous: 5'~ X 5'~ -.5"(R4N), 
and (ROS,h) = (R ® S,h2), we find that (R,S)I-+ROS is 
jointly continuous on 5' ~. 
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By the Paley-Wiener theorem, F( If; ) = 07 ( If; ) 
= :& exp is the space of functions in & M that extend to ana

lytic functions of exponential type, and by Theorem 4 and 
the Fourier invariance of J/, & exp is contained in J/. (& exp 

carries the topology induced by 07 from If;.) 
For convenience, we write {lj f = Ilj + NI if j<N, 

{lj": = - Ilj- NI ifj> N. If hE If 2' the expansion 
00 ( .) k 

e-iU'Jvh(u + v) = I ~ (u'Jv)kh(u + v) 
k=O k! 

converges uniformly on compact subsets of R2N
, together 

with all derivatives on account of (24), and this convergence 
is uniform on bounded subsets of If 2' Thus 

(SOT,h) = f (- i)k (S® T,(u,v)t---+(U'JV)kh(u + v». 
k=O k! 

Since 
k' (U'JV)k = ") -..:. ua'(Jv)a, 

lal= k a! 

and ({lj I) (v) = (Jv)j I(v) for alljEY 2 and eachj, we de
rive 

(SOT,h) 

= k~O laf;k (-:!i)k (S® T,(u,v)t---+ua'(Jv)ah(u + v» 

( .) lal 
= I -, <J.LaS®{laT,(u,v)t---+h(u + v» 

aeN2N a! 

( .) lal 
= I -, (llaS*{laT,h), (25) 

aeN2N a! 

where the series converges uniformly for h in bounded sub
sets of If 2' Weare now able to expand the twisted product as 
a series of products of derivatives. 

Theorem 5: If S, TE& exp' then 
'Ial A 

SXT= I -'-(aas)(aaT) 
aeN2N a! 

with convergence in the topology of & exp' 

Prooj: We apply the Fourier transform 07 to (25), re
placing S,Tby o7-IS, o7-IT. By the continuity of 07 we 
get 

( .) lal 
S X T= I -', o7(llao7-IS*{lao7-IT) 

a a. 

( ')Ial 
= I -, i 2Ial (aas)(aaT) 

a a! 

'Ial A 

= I-' (aas)(aaT). 
a a! 

Corollary: If S, TE& exp' then 

SXT- TXS 
00 

=2i I I 
r=O lal=2r+l 

• 

(26) 

Remarks: (1) The restriction to If; or & exp is only 
needed to guarantee convergence of the series indexed by a. 
If either S or T is a polynomial, these series are finite sums, 
and the expansions are valid. 

(2) For N = 1, the leading term in (26) is the ordinary 
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Poisson bracket a qS apT - a pS a qT. As a differential opera
tor on S ® T, we may formally write 

SXT- TXS 

=2i(~ (_I)r (a ®a -a ®a )2r+I)(S®T) 
rf'O (2r+ I)! q p p q 

= 2i(sin(aq ®ap - ap ®aq»)(S® T), 

an expression first derived by Moyal,lI and called the 
"Moyal bracket." 

v. THE MATRICIAL FORM OF THE TWISTED PRODUCT 

By working in the Schwartz space Y 2' we avoid the 
usual continuity problems for the creation and annihilation 
operators for the harmonic oscillator, as has been observed 
before.23 In the present context, these operators are repre
sented by first-degree polynomials in J/. To avoid nota
tional clutter, we will take N = 1 in this section, but the 
results go through in the general case with the systematic use 
of multi-indices. We write u = (q,p) and use q,p, aq, ap in 
place of Ill' 1l2' ai' a2, respectively. We introduce the nota
tion 

a aq - iap 
a;;: = v'2 

~. _ aq +iap 
iJa'- v'2 

H: = aa = ~(q2 + p2) = ~U2, 10 = 2e- aa = 2e- H • 

From (12) we obtain the formulas 

a xl = al + ai, I X a = al _ al , 
iJa iJa 

(27) 

a XI = al - Z, I X a = al + Z . 
We get at once the following equalities in J/: 

a X a = H - 1, a X a = H + 1, a X a - a X a = 2. 
(28) 

The third equality is, of course, the canonical commuta
tion relation for a and a: recall that we have taken units in 
which Ii = 2. We note also that aXaX' .. Xa (n times) 
=an

• 

The Gaussian functionlo has several nice properties: it 
is (pointwise) positive, it is a fixed point for the various 
Fourier transforms, and it is an idempotent in Y 2 for both 
the twisted product and the twisted convolution. Moreover, 
it is a unit vector in L 2 (R2

), because of our choices of nor
malization. 

Notice that if gE& M' (27) implies that 

aX (glo) = (: )10' aX (glo) = (2iig - :! )10. 
(29) 

Takingg = 2mam
, we find that 
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so we get by induction that amx/o = 2maml o if mEN. If 
n > m, this gives 

and if n < m, then 

loxanxam = (amXanx/o)* = o. 
Also, 

/oXanxanX/o =loXanX (2na"fo) 

To summarize, 

10xanxamX/o = 8mn rn'fo, for m,nEN. (30) 

We now introduce an orthonormal basis for L 2(R2), 

which we declare as a doubly indexed family offunctions in 
Y 2, since this family forms a system of matrix units with 
respect to the twisted product. 

Definition 5: For m,nEN, we define Imn EY 2 by 

Imn: = (1/~2m+nm!n!)amX/oxan. (31) 

From (30) we get directly 

Imn xlkl 
= (2m + n+ k+lm!n!k Ill) -II2amx/oxanxak X/oxal 

= (8nk/~2m+ Im!!!)amX/oxal = 8nk l ml . (32) 

This implies that 

2(lmn llkl) = (/nmJkl) 

= f (Inm xlkl )(u)du = 8mk f Inl (u)du 

= 8mk f (anX/ox/oxal)(u)du 
~r+ln!!! 

= 8
mk f (/oXal xanX/o) (u)du 

~2n + In!!! 

= 8mk8nl f lo(u)du = 28mk8nl , 

so that {Imn: m,nEN} is orthonormal inL 2(R2). This fam
ily is complete since [see (36)] all the Hermite functions on 
R2 are linear combinations of the Imn. 

Remark: The basis (Imn) lies in Y 2' as is clear from 
(31) since a,aEJ/. It has also the important property of 
diagonalizing the Fourier transforms; one readily checks 
that 

Y(lmn) = ( - i)m+ nlmn , 

F(lmn) = ( - i)"fmn, F(lmn) = ( - i)mlmn' 
(33) 

and hence also fmn = ( - 1) m + "fmn. 

To present Imn explicitly, we use polar coordinates: 
q + ip = : peia

, noting that p2 = q2 + p2 = u2. 
By induction, applying (29) to (31), we derive 
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J. = I i ( _ 1) k (m) (n) 
mn ~2m+nm!n! k=O k k 

Xk !2m +n- kam - kan - klo 

and, since a = (lIV2)peia
, a = (lIV2)pe - ia, we get, after 

some rearrangement, 

Imn (p,a) 

= 2( - 1)n~ (n!!m!) e - ia(m - nlpm - nL '; - n(p2)e- p'12 

(34) 

and in particular 

Inn (p,a) = 2( - 1)nLn (p2)e- p2
/2, (35) 

where Ln and L '; - n are the usual Laguerre polynomials of 
order n. 

Remark: Equation (35) agrees with the Wigner func
tion of the nth energy level of the harmonic oscillator, ob
tained in Ref. 10; and (34) agrees with the "transition" be
tween levels of the harmonic oscillator, first derived in Ref. 
24; see also Refs. 3 and 25. 

Now we represent Y 2, Y;, and L2(R2) as sequence 
spaces of coefficients after expansion in the twisted Hermite 
basis (Imn). Our treatment is in the spirit of Simon's work26 

with the ordinary Hermite basis. Since here the coefficients 
form a doubly indexed family, we may consider their matrix 
product, which turns out to correspond to the twisted prod
uct of the associated functions or distributions. 

The fundamental fact that underlies the sequence con
structions is that the twisted Hermite basis "diagonalizes" 
the oscillator Hamiltonian H (its eigenvalues are odd inte
gers rather than half-integers due to our convention that 
1i=2). 

Proposition 5: If m,nEN, then 

H xlmn = (2m + 1)/mn' Imn XH = (2n + 1)/mn' 

Proof' From (31) we get at once 

a xlmn = .J2iiilm _ I,n' Imn X a = ~2n + 2lm,n + 1 , 

a xlmn = ~2m + 21m + I,n' Imn X a = J2iilm,n - 1 

(with Imn = 0 if m or n is - 1). The result follows from 
(28). • 

Let us write A ( I): = H xl X H. We could consider A as 
an operator on L 2(R2) with domain Y 2; as such, A is sym
metric and closable, and clearly unbounded. Indeed, 

(A ± iI)lmn = (2m + 1) (2n + 1) ± i)/mn 

and hence A ± if has dense range: thus A is essentially self
adjoint. Moreover, A -I has finite-dimensional eigenspaces 
and 

f (2m + 1)-2(2n + 1)-2 = (1f1)2 
m.n =0 8 

is finite, soA -1 is a Hilbert-Schmidt operator. It is not hard 
to check that theseminorms/~IIA kill (kEN) generate the 
topology of Y 2' 

Remark' Let B = u2 - !l. be the usual Hermite operator 
on L2(R2). We have BI=HX/+/xH, so Blmn 
= 2(m + n + 1)/mn. If 
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is the usual Hermite function of degree k, we conclude that 

Imn = L C':!.nhk ® hI' 
k+I=m+n 

hk®hI = L b'ktlmn. 
m+n=k+I 

(36) 

for some constants c':!.n, b 'kt. In fact, we may compute 
that 

( + )
1/2( + ) - 112 C':!.n = 2(m-n)/2j2m+I min m m n 

whereP;,,- m.k - m is the usualJacobi polynomial. (This takes 
care of the completeness argument for the Imn . ) 

We can now characterize Y 2 and Yi as sequence 
spaces. 

Theorem 6: Let S be the Frechet space of rapidly de
creasing double sequences C = (cmn ) such that 

rk(c): L.t 0 (2m + 1)2k(2n + l) 2k
lcmnl2r/2 

is finite for all kEN, topologized by the seminorms (rk hEN' 
For lEY 2' let C be the sequence of coefficients in the expan
sion 

co 

1= L cmnlmn · 
m.n 0 

Then I ~ is an isomorphism of Frechet spaces from Y 2 

onto s. 
Proof: If lEY 2' then IIA kl II < 00, for all kEN, so that 

r k (c) = IIA I'll is finite for all k. It follows that 
I ~ is a one-to-one topological isomorphism of Y 2 into s. 

Given any CES, for M,NEN let cMN be the double se
quencedefinedbyC:-~: = Cmn ' ifm<,M, n<,N;c'::.~: = 0, oth
erwise. Then r k (C

MN 
- c) --+0 as M,N --+ 00, for each k, so 

that the functions .l:'::.=o.l:;;=ocmnlmn form a Cauchy se
quence in Y 2 and hence converge to a function/which maps 
oo~~ • 

For TEYi, m,nEN, define bmn : = (T,lnm)' Then 
00 00 

(T,J) = L Cnm (T,Jnm) = L cnmbmn , 
m~ 0 _n=O 

where the series converges absolutely, for each 
co 

1= L CmnlmnEY2' 
m.n 0 

Since TEY 2' there exist kEN, K> 0 such that 

I (T,J) I <X IIA I'll = Krk (c) 

for all lEY 2' and since 
00 

(T,J) = L (2m + 1) k(2n + 1) k 
m,n 0 

Xbmn (2n + l)k(2m + l) kcnm , 

(37) 

(38) 

the Schwarz inequality gives r _ k (b) <,K. Thus, whenever 
b mn is a double sequence with r _ k (b) finite for some k, the 
series .l: :'.n = 0 b mn Imn converges weakly to T in Yi, and 
(38) shows that the convergence is uniform on bounded sub-
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sets of Y 2' so the series converges to T in the strong dual 
topology of Y 2' 

The main result of this section is now easy. 
Theorem 7: If a,bEs correspond respectively to f,geY 2 

as coefficient sequences in the twisted Hermite basis, then 
the sequence corresponding to the twisted product/xg is 
the matrix product ab, where 

00 

(ab)mn: = L amk bkn · 
k=O 

(39) 

Proof: From (32) and the continuity of X in Y 2' we get 

Ixg = (L amklmk )X(L brn l rn ) 
m.k r.n 

= L amkbrnlmk xlrn = L amkbknlmn' • 
m.k,r.n m.k,n 

Corollary: 

{/xg: I,geY2} = Y 2· 

Proof: It suffices to show that any CES can be written as 
the matrix product of two sequences in s. We use Howe's 
argument25 to show this. 

Set dm : = (sup{lcjrl: jEN, r>m}) 112 for mEN, and let 
dbe the "diagonal" sequence with entries dm8mn . Then one 
verifies that rk (d)2<,Ckr2k + 2 (c) for some constants Ck, so 
that dES. Now if we set bmn : = cmn/dn, we get 

Ibmnl = Icmnl/dn<,d;/dn =dn 

and thus bEs also. Clearly bd = c. • 
Remark: The sequence aOb corresponding to 109 is 

(aOb)mn: = f (- l)kamkbkn· 
k=O 

Since, by (4) and (11 ),JOg = Ix8xg, it suffices to show 
that 8 is represented by the diagonal matrix with entries 
( - I) m8mn ; this follows from (33), since Yl = 8. Thus the 
entire theory of the twisted product and convolution could 
be developed, at least formally, in the matrix language and 
without mention of the symplectic Fourier transforms; the 
basic transformation formulas [see (4)] are 

ROS = R X8XS, R xS = ROI0S. 

We now show that (39) gives a second way of defining 
the twisted product for many pairs of distributions, which lie 
in spaces of Sobolev type. 

Definition 6: For s,tER, we denote by f§ s,t the Hilbert 
space obtained by completing Y 2 with respect to the norm 

II I IIs.t: = C.~O (2m + l)S(2n + 1)t ICmn 12)1/2. (40) 

Observe that f§o,o =L2(R2) with 11/110,0 = 11/11. An 
orthonormal basis for f§ s,t is given by the functions 
(2m + 1) -sl2(2n + 1) -t/2/mn' and thus 

00 

1= L cmnlmn 
m.n=O 

with convergence in the (s,t) norm, for all jEf§ S,/' Note that 
Y 2 = n s.tER f§ s.t topologically. Since Y 2 C f§ s./ is a contin-
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uous inclusion with dense image, [1 S,I is a normal space of 
tempered distributions, and the transpose of Y 2 C [1 S,I is the 
inclusion [1 _ I, _ S C Y ~. Also, from (38), Y ~ = U s,teR [1 S,I 

(topologically). Furthermore, [1 S,I C [1 q,' with a contin
uous inclusion iff s;-.q and t;-.r. Note also that/*E[1 I,S when
ever IE [1 S,I' 

If 

"" 
g = L bmn l mn E[1 q," 

m,n=O 

we define formally 

II/Xgll;"<m,~o(2m + 1)SC~oICmkbknly(2n + 1)' 

(41) 

Theorem 8: (1) The series (41) converges in [1 S,' if 
t + q;-'O, and in that case II/xglls,,<ll/lls., Ilgllq". 

(2) [1 S,I is a Banach algebra under the twisted product 
(41) whenever s + t;-.O; for s;-'O, [1 ss is a Banach *-algebra. 

(3) The Fourier transforms F,F,Y are unitary isome
tries of each [1 S,I onto itself. 

( 4) The twisted product (41) is consistent with pre
vious definitions. 

Proof (1) From the Schwarz inequality we get 

= m,~o (2m + I)SC~oICmkl(2k+ 1)/I2(2k+ 1) -1121bkn1Y(2n + 1)' 

"" "" 
<m,~o (2m + 1 )'Icmk 12(2k + 1)1 I'~O (21 + 1) - I Ib ln 12(2n + 1)' = 11/11;,1 IIg112_ 1,,<11/11;,1 Ilgll~,,, 

whenever q;-' - t, which yields convergence of (41) in this 
case. 

(2) It follows by taking q = s, r = t. 
( 3 ) The Fourier in variance of [1 S,I is evident from (40) 

and (33). 
(4) If 

"" 
T= L dmnlmnEYi, 

m,n=O 

then 

(T,/Xg) = m,~o dmnC~oCmkbkn) 

= k.~OC~O dnmCmk)bkn = (Txf,g), (42) 

where the convergence of the double sums is absolute by 
(37) and that of the simple sums is also absolute, in the 
second case because T X I lies in some [1 S,I and g lies in 
Y 2 C [1 _ I, _ s. Thus we may interchange the summations, 
obtaining 

Tx/= k'~OC~O dnmCmk)lnk' 

If IEJI L' geY 2' then by Definition 4, 

(TX f,g); = (T,lxg) = m.~o dnmC~oCmkbkn); 
the double sum converges absolutely since I X geY 2' so we 
may interchange the order of summation to recover ( 42). • 

Remarks: (1) We see that if f,geL 2(R2), then 
I x geL 2(R2) and Il/xgll<ll/lIlIgli. Moreover Ixg lies 
in Co (R2); the continuity follows by adapting the analogous 
argument for (ordinary) convolution. 

(2) Notice from (40) that A ([1 S,/) = [1 s- 2,1- 2' where 
wewriteA(D: =H XTXH for any TEYi, which makes 
sensesinceHEJI. Clearly A(JI) CJI, so that ifJl were to 
contain any [1 S,t> it would contain them all. However, 
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JI =1= Y i, and thus JI contains no [1 S,I; in particular, 
L 2(R2N) q:JI. Hence, JI really provides a different exten
sion of X on Y 2 from the Banach algebras [1 S,I (s + t;-'O). 

VI. CONCLUSION AND OUTLOOK 

We have been led to define the twisted product of a pair 
of distributions and to introduce the Moyal *-algebra JI 
under the twisted product. A rigorous formulation of the 
phase-space approach to quantum theory, in the arena given 
by JI, should address the following problems: (a) find an 
equivalent of the spectral theorem; (b) solve the dynamical 
equations using such a spectral theorem; and (c) describe 
the algebraic structure of the state space corresponding to 
JI. 

We plan to take up these problems. Our first task is to 
give JI an appropriate topology: this we do in the following 
paper. 27 
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Algebras of distributions suitable for phase-space quantum mechanics. II. 
Topologies on the Moyal algebra 
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The topology of the Moyal *-algebra may be defined in three ways: the algebra may be 
regarded as an operator algebra over the space of smooth declining functions either on the 
configuration space or on the phase space itself; or one may construct the *-algebra via a 
filtration of Hilbert spaces (or other Banach spaces) of distributions. The equivalence of the 
three topologies thereby obtained is proved. As a consequence, by filtrating the space of 
tempered distributions by Banach subspaces, new sufficient conditions are given for a phase
space function to correspond to a trace-class operator via the Weyl correspondence rule. 

I. INTRODUCTION 

In the previous article (Ref. 1, hereinafter referred to 
simply as I), we laid the foundations of a promising math
ematical mold for the phase-space formulation of quantum 
mechanics. In this paper we obtain some less straightfor
ward results, in keeping with the preliminary stage of the 
program outlined in I. 

A wealth of information may be gained by characteriz
ing the Moyal *-algebra JI as a suitably defined limit of a 
family of Banach spaces, which form a filtration of the space 
of tempered distributions on phase space. In fact, we intro
duce several variants of this filtration, depending on whether 
to use Hilbert algebras or some other kind of Banach alge
bras. 

The definition of an adequate topology on JI is obvious
ly of great importance. For physical reasons, we should in 
principle consider two topologies on JI, depending on 
whether we wish to link the theory with ordinary quantum 
mechanics, or to study the dynamics in JI in its natural 
context. A third topology on JI is given by the filtration. We 
will show that these three topologies are equivalent. 

The paper is organized as follows. In Sec. II we review 
the twisted product and the integral transformation of 
Wigner, which intertwines the twisted product with the 
composition of kernel functions. We show how this transfor
mation and the kernel theorem establish a link between JI 
and the algebra .!t' b (Y 1 ). We also sketch how the Wigner 
transformation and the twisted product yield a constructive 
proof of the Stone-von Neumann theorem. In Sec. III we 
introduce two topologies on JI, regarding JI first as an 
operator algebra over a space of test functions on configura
tion space, and second as an operator algebra over functions 
on phase space; and we prove the equivalence of these two 
topologies. In Sec. IV we introduce the filtrations of the 
space of tempered distributions (on phase space) and char
acterizeJl in terms of these filtrations. From this character
ization, we obtain the third topology on JI, and we prove its 
equivalence with the previous two. In Sec. V, we obtain con
ditions which imply that certain functions on phase space 
correspond to trace-class operators in the usual formulation 
of quantum mechanics. 

II. TWISTED PRODUCTS AND THE KERNEL THEOREM 

In the usual approach to phase-space quantum mechan
ics, via the Weyl correspondence between functions and op
erators,2-4 L 2 functions correspond to Hilbert-Schmidt op
erators; since these have L 2 kernels, we may relate the 
twisted product to the composition of integral kernels by 
some transformation of L 2(R2N) onto itself. This transfor
mation turns out to be the prescription introduced by 
Wigne~·6 to associate a "distribution function" on phase 
space to a Schrodinger wave function. Moreover, it maps the 
twisted Hermite basis of I onto the ordinary Hermite basis 
for L 2(R2N). Also, we can build on the observation by Cress
man 7 that the Wigner transformation allows us to transfer 
the kernel theorem to the twisted product calculus, and in 
this way we identify the Moyal *-algebra JI in terms of more 
familiar spaces. 

We use the same notations as I. Also, we write 
Y 1 = Y(R) andY2 = Y(R2) to denote the spaces of rap
idly decreasing smooth functions on Rand R2, and Y; ,Y~ 
for their dual spaces of tempered distributions. When t/J, 
t/JE.Y I' we define t/J ® t/JE.Y 2 by (t/J ® r/J)(q,p): = t/J(q)r/J(p). 
If E,F are locally convex spaces, .!t' (E,F) will denote the 
space of continuous linear maps: E -+ F, which we abbreviate 
to .!t' (E) in the case E = F. 

IfJ,gEY2 [or ifJ,gEL 2(R2)], we write 

(jog)(x,y): = _1_ r j(x,z)g(z,y)dz, 
.J41i JR 

which is the "kernel product" ofjand g. We also introduce 
the maps R, <1>, W from Y 2 onto Y 2 by 

(

X +y x- y ) 
(Rj)(x,y): = .fi' .fi ' 

1 i . (<I>j)(x,y): =- j(x,z)e-ryzdz, 
fiii R 

(Wj)(x,y): = (R<I>-,/)(x,y) 

= _1_ r j(X + y , z)ei(X - y)zl,f2 dz. 
fiiiJR .fi 
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Clearly R and the "partial Fourier transform" et>, and hence 
W, are Frechet-space isomorphisms of Y 2 onto itself, and 
extend to unitary operators on L 2(lR2). We call W the 
Wigner trans/ormation on Y 2' It intertwines the twisted 
product and the kernel product on Y 2: 

W(/Xg) = W/oWg. (1) 

Indeed, since W -I = et> R - 1 = et> R, a straightforward com
putation shows that W-1(W/oWg) =/xg for /,geY2. 
The identity (1) gives the connection between the Weyl op
erator formalism and the twisted product calculus. 

Indeed, more is true: if {/mn: m,neN} denotes the 
"twisted Hermite basis" of Y 2 discussed in I, 

/mn(q,p) =2( _1)n f4 (q_ip)m-n 
\j m! 

XL,;-n(q2 +p2)e-<q'+P')12 (2) 

(ifm:>n;fmn: =/~m otherwise), and ifhmeY I denotes the 
Hermite function, 

hm (x): = (1/~2m Im!)Hm (x)e-x'12, 

then a direct calculation shows that 

W(/mn) = hm ®hn· (3) 

We may extend W to Y~ by dualilty in the usual way. 
Indeed, writing W: = Ret>, we find 

(WJ,g) = (Ret>-IJ,g) = (et>-l,Rg) 

= (J,et>-IRg) = (J,W-1g), for /,geY2, 

so we define WT for TeY ~ by 

(WT,h): = (T,W-1h), 

forheY2.Similarly,wemaydefine(WT,h}: = (T,W-1h). 
Since W - I: Y 2 -+ Y 2 is a topological isomorphism, so is its 
transpose W: Y~ -+Y~ (where Y~ carries the strong dual 
topology8.9) . 

Now Y 2 acts on Y 1 by 

(/'t/J)(x): = _1_ r /(x,y)t/J(y)dy. 
-f41i JR 

Note that (/'t/J,1/!) = (1I1i)(J,1/!®t/J), forfeY2, t/J,rf;eY1· 
Thus we may define T·t/J, for TeY~, t/JEY I' by transposi
tion: 

(T·t/J,1/!): = (111i) (T,1/!® t/J}. 

Remark: We also observe that 

(4) 

Indeed, 

(t/JI WT'1/!) = (111i)(t/J*,WT'1/!) 

= HWT,t/J* ®1/!} = !(T,W-1(t/J* ® 1/!)}. 

The identity (4) is Moyal's connection between the Weyl 
operator formalism and the calculus of Wigner functions. 
We may interpret it thus: to calculate the transition proba
bilities for an observable T between pure states represented 
by state vectors 1/!,t/J, one may compute the scalar product of 
the operator WT' with the ket I1/!} and the bra (t/JI (in Dir-
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ac's terminology), or equivalently one may take the expect
ed value of Twith respect to the Wigner "distribution func
tion" 

W-1(t/J* ® 1/!) = L t/J*( q; t)1/!( q ~ t) eipl dt. 

Furthermore, if/,g,heY2 and ifj(q,p): =/(p,q), then 

(/og,h) = (J,hog) = (g,J'oh) 

= ~ f f f /(q,t)g(t,p)h(q,p)dt dq dp, 

so (ToJ,h): = (T,hof> defines To/ by transposition, for 
TeY~,feY2' 

Lemma 1: If TeY ~, feY 2' and t/J,rf;eY I> then (i) 
W(TX/) = WToWf; (ii)To(t/J®1/!) = (T·t/J) ®1/!. 

Proof: Since wW-lh = Ret>-2Rh = h, we get 

(W(TX/),h) = (T,JX W-1h) 

= (WT,W(/X W-1h)} 

= (WT,W/oh) = «WT)-,W/oh) 

= (WT,ho ( W/) ) = (WTo WJ,h ), 

for heY 2' Also, 

(To(t/J ® 1/!),h ) = (T,ho(1/!® t/J)} = (T,(h'1/!) ® t/J} 

= (1I1i) (T·t/J.h-1/!) = « T·t/J) ® 1/!,h }. 

Writing (Zn(t/J): = T·t/J, the kernel theorem9 fortem
pered distributions states that Z is an isomorphism from Y ~ 

onto'? (Y I>Y; ). We now have the following theorem. 
Theorem 1: ZW(J( L) = .? (Y I); moreover, J( L is an 

algebra under the twisted product, and ZW: J( L -+ .? (Y 1 ) 
is an algebra isomorphism. 

Proof: TeJt L iff T x/eY 2' VfeY 2' iff T x/eY 2' for 
all /oftheform W-1(t/J® 1/!) with t/J,rf;eY I' since Y 1 ® Y 1 
is dense in Y 2 and/t---+TX/is continuous (see I). Thus 
TeJt L iff 

WIT X W-1(t/J® 1/!») = W1'o(t/J®1/!) = (WT·t/J) ® 1/! 

= ZWT(t/J) ® rf;eY2, 

for all t/J,rf;eYI> iff ZWT(t/J)eY I for all t/JEY1. This last 
statement holds since the reduction map X ® 1/! t---+(R,1/!}X, 
for any ReY;, extends by linearity and continuity to the 
completed projective tensor product Y 1 ® Y 1 ~ Y 2' and 
hence maps Y 2 into Y 1 continuously. 

Taking T,/as before, and XeY I' we have 

ZW(TX/)(X) =Z(WToWF)(X) = Z(WTo(t/J ®1/!»(X) 

=Z(WT·t/J) ®1/!)(X) = (WT·t/J) ®1/!)-X 

= WT·t/J(1/!,X} = WT'(Z(t/J®1/!)(X») 

= ZWT(ZW/(X»), 

and [by density of W(Y1®Y1) in Y 2 ] we get 
ZW(TX/) =ZW(T)ZW(/) for any /eY2, TeY~. If 
seJt L' we then have 
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(ZW(TXS)(;)t/J) = (W(TXS)';,t/J) 

= (lI{2)(W(TXS),t/J®;) 

= (l1{2) (T,S x W-I(t/J®;» 

= (l1{2)(T,SXW- I(;®t/J» 

= (lI{2)(WT,WSo(;®t/J» 

= (l1{2) (WT,ZWS(;) ®t/J) 

= (l1{2)(WT,t/J®ZWS(;» 

= (ZWT(ZWS(;»,t/J), 

for any t/JeY I . In particular, if ReJtL , we get ZW(R 
XS) = ZW(R)ZW(S)E.Y(Y,> and since ZWis one-to
one: Yi -+.Y (Y I'Y; ), we conclude that R X SeJt L' so 
that vll'L is in fact an algebra, and ZW: vll'L -+ .Y (Y I) 
is a bijective homomorphism. • 

Remark: By analogous arguments, or more directly by 
noting that (wn * = W( T *), one can show that ZW: 
vll'R -+ .Y (Y I) is an algebra isomorphism. 

Before proceeding, we observe that the Wigner transfor
mation gives a direct, constructive proof of the Stone-von 
Neumann theorem. We regard (Y 2' X ) as an operator alge
bra and look at its left regular representation 
1T(/)g: = Ixg. If fo(u): = 2e- u

2

12, define {(): Y 2-+<:: by 
(()(g): = (folgX/o)' This (() is linear and continuous on Y 2' 

and{()(g*Xg) = IIgXfoI1 2>0. SincetheGaussianfunctionfo 
has the property that foxgXfo = (folg)/o, we have 
{()(g): = (folg)· 

Using the positive functional {(), we can apply the Gel
fand-Naimark-Segal construction to Y 2' We observe that 
%:={geY2: gXfo=g} and %0: = {geY2: gxfo=O} 
are closed left ideals in Y 2' and that if TJ: Y 2 -+ Y 2/%0 is 
the canonical projection, then Y 21 % 0 becomes a pre-Hil
bert space with inner product 

(TJ(g)ITJ(/»): = (()(g*x/) = (gX/ol/x/o), 

whose completion is denoted K", , and that TJ(g) -+TJ(/xg) 
extends to an operator 1T '" (I )E.Y (K", ) with 

111T", (/)11<11/11· 
It is easily verified that TJ(/mn) = 0 inK", ifn:f:O, and 

that{ TJ( I mO ): mEN}is an orthonormal basis for K",. Now 
I.;:',n = ocmJmn lies in % iffCEs (see I) andcmn = o for n:f:O. 
Thus TJ: % -+K", is isometric if % is given the norm of 
L 2(R2),and so extends to a unitary map V:% -+K"" where 
% is the L 2 closure of %. 

If 
00 

g= L cm Jmn EY2 
m,n=O 

and 1TOJ (g) = 0, then for all n, we have 
00 

0= TJ(gxlno ) = L Cmn TJ(/mo), 
m=O 

so that all Cmn = 0: hence 1T ",: Y 2 -+.Y (K",) is a faithful 
representation of Y 2' Using Schur's lemma, we can check 
that 1T OJ is irreducible. 
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Define the projector P: L 2(R) -+L 2(R) by PC; ® t/J) 
:= (holt/J); and Q: L 2(R)-+L 2(R)®ho by Q(;):=; 
®ho. Then PWV- I

: K", -+L 2(R) is unitary, with inverse 
VW -IQ, and PWV -I(TJ( I mO ») = hm. Then we may calcu
late that 

PW(qX/mO) =!iiihm_ 1 +~m + Ihm+1 =.[2qhm , 

and similarly PW(pX/mO) = - {2i dhmldq, so that 

PW(qX/) = .[2qPWf, 

PW(p Xl) = - {2i...!!.- PWf, for jE%. 
dq 

Let us write 

1Ts(/): = PWV- I1T", (I) VW-IQ, for IEY2; 

we may call 1Ts the Schrodinger representation of Y 2 on 
L 2(R). This brings us to the Stone-von Neumann theorem, 
which in the present context states that any representation of 
the twisted product algebra Y 2 is equivalent to a multiple of 
1Ts; we show this to be true for the left regular representation 
1T, as a simple consequence of the GNS construction. The 
unitary equivalence that decomposes 1T is just the Wigner 
transformation. 

Theorem 2: 

W1T(/) W- I = 1Ts(/) ®I, for alljEY2. 

Proof' From Lemma 1, for ;,t/JeY I we obtain 

W1T(/) W- I (;® t/J) = W(fx W- I (;® t/J») 

= Wlo(;®t/J) = (WI·;)®t/J 
and also 

1Ts(/); = PWV- I1T", (I) VW- I(; ®ho) 

=PWV-IV(/X W-I(;®ho» = W/";, 

for all ;,t/JeY I' Since the functions; ® t/J generate a dense 
subset of L 2 (R), we are done. • 

Remarks:( 1) In the previous discussion, we may re
place L 2(R) by Y I' L 2(R2) by Y 2' and Y 2 by vll'L' Then 
PWV - I is a Frechet-space isomorphism from y2 I % 0 onto 
Y I' and so we can extend the representations 1T OJ and 1Ts to 
vll'L (acting on y2 1%0 and Y I' respectively). With 1T now 
denoting the left regular representation of vll'L on its left 
ideal Y 2' Theorem 2 remains valid, with the added advan

tage that we can write 1Ts(q);={2q;, 1Ts(p); 

= - {2i d;ldq for ¢lEY I' thus displaying the Schrooinger 
representation 1Ts in its familiar form, modulo a normaliza
tion factor. 

(2) From the proof, we see that 
(1Ts (/);)(x) = (WF·;)(x) 

1 Ii I(x+y ) 
= 21T{2 R2 {2,z 

xei(X- Y )Z/.[2;(y)dz dy. (5) 

Thus the operator 1Ts ( I) is the pseudodifferential operator 
(in the sense of Hormanderlo ) associated to the "symbol" f 
This is precisely Weyl's quantization rule in more fashion
able language. If 1= p2/2m + V( q), we get easily from (5), 
at least formally, the "Schrooinger operator": 
1Ts(/) = - (2Im)a + V(q). 
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III. OPERATOR TOPOLOGIES ON J( 

Now .2"(YI) carries a natural topology, that of un i
form convergence on bounded subsets of Y I [under which it 
is a complete, nuclear reflexive locally convex space, 11,12 
usually denoted by .2" b (Y I) ], This is the standard example 
of a locally convex algebra which is neither Frechet nor DF. 
Let.'7 I be the unique locally convex topology on J( L so that 
ZW: (J( L ,.'7 I) --+ .2" b (Y I) is a homeomorphism. 

A second method of topologizing J( L is as follows. If 
(€u'T ,f)(v): = eiu'J"/(v - u), we have shown in I that 
€u'Tu(TX/) = TX(€u'Tu/) for all TeYi,jeY2, ueR2; 
and moreover, that if L: Y 2 --+ ~ (JR2) is a continuous 
linear map commuting with every € u 'T u' then L ( /) = T Xj, 
VjeY2, for some TeYi. Thus we find, writing L T (/) 

: = TXj, that 

{Ls: SeJ/ L} = {Le.2" b (Y2): L€u'Tu = €u'TuL, VueR2}. 

Let.'72 denote the topology on J( L so that S--+Ls is a ho
meomorphism of (J( L'.'72) onto this closed subspace of 
.2" b ( Y 2)' where the sUbscript b denotes the topology of 
uniform convergence on bounded subsets of Y 2' Then, we 
have the following theorem. 

Theorem 3: The topologies.'71 and.'72 on J( L coin
cide. 

We next define the topology of J( R so that S --+ S * is a 
topological isomorphism of J( L onto J( R' Finally, we give 
J( the natural topology of the intersection J( L nJ( R' that 
is, the weakest locally convex topology so that both inclu
sions J( C J( L,J( C J( R are continuous. From the defini
tion of .'71, it is already known that J( is a complete, nu
clear, semireflexive locally convex *-algebra with a 
separately continuous multiplication and a continuous invo
lution; on the other hand, via .'72, J( may be regarded as an 
operator *-algebra on Y 2' This is particularly useful with a 
view to solving Schrodinger equations of the form 

2i au = H X Uct), U(O) = 1, at 
where HeJ/, UCt)eJ/, for tEJR, using operator semigroup 
theory. Note that the semigroup property gives U(s + t) 
= U(s) U( t). In this formula H denotes a time-independent 

Hamiltonian and Uct) is the "twisted exponential,,13,14 or 
"evolution function,,15 associated with this Hamiltonian, 
which contains the dynamical information for the system 
analogously with the Green's function in the conventional 
formulation. 

Pro%/ Theorem 3: For i = 1,2 let .'7; be the locally 
convex topology on W(J( L) so that W: (J( L'.'7I) 
--+(W(J( L ),.'7;) is a homeomorphism. It suffices to show 
that.'7; =.'7i. 

A basic neighborhood of 0 for.'7; is of the form 

(A;V)I: = {TeW(J( L): T·t/JeV, V~}, 

where A is a bounded subset of Y I and Vis a zero-neighbor
hood in Y I' A basic neighborhood of 0 for.'7i is of the form 

(B;U)2: = {TeW(J( L): TojeU, VfeB}, 

where B is a bounded subset of Y 2 and U is a zero-neighbor
hood in Y 2' Since9 Y z = Y I ® Y I' it suffices l6 to consider 
B of the form B = Al ®A z, whereA I.A2 are bounded subsets 
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of Y I, and Uoftheform U = r( VI ® V2 ) (the closed abso
lutely convex hull of VI ® V2), where VI' V2 are zero-neigh
borhoods in Y l' Since A2 is bounded, we can find r> 0 so 
thatA2CrV2; since r-IVI ®rV2 = VI ® V2, we can also as
sume that A2 C V2. 

For such a given (B;Uh, let Te(AI:VI)i> ~I' f/!eA2; 
then from Lemma 1 we obtain 

so that (B; Uh contains (A I; VI) I' 
On the other hand, let (A; V) I be given, with Vabsolute

ly convex. Choose 1/JeY I and ReY; such that (R,t/J) = 1, 
and set V2: = {t/JeYI: I (R,t/J) 1<1}· If Te(A ®{t/J}; 
r(V® V2)h and~, then To(t/J®t/J) = (T·t/J) ®t/J lies in 
r( V® Vz), and on applying the reduction map 
X® llJI--+(R,w)X, we find that T·t/JeV. Thus (A; V) I contains 
a set ofthe form (B;Uh 

We have shown that the zero-neighborhood bases for 
.'7; ,.'7i are equivalent, so.'71 =.'72 , • 

IV. FILTRATIONS OF ..9'2 

In this section we introduce several filtrations of Yi, in 
terms of which J( may be characterized. We start with a 
rigged Hilbert space structure which may be defined (in 
two-dimensional phase space) by a two-parameter family of 
Hilbert spaces. (See I, Sec V). In I we have shown that the 
basis functions/mn of (2) are orthonormal with respect to 
the measure (41T)-1 dq dp, that/mn X/k1 = {jnJml' and that 

HX/mn = (2m+ l)/mn' /mnXH= (2n+ l)/mn' 
(6) 

We introduced the Hilbert spaces Y S,' (for s,tER) in I as 
the completions of Y 2 with respect to the norm II' lis" , where 

'" 
:= L (2m+ 1)S(2n+ 1)'lcmn I2, (7) 

m,n=O 

and we observed that 

Y 2 = n Y s,,, Yi = u Y s" 
streR streR 

(8) 

topologically. 
Recalling (3) that W(/mn)=hm®h", we get 

ZW(fmn) = Ihm)(h"l, which shows that ZW(Yo,o) 
= JY Y(L 2(JR»), the Hilbert-Schmidtoperators onL 2(R), 

on account of (7). Next we note that 

ZWH(hm ) ® hn = (WH'hm) ® hn = WHo(h m ® h,,) 

= W(H Ximn) = (2m + 1) W(/mn) 

= (2m + 1)hm ®hn, 
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for all m.n = 0.1.2 •... ; thus ZWH{hm) = (2m + 1 )hm. 
This shows that (ZWH) -I exists and lies in JY' Y(L 2{R»). 

Theorem 4: 

1L= n U f§s,to 1R= n U f§S.I' 
5ER teR teR .>ER 

Proof We observe that JY'k: = g({ZWH)k) is a Hil
bert space under the norm 11'lIk' where 

and that SI = nk"=OJY'k topologically. 
We now notice that TeJt L iff ZWTeX' (Y I) iff for 

all m;;>O, there exists n;;> 1 with ZWTeX' (JY'n _ I,JY' m) or 
equivalently 

A: = (ZWH)m(ZWT)(ZWH) -n+ leX'(L2(JR»), 

(ZWH)m{ZWT) (ZWH) - n 

=A(ZWH) -1eJY' Y(L 2{R»), 

H Xm X T XH x - neL 2{JR2) = f§ 0,0' Tef§ 2m, _ 2n' 

iff 
00 00 

Te n U f§ 2m, _ 2n = n U f§ S,I' 
m=On=O seRtER 

Note further that SeJt L iff S *eJt Land S *ef§ I,S iff 
Se f§ S,I' so that 1 R = n teR U.>ER f§ S,I as claimed. • 

Remark: The observation that A (ZWH) -I is Hilbert
Schmidt for all m and some n is due to Unterberger,17 who 
gives it in a slightly different form. (Similar ideas lie behind 
the fundamental approach to the generalized eigenvalue 
problem by van Eijndhoven and de Graaf. 18 ) 

We may visualize the conclusions of Theorem 4 by 
means of the following diagram: 

1L f§ S,- 00 -+ f§S_I,_oo Y~ 

i i 

1~ f§ s,l-1 -+ f§ s- 1,1- 1 f§ 
- 00,t-1 

i i i 

f§ + 00,1 f§ S,I -+ f§ s-I,I -+ f§ 
- oo,t 

Y 2 -+ f§s,+oo -+ 1R -+ 1R 

Here we set f§ s, _ 00 : = U teR f§ s,to f§ _ 00 ,I: = UseR f§ S,I; then 
1 L = nseR f§ s, _ 00 , 1 R = nteR f§ _ 00,1' This gives us our 
third method of topologizing 1 L : let f§ s, _ 00 have the stron
gest locally convex topology such that all the inclusions 
f§ S,I C f§ s, _ 00 are continuous. Let .7"3 denote the weakest 
locally convex topology on 1 L such that all the inclusions 
1 L C f§ s, _ 00 are continuous. On the diagram, reflection in 
the principal diagonal [Le" (s,t)~(t,s)] represents com
plex conjugation, and so the topology of 1 R is defined in the 
analogous way. Thus every arrow in the diagram represents 
a continuous (and dense) inclusion. 

[We include the left column and bottom row for com
pleteness, although they are proved in a separate article. 19 
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We write f§ + 00,1: = n seR f§ S,I (topologically) and in Ref. 
19 we have shown that the dual space 1~ = UIER f§ + 00,1 

(topologically) and that 1 ~ C 1 L' Analogous results hold 
for the bottom row of the diagram.] 

Note that the characterization of 1 given by Theorem 
4 enables us to check whether a distribution given in the form 

00 

T= I CmJmneY~ 
m,n=O 

(whenever this series converges in Y~) belongs to 1 or 
not. For example, if 

00 

T: = I e-mlmn • 
m,n=O 

then 
00 00 

IITII;I = I (2m + I)Se- 2m I {2n + 1)/, 
m=O n=O 

which converges iff t < - 1; thus TeJt L but Tf!JI R' (Also, 
T*=~:',n=oe-"fmn lies in 1R but not in 1 L.) This 
shows that 1, 1 L' 1 R' and Y ~ are distinct. 

We may also filtrate Y~ by other types of Banach 
spaces, corresponding not to Hilbert-Schmidt operators but 
to trace-class or bounded operators on L 2{JR). Since ZW is 
an isomorphism between f§ 0,0 and JY' Y(L 2(JR»), we intro
duce 

fs,l: = f§s,o X f§O,I: = {/xg: lef§s,o, gef§o,,}, 

From (6) and (7) we find that 

fs,l = {H x ( - 5/2) xl xgxH x ( - 1/2): f,gef§ o,o} 

= {h X k: hef§ s,q' kef§ _ q,'}, for any qeR. 

We have heJ 0,0 iff ZWh is a trace-class operator, and so (by 
polar decomposition) we can find ueY~ with u* X u = I 
and Ih leJo,o so that h = uXlh I and Ih I =1*xJ with 
lef§ 0,0' Writing IIh 1100,1: = (1,lh I) = II/II~, we see that 
f 0,0 is a Banach space and the inclusion f 0,0 c f§ 0,0 is con
tinuous. Since, by (7), Ilgllsl = IIH X(S/2)XgXH X(1/2)1100, 
for gef§ S,t' we may define 

11/1151,1: = IIH X(S/2)x/XH X (t12) 1100,1 

yielding the continuous inclusion fs,l C f§ S,I for all s,teR. 
Next let f!lI 5,1 be the dual space of f _ I, _ 5 under the 

dualilty (T I I): = !(T*,J), for Tef!ll S,t' leJ _ I, _ s. The 
space f!lI S,I is naturally imbedded in Y ~. In fact. we may 
identify f!lI s,l with {TeY~: (T*,J) is finite for all 
Ie..F _ I, _.}. Note als020 that f!lI 0,0 is the space of tempered 
distributions whose twisted product with any function in 
L 2{R2) lies in L 2(JR2). The norm 

on f!lI 0,0 coincides with its norm as the dual space of f 0,0 (so 
we have incidentally proved that the dual of the space of 
trace-class operators on a separable Hilbert space is the 
space of bounded operators). 

Since f§ 5,1 and f§ _ I, _ 5 are dual Hilbert spaces under 
the duality 
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we obtain a chain of continuous inclusions 

Y2Cfs,I C ~ S,I cf!ll S,I CYi, (9) 

where we define the norm of f!ll s,t as the dual norm to 
1I/11-I,-s,l' Denoting this norm by II' II .. , co ,we obtain 

II/l1sl,l = IIHX(SI2lx/xHX(1/2llloo,1 

<IIH X(S/2llloo,lll/lIoo,co IIHX (I/2)lloo,1 (10) 

by the standard properties of trace-class operators, since 
11/1100.00 is the norm of ZWI as a bounded operator on 
L 2(R). So, since 

IIH X (S/2)lloo,1 = (I,H X (SI2
l) = f (2n + 1)s/2, 

n=O 

which converges iff s < - 2, we conclude from (10) that 
f!ll 0,0 Cfs,l if s < - 2, t < - 2, and thus that f!ll p,q CoFS,1 
(continuously) if p > s + 2, q> t + 2. Interpolating 
Y 2 C f!ll p,q C oFS,1 in (9), we see that we can replace ~ ',1 by 
f ',1 or f!ll S,I in (8). In effect, if we define 

oF., _ 00 : = U IERfs,l' f!ll., _ co : = U IER f!ll S,I' 

we find that 

f!ll p, _ co Cfs, _ co C ~ s, _ 00 C f!ll., _ 00' if p > s + 2, 

and so 

vIt L = n ~s,- 00 = n f!ll.,_ 00 = n f s,_ 00 

$ER seR s,eR 

topologically, if all intersections have the natural (projec
tive) topologies. In particular, the topology Y 3 is induced 
by n SEIR U IER f!ll S.I' 

Theorem 5: The topologies Y 2 and Y 3 on vIt L coin
cide. 

Proof Let us write 

(B;U): = {S~ L: S XlEU, VjEB}, 

where U is a neighborhood of 0 in Y 2 and B is a bounded set 
in Y 2; then (B;U) is a basic neighborhood of 0 for Y 2• 

A basic neighborhood of 0 for Y 3 is given by a subset 
VCvIt L such that V = wnvlt L' where W is a neighbor
hood of 0 in ~ s, _ 00 for some SER. Then wn ~ s, _ q is a 
neighborhood of 0 in ~ s, _ q for all qER and so contains a set 
of the form {SE~ s, _q: liS IIs,-'1 <C(q)}, for all q. 

Given (B; U), a neighborhood of 0 for Y 2' we may sup
pose that U = {gEY 2: Ilgllsl <8}, for some s,tER, 8> 0, and 
that 

B = {/EY2 : II/l1 qp <A(q,p), Vq,pER}, 

where A (q,p) > 0 is a suitable function. Set 

V: = U{S~Ln~S,_q: IISII.,_q<8IA(q,t)}. 
qER 

Then V = wnvlt L, where wn ~ s, _ q contains a ball of ra
dius8!A(q,t), for all q. LetjEB,SEVn~s,_q; then we get 

liS x/ll sl <IIS lis, _ q II IlI qt«8IA(q,t))A(q,t) = 8, 
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so that vn~.,_q C (B;U) for all q, and thus VC (B;U). 
On the other hand, we observe that each Hilbert space 

~ ',1 is "strictly webbed" in the sense of de Wilde21
; this 

property is preserved under countable inductive limits 
(here ~ s, _ 00 = U nEN ~ s, _ n) and under countable pro
jective limits; hence(vIt £>Y3 ) = n mEN ~ m, _ 00 is strictly 
webbed. 

Since (vIt L'Y I) is a Montel spacell and Y I = Y 2' 
(vIt L'Y2) is barreled and complete: furthermore, the iden
tity map: (vIt L'Y 3) -+ (vIt L ,Y 2) is continuous, by the first 
part ofthe proof. Now de Wilde's open mapping theorem21 

shows that this map is a homeomorphism, and so 

~=~ • 
Remarks: (1) As a corollary, we find that the space 

it' b (Y I) is strictly webbed. 
(2) We may summarize the topological properties of 

the Moyal algebra as follows: (i) vIt L andvU R are complete, 
nuclear, reflexive locally convex algebras with a hypocontin
uous multiplication; (ii) vIt is a complete, nuclear, semire
flexive locally convex *-algebra with a hypocontinuous mul
tiplication and continuous involution; and (iii) using the 
technique outlined in Sec. IV ofI, it is readily seen that vIt £> 

vIt R' and vIt are Fourier-invariant normal spaces of distri
butions. 

( 3) The technique of filtrating Y i by Hilbert spaces 
used here to define Y 3 may be employed to show that the 
dual space viti. can be represented as a dense ideal of vIt L 
(with a continuous multiplication). Indeed, it can be shown 
that viti. = UIERn.!lER~s,landthat 

viti. ={/XT: fEY 2, TEynCt1'r; 

it follows that Y 2 C viti. C vIt L and that viti. is an ideal. 
This we do in a following paper. 18 

v. DISTRIBUTIONS CORRESPONDING TO TRACE
CLASS AND BOUNDED OPERATORS 

The intermediate spaces ~ S,I and f!ll ',1 are useful for 
several purposes. We may, for example, obtain information 
about certain functions or tempered distributions by deter
mining in which of these spaces they lie. For instance, the 
identity 1 for the twisted product lies in f!ll 0,0 (of course), 
but we may also compute from (7) that, since 1 = 'I.: =olnn, 

then 
00 

11111;1 = L (2n + 1)S+1 
n=O 

and hence lE~ ',1 iff s + t < - 1. 
The space f 0,0 corresponds to the trace-class operators 

on L 2(R). The question of which functions give rise to nu
clear operators, via the Weyl correspondence, has been stud
ied by Daubechies.22

•
23 She has identified, for the present 

case of a two-dimensional phase space, a class of spaces Y' 
such that Y'CoFo,o for r> 1, using a coherent-state repre
sentation of quantum mechanics. From our point of view, 
Y' essentially consists of functions I on R2 with (/*,A 'f) 
finite, where Af = H XI + IXH. Since /',· .... H xl and 
1 ....... 1 X H are commuting positive operators (on ~ 0,0' say), 
we find that 

O«/*,Hx'x/)«/*,A 'f) 

and 
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and thus Y'C [§ ,,0 n [§ 0," We can now show an improved 
result. 

Theorem 6: 

[§"oU[§o"Cfo,o if r> 1. 

Proof We need only show that [§ ,,0 Cfo,o' Take 
/e[§ ',0' and write 

00 
/= L cm,J'mn 

m.n=O 

with 

00 
II/II~ = L (2m + l)'lcmn 12 

m,n=O 

finite. Define d m by d m ;>0, 

00 
d;" : = (2m + I)' L ICmn 12. 

n=O 

Then 
00 
L d;" = 11/11;0 

m=O 

so that 

00 
g: = L dmlmm e[§ 0,0' 

m=O 

Define 
00 

h: = L bm,J'mn, 
m,n=O 

where bmn : = cmnldm. We now observe that 

00 
= L (2m + I) -'= (1- 2-')~(r), 

m=O 

so that he[§ 0,0 for r> 1. Thus gxh is defined and lies in 
fo,o, and it is clear that/=gxh. 

Furthermore, IIgxh 1100,1 <IIglloo IIh 1100 by a well-known 
property of trace-class operators (transferred via the iso
morphism ZW to the present context), so we get the esti
mate 

for /e[§ ,,0' (Replacing/by /*, we see that the analogous 
estimate is valid for/e[§ 0,,') 

Remarks:( 1) In the same vein, we observe that all distri
butions in !!lJ 0,0 lie in (U ,> I [§ _ ,,0) n (U ,> I [§ 0, _,) with 
estimates 
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II T II _ ',0 « (1 - 2 - ')~(r) )1/211 T 1100,00 , 

II T 110, _, « (1 - 2 - ')~(r) )1/211 T 1100,00 . 

This is the tightest constraint of which we are aware, on the 
class of distributions corresponding to bounded operators by 
the Weyl rule. We remark that our proofs are simpler than 
those of Ref. 22 since they merely involve manipulation of 
the double series introduced in I. 

(2) We have noted in I that the twisted product of two 
square integrable functions in H2 lies in CO(R2

). Thus if 
/e{[§ s,,: s;>O, t;>O, S + t>2}, then/eCo(R2). Then the Leib
niz formula assures us that/xgeC~(R2) whenever 

/,geU{[§s,,: s>2m, t>2m, s+t>4m+2}; 

analogously to what happens in the usual Sobolev spaces, the 
distributions in [§ s,' grow more regular as s,t become larger 
in a suitable way. 

VJ.OUTLOOK 

The formalism developed in I and the present paper puts 
forward a mathematical framework for phase-space quan
tum mechanics, in which the usual calculus of unbounded 
operators is replaced by a calculus of distributions on phase 
space, with some techniques of locally convex space theory 
hovering in the background. Using this framework, we have 
shown elsewhere24 that the evolution functions correspond
ing to any quadratic Hamiltonian on phase space belong to 
the Moyal *-algebra JI. To obtain more general results, 
when the Schrodinger equation is not exactly solvable, we 
need an appropriate spectral theorem for JI in order to ap
ply semigroup theory. As a step in this direction, we have 
identified the dual space of JI as a function space. 19 We hope 
to develop these aspects further in a forthcoming paper. 

ACKNOWLEDGMENTS 

We are grateful for helpful correspondence in connec
tion with the present work from Sean Dineen, who brought 
Ref. 12 to our attention, and also from John Horvath and 
Peter Wagner. We would like to thank Professor Abdus Sa
lam and the International Centre for Theoretical Physics, 
Trieste, for their hospitality during a stay in which work was 
completed. 

We gratefully acknowledge support from the Vicerrec
toria de Investigaci6n of the Universidad de Costa Rica. 

'J. M. Gracia-Bondia and J. C. Varilly, J. Math. Phys. 29, 869 (1988). 
2 J. P. Amiet and P. Huguenin, Mecaniques c/assique et quantique dans I' e
space de phase (Universite de Neuchlitel, Nepchlitel, 1981). 

3R. F. V. Anderson, J. Funct. Anal. 9, 423 (1972). 
4J. C. T. Pool, J. Math. Phys. 7, 66 (1966). 
5E. P. Wigner, Phys. Ref. 40, 749 (1932). 
6J. C. Varilly and J. M. Gracia-Bondia, J. Math. Phys. 28, 2390 (1987). 
'R. Cressman, J. Funct. Anal. 22, 405 (1976). 
S J. Horvath, Topological Vector Spoces and Distributions I (Addison-W es
ley, Reading, MA, 1966). 

9F. Treves, Topological Vector Spoces, Distributions and Kernels (Aca
demic, New York, 1967). 

IOL. Hormander, Commun. Pure Appl. Math. 32, 359 (1979). 

J. C. Varilly and J. M. Gracia-Sondia 886 



                                                                                                                                    

II A. Grothendieck, Produits tensorieis topologiques et espaces nucleaires 
(Am. Math. Soc., Providence, RI, 1955). 

12D. Vogt, in Functional Analysis: Surveys and Recent Results III (North-
Holland, Amsterdam, 1984), p. 349. 

13F. Bayen and 1. M. Maillard, Lett. Math. Phys. 6, 491 (1982). 
14p. Huguenin, Lett. Math. Phys. 2, 321 (1978). 
lSI. M. Gracia-Bondia, Phys. Rev. A 30,691 (1984). 
16H. H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966). 
I'J. Unterberger, C. R. Acad. Sci. Ser. 290 A, 1053 (1984). 
18S. 1. L. van Eijndhoven and J. de Graft', J. Funct. Anal. 63, 74 (1985); 

887 J. Math. Phys., Vol. 29, No.4, April 1988 

Lecture Notes in Mathematics, Vol. 1162 (Springer, Heidelberg, 1985). 
19J. M. Gracia-Bondia and J. C. Vanlly, "The dual space of the algebra 

..'L' b (.9')," to appear. 
2°J._B. Kammerer, J. Math. Phys. 27,529 (1986). 
21G. Kothe, Topological Vector Spoces II (Springer, Heidelberg, 1979). 
221. Daubecbies, J. Math. Phys. 24,1453 (1983). 
231. Daubechies, Commun. Math. Phys. 75, 229 (1980). 
24J. M. Gracia-Bondia, M. GadeUa, L. M. Nieto-Calzada, andJ. C. Varilly, 

"Feymnan integrals, quadratic Hamiltonians, and Poincare's generating 
function in the phase-space approach to Quantum Mechanics," to appear. 

J. C. Varilly and J. M. Gracia-Sondla 887 



                                                                                                                                    

The Trotter-Lie product formula for Gibbs semigroups 
v. A. Zagreb nov 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, USSR 

(Received 16 June 1987; accepted for publication 28 October 1987) 

The trace-norm (and Hilbert-Schmidt-norm) convergence of the Trotter-Lie formula is 
proved for some classes of Gibbs semigroups. 

I. INTRODUCTION 

Since the discovery of the Trotter-Lie (TL) formula l
•
2 

lim [exp( - (t /n)A )exp( - (t /n)B W = exp( - tC) , 
n- 00 

(1.1 ) 

and, more particularly, of its connection with the path 
(functional) integration and the Feynman-Kac formula, it 
has permeated through many branches of mathematical 
physics.3

-
5 Until now, the main problem was to "relax," or 

generalize, the hypotheses under which formula (1.1) 
holds,6-9 or to reformulate ( 1.1) for applications to a modi
fied Feynman integral. 10.11 

A solution of the first part of the problem generally im
plies that one ought to (i) find the topology in which the 
convergence in (1.1) will take place, (ii) establish the set of 
operator pairs A and B for which the limit in ( 1.1 ) exists, and 
(iii) identify the operator C and describe how it can be re
constructed from A and B. 

As an example of realization of this program, one can 
refer to the following (important further) result for strongly 
continuous semigroups, to which we will return shortly. 

Proposition 1.1 ~. Let A,B be non-negative self-adjoint 
operators in a Hilbert space,!J'tP. Let D(A 1/2) nD(B 1/2) be 
dense in ,!J'tP. Then, for t;;;.O, the limit in (1.1) exists in the 
strong-operator topology, and C is the form sum of A and B: 

s-lim [exp( - (t/n)A )exp( - (t/n)BW 
n_ 00 

= exp{ - t(A+B)}. ( 1.2) 

The purpose of this paper is to prove some versions of 
the TL formula for Gibbs semigroups. 

To formulate the problem more precisely, we recall 
some notation and definitions. Let ,!J'tPbe a separable Hilbert 
space. Then the trace-class ('t!f I (,!J'tP») and Hilbert-Schmidt 
('G' 2(,!J'tP») ideals in the Banach space of compact operators 
Com (,!J'tP) are defined by the trace norm IIA III 
= Tr(A *A)I12 and the Hilbert-Schmidt norm IIA liz 
= (Tr(A *A»)1/2, respectively. We have 

't!f I (,!J'tP) c 't!f 2 (,!J'tP) C ... C Com (,!J'tP) I . 

Definition 1.1 l~. A strongly continuous semigroup r t in 
a separable ,!J'tP is called a Gibbs semigroup if r t: R 1+ 

-+ 't!f I (,!J'tP) . 
Remark 1.1: From the continuity of multiplication 

1I'lIp s 1I'lIp 

AnBn -+ AB if An -+ A, Bn -+ B, for l<p< 00 

(see Refs. 13 and 14), it follows that the Gibbs semigroup is 
II' III-continuous for t> 0. 

These semigroups naturally arise in quantum statistical 
mechanics (QSM) as one-parameter, strongly continuous 
self-adjoint semigroups generated by the Hamiltonian H: r t 

= exp ( - tH). Here the parameter t> ° is nothing but the 
inverse temperature of a system described by H. 

The II'III-norm perturbation theory for Gibbs semi
groups was developed in Refs. 15-17. The compactness and 
convergence of the families of Gibbs semigroups {r~a)} aeM 
in 11'111 topology were studied in Refs. 12, 18, and 19. As the 
TL formula is often used in QSM under the Tr, it is necessary 
to prove (1.1) for Gibbs semigroups in the natural (for this 
case) 11'111 topology (see Remark 1.1). 

Therefore, in its full generality, the problem can be for
mulated as whether one can "lift" the convergence in, for 
example, Eq. (1.2) to a 11'111 norm when operator A, or B, or 
both, generate a Gibbs semigroup. The present paper con
tains only a partial solution of this problem. 

II. TROTTER-LIE FORMULA FOR GIBBS SEMIGROUPS 
VIA PATH INTEGRAL 

This section is inspired by a consideration of self-adjoint 
Gibbs semigroups which originated from QSM of contin
uous systems. (For spin systems the Hilbert space ,!J'tP is fi
nite dimensional, and there is no difference between a 11'111 
and an s topology. ) 

To explain the main idea, we start from a one-particle 
system enclosed in a box A C RV 

, which is a bounded, open, 
connected subset of v-dimensional space with a smooth 
boundary aA. Hence the appropriate Hilbert space is 
,!J'tP = L 2 (A). Then the one-particle kinetic-energy operator 
T ~t) is a self-adjoint extension of the Laplacian TA 
= ( - a) with domain D(TA ) = CO' CAl. The domain 

D( TAU» is specified by a boundary condition OEC(aA). The 
interaction U is a self-adjoint operator of multiplication by a 
real-measurable function defined on the domain 

D(U)={~IU~}· 

Proposition 2.1: Let U= U_ + U+, where U_<O, 
U + ;;;.0. Assume that U _ is a TAU) -bounded operator with a 
relative bound b < 1, and that the operator U + EL toe (A). 
Then the following points obtain. 

(a) The Hamiltonian HAU
) = (T~) + U_)+U+ is a 

self-adjoint operator on ,!J'tP which is semibounded from be
low. 

(b) For t> 0, r t = exp ( - tH AU» belongs to the trace
class operators 't!f I (,!J'tP), and is a strongly continuous semi
group. 

(c) The kernel rt(x,y), x,yEA, can be represented by 
the Feynman-Kac formula 
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C(x,y) = ( dj.t~~(w)exp[ - f dr u(w(r»)] . 
JO~y(A) 0 

(2.1) 

For the proof we note that point (a) is a well-known 
consequence of perturbation theory for linear operators and 
the definition of the sum of operators in the sense of quadrat
ic forms. 20 Point (b) is a consequence of point (a) and of 
Weyl's min-max principle for T~U) (for details see Ref. 17). 
Point (c) is one of the celebrated results of the Wiener path
integral theory. 3,4 Here dj.t~~ (w) is the conditional Wien~r 
measure on the space O~,y (A) of continuous paths we A, 
with end points w(O) = x, w(t) = y, generated by the semi
group exp( - tT~U»e~ 1 (JiY). 

Theorem 2.1: Let r<,,~) and U be operators on JiY as in 
Proposition 2.1. If U(x) is almost everywhere continuous in 
A and is bounded from below, then 

lim Tr[exp( - (t/n)T~U»)exp( - (t/n)U)r 
n_", 

= Tr exp( - tH~U» . (2.2) 

Proof: At the outset, we note that 

We proceed by first proving (2.2) with U temporarily re
placed by W(x)eC(A), and then we make the approxima
tion arguments to obtain the general case. [We shall exploit 
the fact that, for operator 

there exists kernel 

such that 

Tr K = f dj.t(x) K(x,x) 

(see Ref. 1, VI.6 or Ref. 21).] Using formula (2.1) and the 
semigroup property for Green's function, 

we obtain 

Tr(F'ln)n - Tr r, 
= Cdx (, dj.t~::(w)[j~W)(w) _j<W)(w)], 

J, JOx.x(A) 

(2.3) 

where 

j~W)(w) =exp [ - ~ jtl w(w(~j))], 
j(W)(w) = exp [ - f dr w(w(r»)] . 
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Since, for each x,yeA, the corresponding paths are contin
uous and WeC( A), 

n_", 

pointwise everywhere on O~,y (A). Furthermore, 

j (W)eL 1(0' (A) d!lt,U) 
n x,y' rx,Y , 

and we have 

j~W)(w)<exp(t II WII",) . 

Then, by the Lebesgue-dominated convergence theorem, we 
obtain 

L 1(0' (A) du"U)_limj(W) =j(W) 
X,Y , r-x,y n • (2.4) 

n_", 

Just the same dominated-convergence-theorem argument 
can now be applied to the function y~W)(x), 

y~W)(x) 

= ( dj.t~:: (w) [j~ W) (w) - j< W) (w)] eL I (A) , 
JO~x(A) 

since 

IY~W)(x) 1<2 exp(t II WII", )p<,:)(t; x,x)eL I(A) , 

and by (2.4) we have 

pointwise in A. Hence, taking the limit n ..... r:I) in (2.3), we 
finish the prooffor WeC(A). To remove the continuity as
sumption, we introduce a sequence of approximations 

UL = min( U,L)eC(A), 

which monotonically (almost everywhere) converges to U 
when L ..... r:I). Let {rlL)}L and {FlL)}L be sequences corre
sponding to the cutoff interaction UL . Then the monoton
icity implies 

L-", 

[Monotonic convergence UL /' U for L ..... r:I) implies the con
vergence 

An (nL » "'An (r,) 

for eigenvalues. This convergence and the relation 

Tr rl L
) = LAn (nL

» 
n>1 

ensures the convergence nL) ..... r, in 11'111 topology (see 
Refs. 12 and 18).] Atthe same time we obtain 

Tr(Fl7~ )n ..... Tr(F'ln)n, 

for L ..... r:I), uniformly in n. Thus, by the £/3 argument, we 
have the desired result for U. • 

Corollary 2.1: The same arguments as above give 

lim Tr[ (F'ln )n(F~/n )n] = Tr r 2" t>O. (2.5) 
n_", 

Now we can combine (2.5) with very general argu
ments to "lift" the strong-operator convergence in the TL 
formula ( 1.2) to convergence in the Hilbert-Schmidt norm. 
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Theorem 2.2: Let T ~U) and U be operators as in 
Theorem 2.1. Then 

(2.6) 

Proof Let us first note that (1.2) for Ft implies 

s-lim (Ft,")" = s-lim (F~/")" = r t . (2.7) 
n-oo n-oo 

Since (2.5) can be read as 

II (Ftl" )"112--+ IIrt lb. 
we obtain (2.6) by Griimm's convergence theorem. 13.14 • 

Corollary 2.2: Since multiplication is continuous for se
quences in the strong-operator topology. (2.7) gives the 
symmetrized TL formula 

(2.8) 

If we now read (2.5) as 

II (Ft12" )"(F~12" )"111--+ IIrtll l • 

then (2.8) givesI2.14.19 the symmetrized TL formula for 
Gibbs semigroups in 11'111 topology: 

11'III-lim(Ft'2")"(F~12")"=r" t>O. (2.9) 
n- 00 

III. CONCLUDING REMARKS 

Generalization of the results (2.6) and (2.9) to the n
particle case is obvious. It resembles what one should per
form for the Feynman-Kac formula in the above case.22 But 
quantum statistics causes some additional combinatorial 
complications. 

The following remarks concern a more restrictive (from 
the viewpoint of QSM) class of Gibbs semigroups. Despite 
this. they elucidate the background of what we have proved 
in Sec. II. 

Let A and B be self-adjoint operators on ~ bounded 
from below (A>O. B>b), and let the intersection of the cor
responding quadratic form domains, Q(A) n Q(B). be dense 
in ~. Furthermore. for t> O. let exp ( - tA) be trace class 
CIJ I (~). and let exp( - tB) be a compact operator whose 
eigenvectors are denoted by {e)r= I' We can then prove the 
following. 

Theorem 3.1: If 

(e;.exp(-tA)ej»O. (3.1) 

for i.j = 1.2 ..... then U> 0) 

lim Tr[exp( - (t /n)A )exp( - (t /n)B W 
"- 00 

= Tr exp{ - t(A+B)}. 

Proof Since 

St = exp( - tA )exp( - tB)ECIJ I (~) • 

and (Stl" )"ECIJ 1 (~). we have 
N 00 

(3.2) 

Tr(Stl")" = L (ej.(Stl" ) "ej ) + L (ej.(Stl" )"ej ) . 
j=1 j=N+1 

(3.3 ) 
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Using (3.1), the lastterm in (3.3) can be estimated for arbi
trary N uniformly in n: 

00 

L (ej.(Stl" )"ej ) 
j=N+I 

00 

<exp( - tb) L (ej • exp( - tA)ej ). (3.4) 
j=N+ I 

Since 

exp{ - t(A+B)}ECIJ I(~) , 

then for arbitrary E > O. there is Ne large enough so that the 
strong convergence (1.2), the estimate (3.4). and the e/3 
argument give us the desired result (3.2). • 

Corollary 3.1: From (3.2) one obtains the TL formula in 
11'112 norm and the symmetrized TL formula in 11'111 norm 
(see Sec. II). 

Remark 3.1: Conditions (3.1) are satisfied for positiv
ity-preserving contraction semigroups.2,23,24 Therefore 
(2.6) and (2.8) are extended to a class ofpositivity-preserv
ing Gibbs semigroups. 

In summary. this paper was concerned with the problem 
of whether the Trotter-Lie product formula (1.1) holds in 
the trace norm 11'111 for Gibbs semigroups. Our (not yet dis
proved) conjecture was that (1.1) does hold in 11'111 topol
ogy if at least one of the semigroups involved in (1.1) is a 
Gibbs semigroup. The paper presented arguments in favor of 
this conjecture as far as one considers some particular Gibbs 
semigroups-specifically. the one originating from quantum 
statistical mechanics. 
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Exact analytic solutions for the quantum mechanical sextic anharmonic 
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Exact analytic solutions for low-lying states of the O(N) invariant sextic anharmonic oscillator 
are presented. The exact results are compared with Gaussian approximations and general 1/ N 
expansions. 

I. INTRODUCTION 

In the course of some work on the ,p~ quantum field 
theory, we rediscovered that, for certain combinations of 
coupling constants, one can find exact analytic solutions for 
low-lying energy levels for the,pt theory, i.e., for the quan
tum mechanical sextic anharmonic oscillator. Although our 
ultimate interest is in the possible exploitation of these re
sults in the field theory problem, we were sufficiently intri
gued by the quantum mechanical results to undertake a de
tailed investigation. New results presented here include 
generalization of various approximation schemes developed 
for the quartic anharmonic oscillator to the sextic anhar
monic oscillator and confrontation with the exact analytic 
results available in the latter case; new exact analytic energy 
values for the N-dimensional, O(N) symmetric sextic anhar
monic oscillator; and comparison oflarge N approximations 
with exact results available for any N. 

II. EXACT SOLUTIONS 

The Schrodinger equation in N space dimensions is 

----+ V(x) ¢(x) =E¢(x). ( 
1 a a ) 
2 ax; ax; 

(2.1 ) 

We will be considering the O(N) invariant sextic potential 

V(x) = ax2 + (b IN)(x2) 2 + (cIN 2)(X2)3. (2.2) 

Stability for arbitrary a, b requires c > O. 
In the one-dimensional case (N = 1, - 00 .;;;x.;;; 00), by 

taking various combinations of positive and negative values 
for a and b, we generate single-well, double-well, or triple
well potentials (all reflection symmetric). 

A. Simplest example: Exact ground state energy and 
wave function for N= 1 

Make the ansatz 

¢(x) = e/(x'l, j(x2) = Jj3X2 - !ax4. (2.3 ) 

Substitute (2.3) into the N = 1 Schrodinger equation to ob
tain 

¢" = [P + (p2 _ 3a)x2 _ 2apx4 + a 2x 6 ]e f 

= 2(V(x) - E)e f 

= [ - 2E + 2ax2 + 2bx4 + 2cx6 ]e-': 

Matching powers of x 2 in (2.4) gives 

a =.j2c, p = - b 1.j2c. 

(2.4 ) 

(2.5) 

Equations (2.5) determine the ground state wave function 
(2.3 ): 

(b 2/2c) - 3.j2c = 2a. (2.6) 

Equation (2.6) is one constraint on the three parameters a, 
b, and c of the potential required for the ansatz to provide a 
solution and 

Eo = - P 12 = + b 12.j2c. (2.7) 

The ansatz (2.3) does not provide the ground state ener
gy for the general (a,b,c) reflection invariant sextic poten
tial; rather, constraint (2.6) is required. We choose to regard 
a and c (and the sign of b) as the independent parameters 
that specify the potential. Then (2.6) determines Ib I: 

b = (sgn b).j2c(2a + 3.j2c) 1/2 (2.6') 

and 

Eo = (sgn b)!(2a + 3.j2c) 1/2. (2.7') 

We note I in passing that a generalization of the ansatz 
(2.3) can be used to generate solutions for potentials that are 
polynomials of degree 4n - 2; the quartic is conspicuously 
absent. 

The ansatz (2.3) can be generalized2 to ¢(x) 
= ,p(x2)exp(j), which generates solutions with,p an nth

order polynomial in x 2 and gives the first n even parity ener
gy levels when b satisfies the constraint ben) 
= (sgn b).j2c(2a + (4n - l).j2c)1/2. However, to obtain 

explicit formulas for those n energy levels one has to solve for 
the n roots of an n X n determinant (the factored Hill deter
minant of Ref. 2). Thus the sextic oscillator potential, with 
coefficients satisfying the "solvability constraint," is inter
mediate between the case of a truly solvable potential such as 
the quadratic oscillator, for which one can write an analytic 
closed form expression for all of the energy levels, and the 
general case, in which one has to diagonalize an infinite ma
trix to find the exact value for any energy level. One can also 
generate odd parity solutions from the ansatz 
¢(x) = x,p(x2)exp(j). We do not provide details here be
cause they can be found in Ref. 2; we will calculate the case of 
general N in Sec. II B. 

B. GeneralN 

We take advantage of the O(N) symmetry of (2.2) and 
separate in N-dimensional spherical coordinates3 

[ - ~V2 + V(r) ]¢(x) = E¢(x), (2.8 ) 
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t/J(x) = R/ (r)H/ (x), 

V2t/J = [£ + N - 1 ~ _ 1(/ + N - 2) ] 
dr r dr r 

XR/ (r)H/ (x). 

Let 

R(r) = r(\ - Nll2x (r); 

then 

- !X" + [(N - l)(N - 3)/Sr]x 

+ [/(1 + N - 2)/2r]x + V(r)x = EX, 

with 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

(2.13 ) 

For subsequent 1/N expansions it is useful to define a 
scaled radial coordinate 

r = .JNp, x(r) = X(p), (2.14 ) 

"d 2 1 d 2 
_ 1_" 

X = dr X = N dp2X= N X , 
(2.15 ) 

and divide by N: 

- (l/2N2) X" 

[
(N-1)(N-3) +I(l+N-2)+v( )]-

+ SN2p2 2N 2p2 P X 

= ex, (2.16) 

v(p) = (lIN) V(r) = ap2 + bp4 + Cp6, e = E IN. 
(2.17) 

This (exact) equation is the starting point for the general 
1/ N expansion in Sec. VI. 

Now we continue exactly for general N. The ansatz 
(2.3) is generalized to 

X(p) =pV¢(p)ef(Pl, (2.1S) 

V= (N-1)/2+1, !(p) =N(!f3p2_,.ap4). (2.19) 

Substitution of ansatz (2.1S) and (2.19) into (2.16) yields 

a =.,fiC, [3 = - b 1.,fiC (2.20) 

[same as (2.5)] and a differential equation for ¢ (p ), 

¢" + [(N - 1 + 2/)lp + 2N([3p - ap3) ]¢' 

+ N[ (N + 2/)[3 + 2E 

+ ([32 - (1 + (21 + 2)IN)a - 2a)Np2]¢ = O. 
(2.21) 

Next, substitute a power series for ¢ and derive a three-term 
recurrence relation satisfied by the coefficients 

00 

¢(p) = L anpn, 
n=O 

2(n + l)(N + 21 + 2n)an+ I 

+ N [2E + (N + 21 + 4n)[3 Jan 

+ N 2a{([32 - 2a)la 

-[1+(4n+2/-2)IN]}an_ 1 =0. 

(2.22) 

(2.23) 

For N = 1 and / = 0, 1 (parity), the array of coefficients 
of this infinite set of simultaneous linear equations for the an 
is just the infinite Hill determinant of Ref. 2. Truly solvable 
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potentials lead to two-term recurrence relations that are ter
minated after m terms by determination of the eigenvalue 
Em' To terminate the three-term recurrence relation (2.23) 
after m terms requires determination of the first m E k 

(k = O,l, ... ,m - 1) and an additional solvability condition 
which is the generalization ofthe constraint (2.6). Let 

(2.24) 

The additional solvability condition required for termina
tion of (2.23) after m terms is 

Y= Ym,/=l + (4m + 2/- 2)1N. (2.25) 

For N = 1 and 1 = 0,1 (2.25) is just the condition found in 
Ref. 2 to factor the infinite Hill determinant into a finite 
factor times an infinite remainder. In the same way one can 
see easily that condition (2.25) gives rise to the factorization 
of the infinite Hill determinant formed from the coefficients 
of (2.23); this factorization plus the vanishing of the finite 
factored determinant is the condition for the existence of 
finite polynomial solutions of (2.21). Thus we see that we 
can just as well find exact solutions for any N (and I). As 
before we choose to treat a, sgn b, and c as independent pa
rameters ofthe potential and write (2.24) and (2.25) as 

(2.26) 

c. Particular solutions 

Since we want exact solutions for later use and to illus
trate the general procedure just described, we carry out the 
explicit solution for the first two I = 0 solvability conditions 
and the first 1 = 1 solvability condition. In all cases the initial 
conditions imposed on (2.23) are a_I = 0, ao = 1. (This 
implies that all a _ k are zero.) 

Fory= YI,O' 

n = 0, 2Na l + N(2E + N(3)( 1) = 0, 

choose 2E = - N[3 and then a I = 0; 

n = 1, 

4(N + 2)a2 + N(2E + (N + 4)[3)(0) 

+ N 2a(y - YI,O )(1) = O. 

The condition Y = YI,O gives a2 = O. The result is 

Eo,o = N( - (3/2) 

(2.27) 

For N = 1 this reduces to (2.7'). The large N expansion is 
discussed in Sec. III. 

For Y = Y2,O' the n = 0 equation gives 
a I = - (2E + N(3) 12. Then in the n = 1 equation, E is cho
sen to make a2 = 0 and in the n = 2 equation the condition 
Y = Y2,O makes a3 = 0, which terminates the recurrence. 
The resulting quadratic equation for E (from the n = 1 
equation and a I) is 

(2E + (N + 4)[3)(2E + N(3) - Sa = O. (2.2S) 

The solution of the quadratic equation gives the first two 
I = 0 energy levels, 

Eo,o(EI,o) = (N + 2)( -(312) +~[32 + 2a, (2.29) 
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-/3= (sgn b)(2a+ (1 + 6IN)/iC) 1 12, a=/iC, 
(2.30) 

For r = rl,I' condition (2,25) only determines the lowest 
1 = 1 energy level 

Eo, 1 = (N + 2)( - /3 12) 

= (N + 2)(sgn b)!(2a + (1 + 4/N)/iC) 1 12. (2.31) 

Note that we cannot compare directly this Eo,1 with Eo.o 
from either (2,27) or (2.29) to determine the energy gap 
because they are exact solutions of different potentials (bl,o 

¥=bl,1 ¥=b2,0)' However, we can obtain a rigorous analytic 
upper bound on the energy gap Eo, 1 - Eo,o for any potential 
that satisfies one of the 1 = 0 solvability conditions by using 
the exact Eo,o and a variational upper bound for Eo, 1 , which 
is available because any 1 = 1 variational trial function for 
Eo, 1 is strictly orthogonal to the exact 1 = 0 ground state 
wave function. We will see in Secs. V and VI that one feature 
oflarge N is that we can determine the energy gap analytical
ly to leading nontrivial order. 

III. LARGE N EXPANSION OF EXACT SOLUTIONS 

Large N expansions are of considerable interest in both 
quantum mechanics and field theory. Usually substantial 
simplification occurs in the leading terms in this expansion. 
In Sec. II we have given some exact energy levels for general 
N; for these we can simply factor out the leading power in N 
and expand the remainder in powers of liN. However, we 
have seen that for general N, to obtain the first energy levels 
(for any fixed I) requires finding the roots of an mth-order 
polynomial. The great simplification for large N is that the 
exact three-term recurrence relation (2.23) linearizes in n 
and can be solved to give an explicit closed formula for all 
Ek ,/ such that k + I-<N 12. 

We return to (2.23) and make some additional defini
tions to facilitate the expansion in powers of liN: 

2E = E, E + N/3 = E', 

(/32 - 2a)la = r = 1 + (4/-t - 2)IN, 
(3.1 ) 

where /-t is not necessarily an integer. Then (2.23) becomes 

2(n + 1)[1 + (2n + 2/)IN]an+ 1 

+ [€' + (4n + 2/)/3 Jan 

+ 4a(/-t - n - 1 12)an _ 1 = 0, (3.2) 

which is still exact. 
Now, for N'~ 1, we drop the (2n + 2/) IN term from the 

coefficient of an + 1 (and require termination for n such that 
2n + 2/-< N). This linearizes the recurrence relation (in n), 
so it can be solved by Laplace transform. This somewhat 
complicated calculation is relegated to Appendix A. The re
sult is that the recurrence relation terminates after the mth 
term when /-t = m + 112; this is just the m, 1 solvability con
dition 

r==_1 (~-2a) 
/iC 2c 

== 1 + 4/-t - 2 = r I == 1 + 4m - 2 + 21 
N m, N 

m = 1,2, ... , (3.3 ) 

894 J. Math. Phys., Vol. 29, No.4, April 1988 

provided that E' satisfies 

E' = - 2(m - 1 + 1)/3 + (4k - 2m + 2).:1, 

k = O,I, ... ,m - 1, 
(3.4 ) 

(3.5 ) 

Then the first m energy levels for each 1 and 2m + 2/-<N are 

E k •1 =N( -/312) + (m -1 +1)( -/3) 

+ (2k - m + 1).:1 + O(lIN) (3.6) 

provided that the m, 1 solvability condition is satisfied. This 
implies that/3 is a function of N, which must also be expand
ed: 

-/3= -/3(m,/) 

= (sgn b)(2a + [1 + (4m - 2 + 2/)IN ]/iC)1/2 

= -/30 [1 + (2m -1 + 1)IN(/iCI/3~) + ... ], 
(3.7) 

-/30= (sgn b)(2a+/iC)1/2. 

Finally, this gives 

(3.8) 

Ek[ = N( - /30) + 2m - 1 + 1 /iC + (m _ 1 + I) 
. 2 2 ( - /30) 

X (-/30) + (2k - m + 1).:1 + O(lIN), 

k=O,I, ... ,m-l (m+I-«NI2»), 

.:1 = (/3~ + 2/iC)1/2. 

(3.9) 

We emphasize that through order N I, N° these are liN 
expansions of exact analytic solutions, i.e., the liN expan
sions of the Eo,o, E2,0' and Eo, 1 in Sec. II C give exactly (3.9) 
for the appropriate m, k, and I. For example, consider the 
m = 1, k = 0, and 1 = 0 exact solution (2.27). For simpli
city, take a = O. Then 

Eo,o = ± (2C)1/4!N(l + 2IN)1/2, exact, 

± (2C)1/4{!N +! + ... }, 
(3.10) 

( 3.11) 

which is the same as (3.9) for - /30 = ± (2c) 1/4,.:1 = 1/301, 
m = 1, k = 0, and 1 = O. Ifwe consider N = 3, then the exact 
E has a factor (j) 1/2 = 1.29 compared to the first term in the 
liN expansion, which gives 1 for the corresponding factor, 
or the first two terms in the liN expansion, which give 1.33. 

IV. COMPARISON TO APPROXIMATE AND NUMERICAL 
CALCULATIONS, N= 1 

There is a vast literature on general properties, approxi
mation schemes, and numerical calculations for the quan
tum mechanical one-dimensional anharmonic oscillator 
(usually quartic). There are no exact analytic solutions 
available for the quartic anharmonic oscillator, but most of 
the above-mentioned schemes and techniques can be ex
tended to the sextic anharmonic oscillator as well; for this 
there are some exact analytic solutions available, as present
ed in Sec. II. We do not intend a systematic review and test of 
all the schemes discussed for the quartic oscillator. We have 
chosen two different representative approximation schemes 
to confront, with exact analytic results. Our criteria for se-
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lection were that the approximation scheme should be (i) 
analytic; (ii) simple, at least in lowest order of implement a
tion; and (iii) intended for generalization to quantum field 
theory. Any reader who desires to confront any other 
scheme, or order of implementation, with the exact analytic 
results presented here is invited to do so. Our first choice is 
(a) perturbation about a Gaussian variational basis (GVP). 
Many variants of this approach have been proposed. We fol
Iowa recent simple analytic approach by Patnaik.4 (The 
generalization of the GVP approach to field theory also has a 
long history. Most recently it has been urged and exploited 
in a series of papers by Stevenson5

• ) Our second choice is (b) 
the finite element (FE) method of Bender et a1.6 (which they 
also applied to the field theory). 

We have a choice of exact solutions from Sec. II. We will 
take the first two 1 = 0 states for the solvability condition 
r = r 2,0 for N = 1: 

Let 

H = !p2 + ax2 + (sgn b)flc(2a + 7flc)I/2X4 + cx6. 
(4.1 ) 

Eo,o=.Eo, E I,o=.E2. (4.2) 

Specializing (2.29) to N = 1, we have 

Eo,E2=~( -f3)+~f32+2a, (4.3) 

-f3= (sgnb)(2a+7flc)I/2, a=flc. (4.4) 

In the weak coupling limit (c ..... O, a> 0), (4.3) and (4.4) 

reduce to the quadratic oscillator with - f3 = {2Q='{J)0 and 

Eo = !{J)o, E2 = ~{J)o (weak coupling limit). (4.5) 

In the strong coupling regime, flc> 2a. In order to have 
simple results depending on only one parameter we set 
a = O. Then we have, for sgn b = + 1, the exact results 

Eo = (~/i - 3)(2c)I/4 = (0.968627 ... )(2c) 1/4, 

E2 = (~/i + 3)(2c)I/4 = (6.968627 ... )(2c) 1/4, 

E2 - Eo = 6(2c) 1/4, 

and for sgn b = - 1, 

Eo = ( - ~/i - 3 )(2c) 1/4, 

E2 = ( - ~/i + 3)(2c)1/4. 

(4.6) 

(4.7) 

For a = 0 and b < 0 the potential is a double well, minimum 
value 

Vo = - (112/i127)(2c) 1/4, 
(4.8) 

at x~ = (4/i/3)(2c)-1/4. 

Measuring from the bottom 

(E =E - Vo) 
'" 1/4 Eo = (4.006341 ... )(2c) , 

of the (double) well 

E2 - Eo = 6(2c) 1/4. 
(4.9) 

(a) In the simplest version4 of the combined GVP ap
proach, one starts with a Gaussian trial function for the 
ground state and makes a Bogoliubov transformation from 
the simple harmonic oscillator basis to a new basis with the 
minimized Gaussian as ground state. The exact Hamiltonian 
is reexpressed in this new basis. The c-number part is the 
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Gaussian variational minimum for the ground state energy. 
The nontrivial diagonal part gives the zeroth approximation 
to the excited state energies and the off diagonal part is treat
ed perturbatively (starting in second order; there is no first
order energy shift). The details for the quartic potential are 
found in Ref. 4. The extension to the sextic potential is given 
here as 

<Po = Ne- (1I2)M(X-.xu)', 

Heff = Hd + HI' 

Hd = Wo+MB+B 

(4.10) 

(4.11 ) 

+(2-~+~~+~~x2)B+2B2 
2 M2 4 M3 2 M2 Q 

+2.~B+3B3 
2 M3 ' 

(4.12) 

Wo(M,xo) = (<PoIH l<Po> 
M a 3 b 15 c 

='4+ 2M+'4 M2+g M3 

+(a+3!.+~~)~ 
M 4 M2 

(b 15 c) 4 6 + +'"2 M Xo +cxo, (4.13) 

(4.14 ) 

and in zeroth approximation (there is no first-order energy 
shift) 

Eo= Wo, EI-Eo=M, 

b 45 C C 2 
E2 - Eo = 2M + 3 - + - - + 45 - xo' M!.- 2 1ff3 M!.--

( 4.15) 

In the weak coupling limit (b, c = 0, a>O) (4.10)-(4.15) 
reduce exactly to the harmonic oscillator. The results for the 
nontrivial choice of potential parameters (a = 0, 

b = ± /i(2C)3/4, c>O) are given in Table I. 
(b) In the FE scheme6 the starting point is again a varia

tionally improved Gaussian basis and the scheme then pro
vides a set of difference equations which lead to a set of poly-

TABLE I. Low-lying energy levels, N = 1, strong coupling. 

Exact 

Eob !.fi - 3 = 0.968 627 
V a 

+ E2 -Eo 6 
(EI - Eo) (2.537)C <2.599d 

Eo" - !.fi - 3 + w.fi 
=4.006 341 

v_a E2- Eo 6 
(EI - Eo) (0.OOO3)C <4.341 

a V ± = ± .fi(2C)3/4X" + ~2cr>. 
b E =E/(2c)1/4. 

GVP 

0.995 

7.069 
2.715 

4.116 

16.99 
8.0 

C From numerical integration of the SchrOdinger equation. 

FE 

6.036 
2.715 

1.891 
0.694 

d Rigorous bound WI - Eo> where WI is a variational upper bound on the 
lowest odd paritYTeVel and Eo is exact. 

"Eo = Eo - Vo, where Vo is the minimum (negative) of the double well V_. 
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nomial equations to solve for energy differences Wn = En + I 

- En . In the lowest approximation (one finite element), the 
scheme gives 

WI =M. ( 4.16) 

Here M is the variational parameter that minimizes the 
Gaussian ground state energy wo, with Xo constrained to be 
zero. The second energy difference W 2 is the solution of 

w~ = 2a + 1Ob(1/w2 ) + lfc( lIw~) (4.17) 

and 

(4.18 ) 

In the weak coupling limit (b, c = 0, 2a = (6), the FE 
scheme also reduces correctly to the harmonic oscillator 
- all Wk = Wo' The results for the nontrivial choice of an

harmonic potential parameters are given in Table I. 
We observe that the Gaussian variational calculation of 

the ground state energy is quite accurate: It is exact in the 
weak coupling limit and in the strong coupling regime has 
the correct (C 1/4) dependence on the coupling constant and 
is accurate numerically to within 3 % for both the single well 
( V +) and double well (V _). However, we note that the 
accurate result for the double well required the use of the 
two-parameter (M,xo) "shifted" Gaussian trial function 
( 4.10). With Xo constrained to be zero, the Gaussian vari
ational calculation for V_gives Eo = 9.84, in error by more 
than 100%. For the single well V +, both GVP and FE, even 
in the lowest order of implementation, give reasonable ap
proximations to the first two excitation energies. (However, 
GVP in lowest order is 15% off on E2 - Eo, which is a sub
stantially greater discrepancy then the corresponding result 
for the quartic anharmonic oscillator4.) Higher order imple
mentation presumably leads with sufficient effort to any de-

I 

sired accuracy.4.7.S For the double well, although the (shift
ed) Gaussian variation gives a numerically accurate value 
for the ground state energy, both GVP and FE in lowest 
order are far off the excitation energies. In particular, we 
comment on the energy gap EI - Eo, which is estimated in 
both GVP and FE by the value of the parameter M (inverse 
width) of the Gaussian trial function which minimizes WOo 
For the convex potential V +, this gives a reasonable numeri
cal value (off by 4%), but even in this case this estimate 
violates the simple analytic upper bound. For the double 
well V _, the estimation of EI - Eo by M is totally inaccur
ate. 

(i) The G VP and FE results are different because the M 
used by GVP is the M (x.Q) which provides the accurate WQ 
with xQ#O, while the equation to be solved for WI in FE is 
identical to the equation for M which minimizes Wo with 
xo=O. 

(ii) The striking result that E I is nearly degenerate with 
Eo in the double-well potential is understood by observing 
that the odd parity wave function with its single node at 
x = 0 can fit itself more favorably to the negative regions of 
V_than can the nodeless even parity wave function. 

(iii) We will see in Sec. V that for large N, the estimate 
EI - Eo = M is accurate up to order liN for all ranges of 
parameters in the potential. 

V. GAUSSIAN APPROXIMATION FOR LARGE N 

The expectation value of the Hamiltonian p2/2 + V 
with 

V=ax2 + (b/N)(X2)2+ (C/N2)(X2)3 (5.1) 

in the (shifted) Gaussian trial function 

(5.2) 

is 

[(1 6 8) 1 (1 6 8) 3 [;- 2 ( 4) 3 2 2 2 3]} +c +-+- -+ +-+- -~ + 1+- -(S) +([;-) 
N N 2 8M 3 N N 2 4M2 N 2M ~, 

(5.3 ) 

To leading order in N, the minimization conditions are 

O=~ awo =~ __ a ___ b __ ~~ 
N aM 42M2 2M3 8 M4 

( 
b 3 c) [;-2 3 C [;-2 2 + - M2 -2 M3 ~ -2 M2 (~ ), 

O=~ awo 
N aS 2 

=a +~+~~+ (2b + 3~)S2 + 3C(S2)2 
M 4 M2 M 

_2M2~aWO M2 
N aM + 2 ' 

(5.4) 

which cannot be satisfied simultaneously for M> 0 (re
quired for a normalizable cI». However, Wo(m,x6) is 
bounded below for positive c, so it must have its lowest value 
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at the end point value x6 = O. (This is not the case for finite 
N, as we saw explicitly in the double-well example for N = 1 
in Sec. IV.) Thus in the large N limit, the Gaussian minimi
zation condition is 

M4 - 2aM 2 - 2bM - ~C= 0, (5.5) 

which holds with no restriction on a, b, and c (except c > 0). 
We want to compare with the exact analytic solutions that 
exist when the parameters of the potential satisfy one of the 
sequence of solvability constraints (3.3). In thelargeN lim
it, for 2m + 1- 1 <t,N /2 these constraints all degenerate to 
the single condition 

b = (sgn b).j2C(2a + .j2C)1/2 + O(lIN). (5.6) 

In this case one can check by direct substitution that 
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M = !( - /30 + A), (5.7) 

- /30 = (sgn b)(2a + {2c) 1/2, 1:1 = (/3 ~ + 2{2c) 1/2 
(5.S) 

is a solution of 5.5, which leads to the minimum value 

Wo = N( -lj30) + O( 1). (5.9) 

Comparing with the liN expansion of the exact solutions 
(3.9), we see that the Gaussian variation gives the ground 
state energy exactly to leading order in N. 

Consider now the energy gap EO•I - Eo.o. From (3.9) 
this is of order 1, i.e., (EI - Eo)IEo-lIN. However, the 
solvability conditions (3.3) also differ in order liN, so again 
one cannot determine Eo. I - Eo.o in a common potential di
rectly from (3.9). The m, 1 solvability condition is (3.7): 

b = (sgn b){2c(2a + [1 + (4m - 2 + 2/)IN ]{2c)1/2. 
(5.10) 

In the large N limit there is an important simplification; the 
condition becomes linear in m and I: 

bm.1 = {2c( - /30)(1 + [(2m - 1 + I)IN] 

X ({2cI/3~) + ... ), (5.11) 

which suggests that we can obtain Eo. I at b m.O by linear inter
polation between the known exact EO•I at bm _ 1.1 and bm •1 

[bm.o = ~(bm_I.1 + bm.l ) + O(1IN)]. Making this inter
polation in (3.9) gives 

Eo. I -Eo.o =!( -/30 + 1:1) + O(lIN), (5.12) 

which is precisely M (5.7) to this order. Thus if this linear 
interpolation is correct for large N, then the Gaussian vari
ational calculation also obtains the energy gap correctly to 
leading order, N° in this case, by the value of the single vari
ational parameter which minimizes Wo in order N. As we 
have seen in Sec. IV this is not the case for finite N; however, 
in Sec. VI we will provide a calculation which is a liN ex
pansion from the start, requires no condition on the param
eters a, b, and C of the potential, and gives (5.12). 

VI. THE GENERAL 11NEXPANSION TESTED ON 
NONTRIVIAL SOLVABLE EXAMPLES 

The derivation of the unrestricted liN expansion given 
here is adapted from Mlodinow.9 The starting point is the 
radial equation for the N-dimensional Schrodinger equation 
in the form (2.16), which we repeat here as 

1 _" 
- 2N2X 

[
(N-l)(N-3) +I(I+N-2)+v( )]-

+ SN2p2 2N 2p2 P X 

=ei, e= (EIN), (6.1) 

(N - I)(N - 3 )/SN2p2 + 1(1 + N - 2)/2N 2p2 + v(p) 

=Velf (p). (6.2) 

The heuristic observation that is the basis of the derivation is 
thatN 2 acts as an effective mass so that in theN -+ 00 limit the 
"particle" will sit at the classical minimum of Velf . As N de
creases from infinity one expects i to relax to a Gaussian 
centered about Po. Thus we write 
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Velf(p) =Velf(PO) +0+!(p-Po)2V;ff(PO) +.... (6.3) 

Each v~;) has a liN expansion, starting in order N°, and for 
large N ( (p - Po) 2) - N - I for the Gaussian 
exp( - N(p - PO)2). Thus one has 

E=Nvelf(po) + (k + !>~V;ff(PO) + O(1IN), 

k = 0,1,2, .... (6.4 ) 

For a general sextic potential v(p) = ap2 + bp4 + Cp6, 
the equation to determine Po is a quartic (inp2) that cannot 
be solved analytically in general. Therefore we give up some 
generality in parameters and take a = 0 and b unrestricted, 
but written as 

b = (sgn b)( 1 + 2sIN) 1/2(2c)3/4 

=(sgnb)(1+sIN+''')(2c)3/4 (s;;.O) , (6.5) 

and we rescale 

p=(u4/2c)1Is. (6.6) 

Then 

v(p) = (2C)1/4{(A+ (I-l)/2N+ "')(1lu) 

± (1 + siN + ... )u2 + !u3
}. (6.7) 

Minimization of (6.7) leads to the quartic equation 

u4 ± ~U3 - n = 0, (6. S) 

with the solution 

U6±) = (~+ 1)/2. (6.9) 

After some algebra Eqs. (6.4), (6.7), and (6.9) yield 

E'if) = (2c) 1/4{N ~ + [s(1 - ~/2) 

+ (l-I)q + ~/2) + (k+ p2~] 

+ O(1IN)}, (6. lOa) 

E k.!) = (2c) 1/4{N( -!) + [ - s(1 + ~/2) 

+ (1- 1)( -! + ~/2) + (k + p2~] 
+ O(1IN)}. (6. lOb) 

The liN expansions, (6. lOa) and (6.lOb), are derived 
for unrestricted s;;'O. If we consider the special values 
s = 2m - 1 + I, then (6.5) is just the m, 1 solvability condi
tion [Eqs. (3.7) and (5.10) for a = 0]. Substituting these 
values of s into (6.10) and setting a = 0 in the liN expansion 
of the exact analytic solutions (3.9), we find that both re
duce to the common result 

E'i.T) = (2C)1/4{ ±N! + [ ± 2m + ~(I- 1) 

+ (2k - m + 1)~] + O(lIN)}, for a = 0, 

b = ± (1 + (4m - 2 + 2/)IN)1/2(2c)3/4, (6.11) 

thus verifying that the first two terms of the general liN 
expansion agree with the first two terms of the liN expan
sion of nontrivial exact analytic solutions for values of the 
parameters of the potential for which the exact analytic solu
tions are available. For clarity we repeat the point in a very 
specific example. Take the particular sextic anharmonic po
tential in arbitrary N dimensions: 
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V ± = ± (1 + 2IN)1/2(2c)3/4(X2)2 + C(X2)3. (6.12) 

The general liN expansion, Eqs. (6.4)-(6.10), yields 
(s = 1, m = 1, 1= 0, and k = 0) 

E&}t-> = ± (2C)1/4{N! +! + O(lIN)}, (6.13) 

while for this potential the exact ground state for arbitrary N 
is given by Eq. (2.27) for a = 0: 

EM) = ± (2c) 1/4!N( 1 + 2IN) 1/2. (6.14 ) 

On the other hand, having verified the correctness of the 
general liN expansion (6.10), which has no I-dependent 
restriction on the potential parameter b, we can immediately 
read off the leading term of the energy gap 

E( ±) -E( ±) = (2C)1/4{ + 1 + ../3/2 + O(lIN)} 
0.1 0.0 - 2 

= !( - fJo + 6.) + O(1IN) (a = 0), 
(6.15 ) 

which justifies the linear interpolation (5.12). 

VII. SUMMARY AND CONCLUSIONS 

We have exploited the availability of exact analytic solu
tions for low-lying energy levels ofthe one-dimensional sex
tic anharmonic oscillator V = ax2 + bx4 + cx6 to confront 
some approximation schemes developed for the quartic an
harmonic oscillator, for which no exact analytic solutions 
are available. Not surprisingly, the various lowest order ap
proximations work well for a single well (a,b>O), but are 
quite inaccurate (or slowly converging) for strong double
well potentials (a = 0, b < 0). We have shown that a large 
class of exact analytic solutions can also be obtained for 
the N-dimensional O(N) symmetric generalization 
V = ax2 + (b IN)(x2) 2 + (cIN 2)(x2)3,foranyN. We have 
found that substantial simplifications occur for N~ 1. For 
finite N (including N = 1) to obtain the first m-energy levels 
(for fixed I), even in a "solvable" case, requires determina
tion of the roots of an mth-order polynomial; however, for 
N~ 1 we have given explicit closed form analytic expressions 
for E k•1 for k + 14.N, including terms of order N and order 
N°, which are expansions of exact solutions. We have shown 
that general 11 N expansions (which are not guaranteed to be 
liN expansions of exact results in arbitrary N dimensions) 
do agree with these exact results. We have also shown by 
explicit calculation and comparison with exact results that 
the ground state energy Eo.o is given exactly to leading order 
(N) by the Gaussian variational estimate with an unshifted 
Gaussian (~ = 0 even for a,b < 0) and the "energy gap" 
EO•I - Eo.o is given to leading order (N°) by the value of the 
Gaussian variation parameter M which minimizes WOo 

As mentioned in· the Introduction, our ultimate interest 
in these results is in their possible extension to the field the
ory problem. Two substantial difficulties are apparent im
mediately: (i) in going from d = 0 + 1 to d = s + 1 spatial 
gradients in the s variables appear which have no counter
partin thed = 0 + 1 quantum mechanical problem; and (ii) 
ordinary integrals become functional integrals and ultravio
let divergences appear which require (infinite) renormaliza
tion of the parameters of the potential. Preliminary investi
gation indicates that these difficulties undermine the 
usefulness of exact results for the ground state energy in the 
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quantum mechanical problem, but the question of the possi
bility of rigorous bounds on the energy gap is not yet settled. 

APPENDIX A: LAPLACE TRANSFORM SOLUTION OF 
THE RECURRENCE RELATION FOR LARGE N 

We have rescaled variables (2.14) and (2.22) so that in 
I the large N limit all the an are of order N° and satisfy the 

linearized recurrence relation [Eq. (3.2) with the liN term 
dropped] 

2(n + l)an + I + [£' + (4n + 2/)fJ Jan 

+4a(j.L-n-112)an_ 1 =0. (AI) 

The mth solvability condition is r = rm.1 [(2.25)], or 
j.L = m + 112. [See (3.1).] 

We rewrite (A 1) in a standard form: 

(ao + fJon)Yn + (al + fJl (n - l))yn _ I 
+ (a2 + fJ2(n - 2»)yn _ 2 = 0, (A2) 

where 

ao = 0, fJo = 1, a l = E'/2 + IfJ, fJl = - 2fJ, 

a 2 = 2a(j.L - 1 -112), fJ2 = - 2a. 

Substitute the Laplace transform 

(A3) 

Yn = L dzzn-Iv(z) (A4) 

into (A2) and integrate by parts to obtain 

0= L dz{[a~ - I + al~ -2 + a:zZ"-3]v(z) 

- [fJ~ + fJlZn - I + fJ:zZ" - 2] v' (z)}, (AS) 

provided the contour r is chosen such that 

v(z)(fJ~+fJl~-I+fJ:zZ"-2)lr =0. (A6) 

Then the transform v(z) satisfies the differential equation 

v'(z) = aoZn-l+al~-2+a:zZ"-3 

v(z) fJoZn + fJlzn - I + fJ:zZ" - 2 

(A7) 

by the first two equations of (A3 ). Let 

a lz+a2 =~+~+~. (A8) 
z(r+fJlz+fJ2) z Z-Zl Z-Z2 

The roots of the quadratic expression in the denominator are 

Zl = - fJ I/2 + 6., Z2 = - fJ I/2 - 6., (A9) 

fJl = 2/3, 6. = ~fJ2 + 2a. (AIO) 

Then some algebra leads to 

c= _ a2+ a lzl 
Z2(ZI - Z2) 
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The solution of the differential equations (A 7) and (A8) is 

u(z) = u~(z - ZI)B(Z - Z2)C. (A12) 

By virtue of (A9), a contour r that satisfies the condi
tion (A6) is a semicircle in the upper half-plane, centered at 
- f3 on the real axis and intersecting the real axis at Z I and Z2 

(provided thatB,C> - 1). On r, 

Z = - f3 + f:.e i
(), O<:;O";;:1T. (A13) 

On this contour Y m is complex. Since the coefficients (A3 ) of 
(A2) are all real, the real and imaginary parts of Ym must 
satisfy (A2) separately. This will introduce two possible so
lutions: am + la ReYm and ImYm' We will have to check 
which is the required solution. 

Substitute (A3) and (A9)-(A13) into (A4) and 
change the integration variable 0 = 2,p to obtain 

A + n - 1 = - P, + n + 1/2, 

B + C = P, - 1 - 1/2. 

(AI4) 

(AI5) 

We want to terminate the recurrence by imposing the solv
ability condition p, = m + 1/2 to force Ym = O. For n = m 
andp, = m + 1/2, Eq. (AI4) simplifies to 

('T/2 

Ym = uo(2f:.)m;B + I Jo d,p(cos(m + 1),p + i sin(m + 1),p)(cos ,p)c(sin ,p)B 

(2 A )m.B+I( (B+ 1)1T .' (B+ 1)1T) r(C+ 1)r(B+ 1) = uo ~ I cos + I sm --'-----
2 2 r(B+C+2) 

= uo (2f:.)m (cos(B + 1)1T + ; sin(B + 1 )1T)(m - 1 - B) (m - 2 - B)'" (I - B) --!!!!-. (AI6) 
m! sm1TB 

Taking the solution am + I a: ImYm, we obtain ImYm = Oby havingB take on one of the m values O,I, ... ,m - 1. [Recall that 
(A6) requires B> - 1.] Furthermore, starting again from (A 14) with n = m + r, but still with u = m + 1/2 so that 
A + n - 1 = rand B + C = m + I, we can arrive at the factored result 

Ym+r=Ymf:.r{ ± rf(r)(r- p)( -f3)p( -1)q r(C+ 1 + r-p-q) r(B+ 1 +q) rem + I) } 
p=Og=O p q f:. r(C+l) r(B+I) r(m+l+r-p) 

= Ym X real constant. 

Thus the condition 1m Y m = 0 forces all subsequent 
ImYm+r also to zero. Then (A3), (A9), and (All) give, 
for p, = m + 1/2, 

E'/2 = (m - 1 + 1)( -f3) + (2k - m + 1)f:., 

k = O,I, ... ,m - 1, 

which is (3.4). 

(AI8) 

APPENDIX B: GENERALIZATION TO NDIMENSIONS OF 
THE PERTURBATION ABOUT A GAUSSIAN 
VARIATIONAL BASIS 

In Sec. IV we outlined briefly the extension of the treat
ment of the one-dimensional quartic anharmonic oscillator 
of Ref. 4 to the one-dimensional sextic anharmonic oscilla
tor. In this Appendix we give the results of the extension to 
an N-dimensional [O(N) invariant] sextic anharmonic os
cillator. The simultaneous generalization from one to N di
mensions and from an unshifted to shifted Gaussian vari
ational function is complicated; thus we restrict ourselves to 
the generalization from one to N dimensions of the scheme of 
Patnaik4 based on an unshifted Gaussian (xo = 0). The re
sults are 

P2 b c 
H = - + ax2 + - (X2)2 + _ (X2)3 (Bl) 

2 N N 2 
' 

,po = e-(I/2)Mx', (B2) 
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(AI7) 

Wo(M) =N -M+-+ 1 +- -{I a ( 2) b 
4 2M N 4M2 

+(I+~+~)_C } 
N N 2 8M 3 

' 
(B3) 

Hew = Wo + MB·B + !!... ~ :( (B+ + B )2)2: 
- N4M 

+ ~ _1_ [ :«B+ + B)2)3: 
N 2 8M 3 

+ 3(N + 4) :(B+ + B)2)2:] = Hd + HI' 
(B4) 

In lowest approximation (Eo=Eo,o, EI =Eo,t, E2 =Et,o), 

Eo= Wo, E}-Eo=M, 

E2- EO=2M+(1 +~)~ N M2 

+(1+~+~)~. 
N N 2 2M 3 

(B5) 

In the weak coupling limit (b,c = 0) (Bl)-(B5) reduce 
correctly to the results for N independent harmonic oscilla
tors (one in each dimension). For nonzero anharmonic cou
plings for finite N, we anticipate results qualitatively the 
same as in Sec. IV (N = I), i.e., accurate numerically for 
single-well potentials, but not for double-well potentials 
(even for the ground state, with Xc restricted to be zero). For 
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large N, the Gaussian estimate of the ground state energy is 
minimized for Xo = 0, so we can reasonably compare (B5) 
for large N to the known large N results. We have seen in Sec. 
V that Eo = ~ [ = O(N)] and EI - Eo = M [ = O( I ) ] 
are correct in the large N limit. We check E2 - Eo for the 
potential parameter a = 0 and b = ± (2C)3/4 + O( liN). 
From (5.7), forlarge N, 

M=~(-{30+A.)=~(±I+~)(2c)1/4, a=O, (B6) 

which, substituted into (B5), gives 

{ (8~ - 1O)(2c) 1/4 

E2 - Eo = (8~ + 1O)(2c) 1/4 
(B7) 

which is nothing like the exact result 2~ (2c) 1/4 for either 
sign of b from (3.9). This suggests that the perturbation 
expansion of Ref. 4, extended to (B4), is failing for large N. 
In fact, there are terms in every order of the perturbation 
expansion of (B4) which are the same order in liN, namely 
O(N°), the same as (B7). 

APPENDIX C: RELATION TO SUPERSYMMETRIC 
QUANTUM MECHANICS AND EXACTLY SOLVABLE 
POTENTIALS 

In a brief but remarkable paper, 10 Gendenshtein 11 stat
ed that for all known cases of potentials for which the Schro
dinger equation is exactly solvable (admits a closed form 
solution for all the energy levels), one can formulate the 
problem in the supersymmetric quantum mechanics formal
ism of Witten 12 and then by elementary algebraic means de
termine the entire spectrum. 

In particular, Gendenshtein II shows that if the potential 
can be written as 

V(x;a) =!(W2(x;a) - W'(x;a»)=V_(x;a), (CI) 

where a is a (set of) parameter(s) ofthe potential and if 

V+(x;a)=!(W2(x;a) + W'(x;a») 

= V_(x;a l ) +R(a l ), 

where a l = I(a) for some function/, then 
n 

Eo = 0, En = L R(ak ), 

k=1 

whereak is the iterated valueak =/(k)(a). 

(C2) 

(C3) 

Gendenshtein II also pointed out that in order to find the 
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exact ground state energy, condition (CI) alone is sufficient. 
This observation is based on the same ansatz used in Sec. II. 
Simply substitute 

(C4) 

and (Cl) into the Schrodinger equation to find the exact 
result Eo = O. As an example, Gendenshtein II considered 
potentials of the form 

(C5) 

To satisfy (CI) requires a one-parameter family a = - A, 
c = 2A 2/9, which is precisely the first even parity (l = 0) 

solvability condition: r = rl,o = 3, b = ± ffc(2a 
+ rffc) 1/2 = 0, with exact Eo = - {3/2 = b /2ffc = O. 

For these values of a, c this potential also satisfies (C2) with 
a l =/(a) = - a, but trivial R(a l ) = 0; thus one cannot 
tum the supersymmetry crank (C3) to generate exact high
er energy levels. 

In fact, we know from Sec. II that there is a whole se
quence of potentials of form (C5) corresponding to the mth 
I = 0 solvability condition r = r m,O = 4m - I, a = - A, 
and c = 2A 2/r , for which we can find the exact Eo by find
ing the zeros of an m X m determinant. These cases do not fit 
the supersymmetry mold; V does not satisfy (C I), "'0 is not 
of the form (C4), and Eo#O. [See, e.g., Eqs. (2.28)-(2.30) 
and the text. ] 

'We thank Dr. H. Neuberger for pushing us to this observation. 
2p. M. Morse and E. C. G. Stuekelberg, Helv. Phys. Acta 4, 337 (1931); Y. 
Singh, S. N. Biswas, and K. Datta, Phys. Rev. D 18,1901 (1978). 

3Higher Transcendental Functions, Vol. II, edited by A. Erdelyi, W. Mag
nus, F. Oberhettinger, and F. G. Tricomi (McGraw-Hili, New York, 
1953). 

'P. K. Patnaik, Phys. Rev. D 33,3145 (1986). For implementation with 
the shifted Gaussian (4.10) see, also, C. Esebbag, J. Nunez, A. Plastino, 
and G. Bozzolo, Phys. Rev. D 32,522 (1985). 

5p. M. Stevenson, Phys. Rev. D 32, 1389 (1985). 
6 A concise description along with references to earlier papers is contained 
in C. M. Bender and K. A. Milton, Phys. Rev. D 34, 3149 (1986). 

7C. M. Bender, K. A. Milton, D. H. Sharp, L. M. Simmons, and R. Strong, 
Phys. Rev. D 32,1476 (1985). 

8C. M. Bender and M. L. Green, Phys. Rev. D 34,3255 (1986). 
9L. D. Mlodinow, International School of Nuclear Physics, Erice Y, 1981. 
lOWe thank Dr. H. Neuberger for calling this subject to our attention. 
IlL. E. Gendenshtein, JETP Lett. 38, 299 (1983). 
12E. Witten, Nucl. Phys. B 185, 513 (1981). 
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Rayleigh-Schrodinger perturbation expansions for eigenvalues E(A.) of nonlinear 
Hamiltonians ofthe form H(O) + A. (rP)r'I, p,q> 1 are calculated using hypervirial (HV) and 
Hellmann-Feynman (HF) theorems. Such Hamiltonians are similar in form to those 
employed in the study of "self-interacting" systems, e.g., solute-solvent interactions. The 
specific cases considered for H(O) are one-dimensional harmonic oscillators and hydrogen 
atoms. The eigenvalue expansions for the nonlinear problems are compared with those of the 
linear problems where p = 0, whose large-order behavior and summability properties are well
known. Also examined are the perturbation expansions for the expectation values (,J<), which 
are also products of the HVHF method. 

I. INTRODUCTION 

Nonlinear Schrodinger equations with the generic form 

[H(O) + V{t/!)]t/!=Et/! (1.1) 

have been used to describe quantum mechanical systems 
that interact with their environment. 1

•
2 Through its wave 

function t/!, the system interacts with its surroundings by, for 
example, inducing a net field which then acts back on the 
system itself. This "self-dependent" situation could be d~ 
scribed by appropriate choice of the interaction operator V 
in (1.1). The linear Schrodinger equation, 

H(O)t/!(O) = E(O)t/!(O) , (1.2) 

is assumed to describe the system in vacuo, i.e., isolated and 
independent of its environment. 

Such treatments have been employed in the studies of 
molecules immersed in polar solvents, a problem of prime 
importance in the study of biological systems. An electronic 
state of the molecule, described by a wave function t/!, in
duces an energetically fav9rable orientation of polar solvent 
molecules (e.g., water molecules) that surround it. This ori
entation produces a field that, in tum, acts on the molecule in 
question. The Hamiltonians used to describe such systems 
have assumed the form 

[H(O) + A. (t/!iA it/!)B] t/! = E(A.)t/! . (1.3) 

Again, the linear SchrOdinger eigenvalue equation in ( 1.2) is 
usually assumed to describe the solute Jllol~ule jn vacuo. 
Using the Kirkwood-Onsager modeV A = B = M, the di
pole moment operator. The perturbation parameter A. could 
describe the strength of the solute-solvent interaction. A 
variety of methods have been used to approximate the solu
tions of ( 1.3). Of course, even in the case of atoms or small 
molecules, the solution of ( 1.2) may be a formidable task. 

This report was motivated by the paper of Surjan and 
Angyan2 in which was developed a formal nondegenerate 
Rayleigh-Schrodinger (RS) perturbation theory for prob
lems of the form in Eq. (1.3), assuming the solvability of the 
unperturbed problem in Eq. (1.2). The presence of the self
interaction introduces nonlinear contributions to the pertur
bation corrections to E and t/!. In the special case A = i, the 

identity operator, the perturbation formulas reduce to the 
usual Rayleigh-Schrodinger perturbation theory (RSPT). 
In principle, the method may be used to calculate perturba
tion corrections to arbitrary order. 

Here, we examine eigenvalue perturbation expansions 
for simple radial oscillators, defined by the Hamiltonians 

H(P,q) = !p2 +!r + A. (rP) r q, p,q = 1,2,3, ... , 
( 1.4) 

where (rk) denotes the expectation value 

(rk) St/!*U:)rkt/!(r:) dr: (1.5) 
St/!*(r:)t/!(r:) dr: ' 

t/! being an eigenstate of H (p,q). Equation (1.4) can be con
sidered to define such oscillators in arbitrary space dimen
sions, but the present analysis is restricted to one-dimension
al problems. The eigenvalue expansions will assume the 
usual form of RSPT, i.e., 

"" Ejr)(A.) = L E<j,q)(n)A. n, ( 1.6) 
n=O 

where E~) = K + !. Their behavior will be related to that of 
the well-known expansions associated with the "linear" per
turbation problems where p = 0, which correspond to the 
anharmonic oscillators studied in the context of quantum 
field theory. 4-9 In the spirit of our introductory remarks, the 
Hamiltonians in ( 1.4) could be viewed as defining self-inter
acting oscillators whose anharmonicities are directly pro
portional to the mean values of given powers of their vibra
tional amplitudes. 

Specifically, we examine the large-order behavior of the 
RS coefficients E <j,q) (n). With the aid of numerical compu
tations, the summability of these series is also conjectured. 
The coefficients are easily calculated by a method originally 
developed by Swenson and Danforth 10 to study perturbed 
oscillator problems. Their method, which employed the hy
pervirial (HV) and Hellmann-Feynman (HF) theorems, 
and which will henceforth be referred to as the HVHF meth
od, permits a calculation of the (nondegenerate) eigenvalue 
series without a knowledge of wave functions. In short, no 
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matrix elements are needed and the only input into the algo
rithm is the unperturbed energy EK (0) = E },?). A by-prod
uct of this approach is that it yields formal perturbation ex
pansions for the expectation values (r k ). The HVHF 
method is reviewed for general N-dimensional problems in 
Sec. II. Section III is devoted to its application to oscillator 
problems. In addition to the eigenvalue expansions, the per
turbation series for (r k) will be examined in detail for the 
linear eigenvalue problems. These series also possess inter
esting large-order and summability properties which are 
useful for an understanding of the nonlinear expansions. 

The HVHF perturbative method has been applied to 
hydrogenic problems by Killingbeck II and a number of oth
er workers, e.g., Refs. 12-15. In these problems, the tradi
tional difficulties posed by the continuum spectrum of the 
unperturbed hydrogen Hamiltonian operator are bypassed. 
In Sec. IV, the HVHF method is applied to the following 
nonlinear hydro genic counterparts: 

H = !Ii - Z Ir + A. (r P ) fl, p,q = 1,2,3,... . (1.7) 

For both oscillator and hydrogenic cases, the nonlinear ex
pansions will be shown to be intimately related to the corre
sponding expansions for the linear problems, i.e., where 
p = O. In Sec. V we apply a "renormalization method" to the 
RS series in Eq. (1.6) to accurately calculate E(A.) for the 
entire infinite range of coupling constant values 0 <A. < 00. 

In addition, the eigenvalues of the infinite-field Hamilto
nians 

H~·q) = !p2 + (rP) r q ( 1.8) 

are calculated from the renormalized perturbation series. 

II. HYPERVIRIAL AND HELLMANN-FEYNMAN (HVHF) 
THEOREMS AND PERTURBATION THEORY AT LARGE 
ORDER 

In this section, we outline the essential aspects of the 
HVHF method as applied to N-space-dimensional eigenval
ue equations of the form 

(2.1 ) 

where Tis the kinetic energy operator and V = VCr) is the 
spherically symmetric potential energy operator. Since the 
method is relatively well-known and has been applied by 
many researchers, the following description is brief. The 
reader is referred to a new monograph on the subject by 
Fernandez and Castro. 16 The comprehensive review article 
by Marc and McMillan 17 is also recommended for a discus
sion of the viral theorem and its applications in both classical 
and quantum mechanics. 

The case of radial potentials V = V( r) represents a rela
tively simple set of eigenvalue problems. A separation-of
variables approach, i.e., assuming t/l(r:) = R(r) Yen), fac
tors out the angular n dependence in terms of 
N-dimensional spherical harmonics. The result is the radial 
eigenvalue equation 18 
A A2 2.2 HRn' (r) = [~Pr + L 12r ]Rnl (r) = EnRn, (r) , (2.2) 

where the operator 

p; = - [D 2 + (N -1)lr)D] 
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is the square of th~ radial momentum operator in N-dimen
sional space, with D = d 1 dr. The indices nand / represent the 
radial and (one of the) angular momentum quantum 
numbers, respectively. The scalar L 2 = /(l + N - 2) repre
sents the eigenvalue of the sguare of the N-dimensional an
gular momentum operator L 2. 

A 

Now, given any linear operator 0, the following expec-
A A. AA AA. 

tation values vanish ( [A,B] =AB - BA): 

([D,H])= J t/l*(r:)[D,H]t/l(r:) dr:=O, (2.3) 

~r all eigenstates t/l" of H, by virtue of the self-adjointness of 
H. The wave function t/l is always assumed to be normalized 
to unity. If we choose D = ykD and evaluate explicitly the 
commutator in Eq. (2.3), a set of recursion relations involv
ing the expectation values, (yk) =St/lykt/l dr:, are obtained. 
These equations are known as the hyperviria/ relations. 19 In 
order to evaluate the commutators, we begin with the follow
ing relations, which are easily derived from Eq. (2.2): 

[D,H] = (DV) + (N - 1)/2r)D - L 2/r , (2.4) 

[yk,H] =kyk-ID+~k(k+N-2)yk-2, (2.5) 

where (DV) =dV Idr. 
The operator identity [ykD,H] = yk [D,H ] 

+ [yk,H] D is now used to rewrite the commutator in Eq. 
(2.3). Any appearance of D and D 2 is then eliminated with 
the use of Eqs. (2.4) and (2.5). Taking expectation values 
with respect to the eigenstate t/ln yields the following hyper
virial relations for an arbitrary radial potential V( r): 

2kE(rk
-

l
) 

= (yk(DV) +2k(rk
-

1V) + (k-1)L 2 (yk-3) 

-~(k+N-3)[k(k-N) +N-l](yk-3), 

k = ... , - 2, - 1,0,1,2,... . (2.6) 

The case k = 1 corresponds to the quantum mechanical vir
ial theorem. 20 Since V( r) will generally be a sum of powers of 
r, Eq. (2.6) will imply a recurrence relation between expec
tation values (yk). Moreover, for perturbation problems, 
V( r) will include the coupling constant A.. The essence of the 
HVHF perturbative method is to assume the following ex
pansions for a given state in question: 

00 

E = L E (n)A. n, (2.7) 
n=O 

00 

(yk) = L Cin)A.". (2.8) 
n=O 

It is assumed that the unperturbed energy E(O) is known. 
Also, the normalization condition (rO) = 1 is imposed, im
plying that 

(2.9) 

Substitution of these expansions into Eq. (2.6) and col
lection of like powers of A. n yield a difference equation in the 
coefficients C ~") and E (k). An application of the Hellmann
Feynmann theorem,21 

(2.10) 

defines the relation between theE (k) and the C ~j). General-
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ly, the C ~ j) array is calculated "columnwise," starting from 
the n = 0 (unperturbed) column, whose elements are com
puted recursively. The triangular nature of this computation 
will be seen in the examples that follow. 

In traditional "textbook" presentations of Rayleigh
Schrooinger perturbation theory, little attention is paid to 
questions concerning the nature ofthe expansions obtained. 
Usually, it is naively assumed that for sufficiently smallA. the 
series converges. Of course, these questions were addressed 
many years ag022 and have continued to receive attention. 
Many eigenvalue expansions encountered in nonrelativistic 
quantum mechanics are divergent, yet asymptotic to E(..t) 
on some sector in the complex ..t plane. Their large-order 
behavior is typically given by 

E(n)_(_l)n+IAr(mn+a)b n, n-+oo, (2.11) 

whereA, B, a, and m are constants, with m = 1,2,3, .... Also, 
E(..t) is usually analytic in an appropriate sector ofthe com
plex..t plane, which includes the real..t line. This ensures the 
existence of the asymptotic expansion in Eq. (2.10) within 
the sector.23 In many cases, the above properties can be used 
to establish the Borel summability24,25 of perturbation series 
to E(..t) on some suitable sector of the complex ..t plane 
which includes the positive real line. 

Since we have been motivated in the past by the intimate 
relationship between continued fractions (CF) and RSPT,26 
this paper also considers the CF representations of the ex
pansion given in Eqs. (2.7) and (2.8). These representations 
assume the form 

E(..t) =E(O) +..tC(..t) , 

where 

C(z) =~ c~ c~ .... 
1+ 1+ 1+ 

(2.12) 

(2.13) 

The reader is referred to Refs. 27 and 28 for comprehensive 
treatments of the analytic theory of continued fractions. The 
properties of continued fractions relevant to RSPT are given 
in Ref. 26. 

The RS eigenvalue expansions for many standard per
turbation problems, such as anharmonic oscillators, are neg
ative Stieltjes for n> 1.7 This implies that C(z) in Eq. (2.13) 
is an S fraction, i.e., all coefficients C n are positive. Moreover, 
when the Stieltjes coefficients behave asymptotically as in 
Eq. (2.11), then26 

Cn = O(nm) , as n-+ 00 • 

In particular, when m = 1, then 

Cn -~bn, as n-+ 00 • 

(2.14 ) 

(2.15 ) 

When m<2, Carleman's condition28 is satisfied, which is suf
ficient to guarantee Pade summability of the RS series. 

The convergents of C(z), denoted Wn (z), are obtained 
by truncating C(z), i.e., setting cn + I = O. They are rational 
functions of z. The convergents W 2N (Z) and W 2N + I (z) cor
respond, respectively, to the [N - I,N] and [N,N] Pade ap
proximants29 to the series being represented. If the series is a 
Stieltjes series,28 then the sequences {W2N (z)} and 
{W2N + I (z)}, N = 0,1,2, ... , provide, respectively, lower and 
upper bounds to E(z). If the series is Pade summable (corre-
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sponding to determinacy of the moment problem), then 
these sequences converge to E(z) in the limit N -+ 00. The 
numerical calculations displayed in this report have used 
only continued fractions to "sum" the perturbation series. 

III. SPECIFIC APPLICATION TO NONLINEAR 
OSCILLATORS 

In this section, we examine the perturbation expansions 
associated with the one-dimensional oscillators 

A 1 d 2 1 H(p,q) = ___ +_X2+..t(X2P)X2q (3.1) 
2 dX2 2 ' 

with unperturbed energies E}?) = K + ~, K = 0,1,2, .... The 
hypervirial relations in Eq. (2.6) become 

(2k + I)E (rk) 

= (k+ 1) (X2k + 2) +..t(q+2k+ 1) (X2(k+ q»(rP) 

-lk(2k+ 1)(2k-1)(x2k - 2), 

k = 0,1,2,... . (3.2) 

Since expectation values of odd powers of x vanish, we let 
co 

(X2k ) = I C l,n)..t n . 
n=O 

The HF theorem implies that 

dE = (x2q) ...!!:.....- [..t (x2p )] . 
d..t d..t 

(3.3) 

(3.4) 

Equations (3.2)-(3.4) then yield the following recurrence 
relations for the C l,n) and the E (n): 

n 

kCl,n) = (2k-l) IE(j)Ct~/) 
j=O 

n-I 

- (q+2k-l) '" C(j)c(n-I-j) 
""" p q+k-I j=O 

+ l(k - 1)(2k - 1)(2k - 3)Cl,"!.2 , 
(3.5) 

E(n+1) =_1_ ± (j+ I)C~j)c~n-j). (3.6) 
n + 1 j=O 

In order to determine E (n + 1), one calculates the columns 
CV), where j=O,I, ... ,n, and k= 1,2, ... ,max(p,q) 
+ (n - j)q. Note that the entries C 1,0) are the same for all 
perturbed oscillator problems, representing the unperturbed 
expectation values (X2k ) (0) associated with the harmonic 
oscillator eigenfunctions. These expectation values are func
tions of the unperturbed eigenvalue E }?). The first five en
tries are given for reference in Table I. The C ~ j) table and the 
RS coefficients E (n) may be calculated in algebraic or in 
rational number form using a symbolic manipulation algo
rithm (the MAPLE language being developed at Waterloo30 

has been used for these purposes), or in floating-point form. 
Since the C kn

) will generally grow rapidly, especially as q in 
Eq. (3.1) increases, it may be necessary to avoid exponential 
overflow in floating-point calculations by scaling the coeffi
cients. For example, define Dkn)=Ckn)sk+n, where 
0< s < 1 is a scaling factor, conveniently some power of 10. 
Then rewrite the recursion relations (3.5) and (3.6) in 
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TABLE I. Expectation values (x k), k = 0,1, ... ,5, of the unperturbed har
monic oscillator eigenstates, expressed in terms of the unperturbed eigen
valueE ~~l) = K + !. These entries define the first column of the C ~") table in 
Eq. (3.5). 

k 

o 

t=E':) =K +! 

2 ~ t 2 + ~ 

3 ~t(4t2+5) 

4 >;t 4 +W t2 +ffi 

5 ¥t5+Wt3+~t 

terms of the Din). In this way, a set of scaled perturbation 
coefficients E (n) = sn E (n) is obtained. 

A. Nonlinear harmonic oscillators (q= 1) 

The Hamiltonians 

if = - ~ ~ + ~ x2 + A (x2p ) x 2 
2 dx2 2 

(3.7) 

could be considered as describing harmonic oscillators with 
force constants directly proportional to mean values of pow
ers of the vibrational amplitudes. Since the eigenvalues of the 
oscillators may be found exactly as roots of polynomials, 
they serve as a good testing ground for approximation meth
ods. The special case p = q = 1 has been used by Cios
lowski3I to demonstrate a method of connected moments, 
and by Handy32 for another method of moments. 

The quantum mechanical virial theorem [k = 0 in Eq. 
(3.2) 1 states that for the harmonic oscillator (i.e., ..1,= 0) in 
Eq. (3.7), (x2) =E=Ek?),K=0,1,2, .... If the eigenvalue 
equation associated with (3.7) is scaled as x-+a I/2x, aeR, 
then 

[ -~~+~a2(1 + Ua p(x2P»X2]t/J = aEt/J. (3.8) 
2 dx2 2 

Choosing a so that 

a 2(1 + Ua P(x2p» = 1 , (3.9) 

we have (x2
) = aE = E k?). (When a = 1, then E = E k?), 

our unperturbed state.) Equation (3.9) may be rewritten as 

EP+2_ (Ek?»2EP-U(Ek?»P+2(X2P ) =0. (3.10) 

Since the scaled Hamiltonian in (3.8) is a harmonic oscilla
tor, (x2p) in (3.10) is a function of Ek?). It has been given 
explicitly in Table I for p = 0,1, ... ,5. The root of (3.10), 
which is a continuation of the unperturbed energy E k?) for 
A #0, is the desired eigenvalue E(A) of (3.7). 

The RS expansions for E(A) could be obtained either 
directly from the polynomial equations (3.10) or by the 
HVHF method. The radius of convergence of each expan
sion, to be denoted as Rp (possibly dependent upon the 
quantum number K), will be the distance from A = 0 to the 
nearest branch point singularities of (3.10), which will cor-
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respond to the multiple roots. The Rp are easily determined 
in closed form for p = 0,1,2. We summarize results below, 
presenting the first few terms of each RS expansion for 
E (A), its A radius of convergence, and its continued fraction 
representation. 

(i) p=O: The expansion is trivial here since E(A) 
= (1 + U)I/2Ek?\ Rp =~. We have 

RSPT: EK(A) 

= E k?) [1 + A - ~ 2 + ~ 3 - iA 4 + 0- 5 - ... ] , 

E (0)..1, 1 A 1 A 1 A 
CF: E (A) =E(O) +_K_....L.:........L.:........L.:.... .... 

K K 1+ 1+ 1+ 1+ 
(ii)p=l:From (3.1O),Rp = (3v1Ek?»-I. We have 

RSPT: EK(A) =Ef»[1 +f3-U32 + 4/P 

-1Sff34+48f35- ... ], 

o E k?) f3 ~ f3 l f3 ~ f3 Wi f3 
CF:E (A)=E()+---------- ... , 

K K 1+ 1+ 1+ 1+ 1+ 
where f3 = AE k?). 

(iii)p=2:Rp = [8(x4)(0)]-I. We have 

RSPT: EK(A) =Ef»[1 +g-~.f+¥~ 

_~g4+¥~_ ... ], 

E (O)g 5 g 17 g 146 g H §~~ g CF: E (A)=E(O)+_K __ ~_~ _____ ... , 
K K 1+ 1+ 1+ 1+ 1+ 

whereg=A (x4)(0) =..1, [~(E}?»2+n. 
In all cases, the continued fractions are S fractions. Nu

merical asymptotic analysis of the coefficients shows that 
Cn -+ (4Rp) -I. This behavior is consistent with Van Vleck's 
theorem (see Ref. 33, p. 138): Let C(z) beanS fraction such 
that limn _ oo Cn = a#O, aeC. Then the continued fraction 
C(z) converges to a function j(z) that is meromorphic (or 
identically infinite) in the cut complex plane 
Co == {z: I arg (az + 1) I < 1T} (complex z plane with branch 
cut extending outward from z = a toward z = 00 on the line 
which is an extension of the line segment connecting z = a 
and z = 0 in the plane). The behavior of the C n suggests that 
E(A) is at least meromorphic in the complex A plane with 
branch cut on ( - 00, - Rp). 

B. Quartic anharmonic oscillators (q= 2) 

We now focus attention on the Hamiltonians 

and relate their eigenvalue expansions with those of the cor
responding "linear" Bender-Wu (BW) oscillators4 (with 
different normalization), where p = 0: 

(3.12) 

The BW expansions associated with Eq. (3.12) will be de
noted 

00 

EK(A) = L Ai!)A n
, (3.13 ) 

n=O 
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00 

(X2k ) (A) = L a~n)A n . (3.14 ) 
n=O 

The first three BW coefficients will be useful in this sec
tion: 

Ai?) = E i?) = K + !, A iP = H 4(E i?»2 + 1) , 
AjP= -iDE i?)[68(Ei?»2+67]. (3.15) 

The large-order behavior of the A ~) was first determined in 
Refs. 4 and 5 using WKB techniques [the RS series in Eq. 
(3.13) coincides with that of the original BW anharmonic 
oscillators] : 

A ~)- ( - l)n+ IDKr(n +K + P3n[1 + O(lIn)] , 

(3.16 ) 

where 

DK = (12K IK!)(6/r) 1/2. ( 3.17) 

The series is Borel summable to E(A) over the complex 
plane with cut on ( - 00, - B) for some B > 0.9 The coeffi
cientsA ~) are negative Stieltjes for n> 1, and the RS series is 
Pade summable to E(A) on compact subsets of the cut plane 
largA I <'IT, the first Riemann sheetofE(A).8 The continued 
fraction representation of the RS series is thus an S fraction, 
and its coefficients behave asymptotically as26 

(3.18 ) 

The hypervirial equations of (3.2) for the BW oscillator 
become 

(2k + I)E (X2k) 

= (k+ 1) (X2k+2) +A(2k+3)(X2k +4 ) 

- !k(2k + 1 )(2k - 1) (X2k - 2) , 

k = 0,1,2,... . (3.19) 

From the Hellmann-Feynmann theorem, dE IdA = (x4
), 

we have the result 

ain) - ( - 1)nDKr(n + K + ~)3n+ I, n ..... 00 • (3.20) 

By setting k = 0 in Eq. (3.19) we also find that 

a~n)-(-1)nDKr(n+K+~)3n+1, n ..... oo. (3.21) 

From these results, and from a repeated application of the 
difference equation for the C ~ j) associated with Eq. (3.19), 
we arrive at the following general result for the large-order 
behavior of the expansion coefficients in (3.14): 

akn)-( -1)nBkDKr(n+K+!+k)3n+l, n ..... oo, 

(3.22) 

whereB I =B2 = 1, and 

B -rrk 
(j-l) 

k - , k>3. 
j=3 (2j - 1) 

(3.23) 

This formula has also been verified by numerical asymptotic 
analysis of the akn

), for k = 1,2, ... ,5. The analyticity of E(A) 
along with the recursion relation (3.19) ensures analyticity 
of(x2k )(A),k= 1,2,3, ... , on the cut plane, largA I <'IT. The 
large-order behavior of the ak") in (3.22) establishes Borel 
summability of the expansions in (3.14) to (X2k ) (A) on a 
strip which contains the real A line. 
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The continued fraction representations of the (X2k) se
ries, having the form 

C Ck ACk3 A 
(X2k )(A)=C (A)=_k_1 _2 ___ ... , (3.24) 

k 1+1+1+ 

have also been computed to order n = 70 for k = 1,2'00.,5. In 
all cases, the C k (A) are observed to be S fractions. Numeri
cal asymptotic analysis indicates that 

Ckn-~n+O(l), n ..... oo. (3.25) 

On the basis of this numerical evidence, we conjecture the 
Stieltjes nature of the (X2k) expansions in (3.14). The n! 
growth of the coefficients akn

) for k> 1 suggests the Pade 
summability of the series over compact subsets of the cut 
plane I arg A I < 'IT, in accordance with Carleman's condi
tion.28 

The properties of the BW oscillator expansions will now 
be useful for an understanding of the nonlinear problems in 
Eq. (3.11). For notational convenience, indices referring to 
p and q as well as to the quantum number K will be omitted 
unless there may be an ambiguity. The nonlinear problems 
may be considered to define a new coupling constant {3, 

00 

{3 = A (x2p
) = L C ~n) A n + I • (3.26 ) 

n=O 

To lowest order inA, {3 - C ~O) A, so that we would expect the 
geometricfactor3k inEqs. (3.15) and (3.22) to be replaced 
by (3C~O»k. This will indeed be verified below. A formal 
relationship between the "nonlinear" RS coefficients E (n) 

and the BW coefficients A (n) may be obtained by equating 
powers of A n in the relation 

00 00 

E(A) = L E(n)A = LA (j) {3j. (3.27) 
n=O j=O 

Ifwe set gn =C ~n), then the first few relations become 

E(O) = A (0), E(I) = A (I)go, 

E(2) =A (I)gl +A (2)io , 
E (3) = A (I)g2 + 2A (2)go g I + A (3)g6 • 

(3.28) 

The general formula for E (n), n> 1, in (3.28) may be written 
as 

E(n) = [ n (n - 1) A (n-k) ~I)k] 
A (n)g(n) L k A (n) o k=O 0 

A (I) gn _ I 2A (2) gn _ 2 

+---+----+ (3.29) A (n) g:; A (n) g:;-I 

The pattern exhibited in these equations indicates that the 
asymptotic behavior of the E (n) will be dependent upon 
gn = C~") as well as theA (n). From Eq. (3.16), the partial 
sum in square brackets becomes, in the limit n ..... 00 , 

exp( - gil (3io »). It now remains to determine the asymp
totics implied by the remaining terms, which will be done 
below for the particular cases p = 1,2. Keeping in mind the 
behavior of the "linear" expectation series coefficients akn ) in 
Eq. (3.22) and the remarks following Eq. (3.26), two as
sumptions on the asymptotic behavior of the gn will be made 
in the analysis to follow: 
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(3.30a) 

(3.30b) 

the latter implying an n! growth of the form (3.26), replac
ing the geometric term 3 by 3go' 

Case ]:p = l,gn =Cln). First, rewrite (3.30) as 

~[1 -A (1) gn-I ] _e-g,/(3~) , (3.31) 
A (n)tc; E (n) 

where we have used (3.29) to ignore the contributions of the 
remaining terms in (3.30). The relevant parameters are 
go = E(O)andgl = - 2E(0)A (I). It now remains to determine 
the asymptotic behavior of the second term in square brack
ets. From the hypervirial relation [k = 0 in Eq. (3.2)] 

E = (x2) + 3A (X2 )(X4 ) , (3.32) 

it follows that 

E(n) 

Cln-I) 

c(n) c(n-I) 
__ I_+3C(I)_2 __ 
Cln-I) I Cln-I) 

+ 3 2 + 3C iO) + 0 - . 
c(n-2) (1) 
Cln-I) n 

From Eq. (3.6) we also have 

E(n) C(O)c(n-l) (1) 
___ = I 2 +CiO)+O _ . 
C In - I) nC In - I) n 

(3.33 ) 

(3.34) 

From the two assumptions in Eq. (3.30), the first two terms 
on the rhs of (3.33) behave as O(n). Equating (3.33) and 
(3.34), and using (3.29), reveals that 

Cin- I)/nC\n-I)_I, as n-oo. (3.35 ) 

From Eq. (3.34), and the fact that C iO) = A (I), 

E(n)/Cln-l) =A (0) +A (I), (3.36) 

which, when substituted into (3.31), gives 

E kn) - [1 +A kl)IA ~)] 

Xexp[2Ai.!)/3A~)](A~»nA~), as n-oo. 

( 3.37) 

This formula has been verified by numerical asymptotic 
analysis of the expansions corresponding to K = 0,1, ... ,6. 

Case 2:p = 2, gn =Cin). From Eq. (3.6), we have 

(3.38) 

so that 

--=go+ go-_I -+0 - . E (n) [g ] 1 ( 1 ) 
gn-I 3go n n 

(3.39) 

Also, 

E(n) E(n) gn-I E(n) 
--=----=-- [-3ngo+0(1)]. 
gn-2 gn-I gn-2 gn-I 

(3.40) 

Equation (3.29) is then rewritten as 
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~[I_A(I)gn-1 _2A2 gn-2]_e-g'/(3~), 
A (n)tc; E (n) go E (n) 

n- 00. (3.41) 

[Note the difference between (3.41) and (3.31).] For this 
case we compute go = A (I) and gl = 2A (2)A (I), so that the 
term in square brackets reducestoA (I)/(gon) = lin. The net 
result is 

E~)-nexp[ -2A¥)/3Ai.!)](Akl»nA~), n-oo, 

(3.42) 

which we may write as 

E ~) - ( - 1) n + 1 exp [ - 2A ¥) 13A i.!) ] 

XDKr(n+K+~)(3Ai.!»n, n-oo. (3.43 ) 

A final note must be made concerning the relations in 
(3.37) and (3.43). The exponential factors occurring in 
these relations can easily be obtained by substituting the rel
evant form of Eq. (3.26) into the Bender-Wu formula for 
the asymptotics ofIm E(A), A-O- [cf. Eq. (A8), p. 1635 
of Ref. 4(b)]. However, this naive treatment ignores the 
contribution ofterms such asgn _I in Eq. (3.29) or (3.31). 

IV. APPLICATIONS TO RADIAL HYDROGENIC 
PROBLEMS 

The application of the HVHF and renormalization 
methods to the (N-dimensional) hydrogenic problems 

A 1 L2 Z 
H(p,q) = _p~2 + - - - +A (r P ) ~ (4.1) 

2 r 2r r 

is quite straightforward. Our treatment will be restricted to 
three-dimensional problems. The cases p = 0 correspond to 
generalized charmonium problems.34 After a factorization 
of angular terms, the hypervirial relations of Eq. (2.6) be
come 

2(k + 1)E (r") 

= - (2k+ I)Z(r"-I) + (2k+q+2)A (r P ) (r"H) 

+ k [L(L + 1) -l(k + l)(k - 1)] (r" - 2) , 

kEZ, (4.2) 

where E = E NLM (A) represents the eigenvalue arising from 
the perturbation of the bound state hydrogenic eigenfunc
tion ¢':iM with eigenvalue E ':iM = - Z 21 (2N 2) [N, L, 
and M will denote the usual hydrogenic quantum numbers, 
so L (L + 1) replaces the scalar L 2 in Eq. (2.3)]. When the 
expansions 

00 

(rk) = L Ckn)A n (4.3 ) 
n=O 

are assumed, the difference equations for the C kn
) and E (n) 

become 

2(k + 1)E(O)Ckn) 
n 

= -2(k+ 1) L E(j)Ckn- j) - (2k+ 1)ZCt!.1 
j=1 

n-I 
+(2k+l+2) L C~j)c~n+-kl-j) 

j= 1 

+k[L(L+l)-1(k+l)(k-l)]Ckn:. 2 , (4.4) 
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E(n+I)=_I_ ± (J+l)C~j)c~n-j). (4.5) 
n + 1 j=O 

The calculation of the C kn
) array proceeds columnwise as 

for the oscillator problems, with the exception that the row 
corresponding to k = - I must now be included. At the 
beginning of each order of calculation n, we use the formula 
[k=Oin (4.2)] 

e~)1 = ~ [ - 2E (n) + (q + 2) nil e~j)e~n - I-j)] . 
Z j=O 

We shall consider in particular the Hamiltonians (Z = 1) 

A 1 A2 L 2 1 
H = TPr + 2r - -;:- +A (rP)r, P = 0,1,2, (4.6) 

and relate their perturbation expansions with those of the 
"charmonium" problem,34 

(4.7) 

The expansions associated with the "linear" eigenvalue 
problem (4.7) will be denoted as 

'" 
ENLM(A) = I A J:iMA n, (4.8) 

n=O 

'" (1"') (A) = I akn) An, k> - 1 . (4.9) 
n=O 

The first three coefficients of the eigenvalue expansion 
are given by 

A ~iM = - l/2N 2 , 

A JJiM = ~2 - V-(L + 1) , (4.10) 

A iiiM = - ~N6 + j[L(L + 1) ]2N 2 - iN4 . 
The large-order behavior of the A ~1M is given by35 

A J:iM- ( - 1)n+ IDNLMr(n + 2N) nN3)", n- 00 , 

(4.11 ) 
where 

yN22N- le- 3N+ L(L+ 1)/N 
D ------------NLM - 1TN 3(N + L)!(N - L - 1)! 

( 4.12) 

The RS coefficients are negative Stieltjes for n> 1, and the 
series is Pade summable toE(A ) on the cut plane larg A I < 1T. 
The coefficients of the S fraction representation to E(A) be
have asymptotically as 

e _~N3n +KU) i= {I, 
n 4 ' 2, 

where 

n even, 

n odd, 

K(l) = ~N4 _ !N 3 , K(2) = ~N4 - AN 3 • 

(4.13) 

We now determine the asymptotic behavior of the ex
pansion coefficients akn

) in Eq. (4.9), in a manner similar to 
that used for the oscillator problems. The hypervirial equa
tions to be used for the linear charmonium problem are 

2(k+ I)E(I"') 

= -(2k+l)(I"'-I)+(2k+3)A(I"'+I) 

+ k [L(L + 1) - A(k + l)(k -1)](1"'-2), 

k> -1. (4.14) 
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From the Hellmann-Feynman theorem, dE/dA = (r), it 
follows that 

a~") - ( - 1)"DNLM r(n + N + 2)(lN3)n+ I, n- 00 • 

(4.15 ) 

This implies that, for k> 1, 

ak"+-/)/ak")-[2(k+ 1)/(2k+3)] E(O), n-oo. (4.16) 

Repeated application of this property leads to the following 
asymptotic formulas: 

akn) - ( - 1 ) "BkDNLMr(n + N + k + 1) (~N3)n + I, 

( 4.17) 

where BI = 1 and 

(
3 )k-I k 2(J+l) 

Bk = -N II . , 
4 j= I 2} + 3 

k>2. (4.18 ) 

This formula has been verified by numerical asymptotic 
analysis ofthe akn

) for k = 1,2, ... ,5. 
Analyticity of the functions (1"') (A), k> 1, in the cut 

plane I arg A I < 1T follows from the analyticity properties of 
E(A) and the recursion relation in (4.14). We also conjec
ture that their series expansions in (4.9) are Stieltjes. This is 
based on the numerical evidence that the continued fraction 
representations of (1"') having the same form as in Eq. 
(3.24) are S fractions. The coefficients Ck" have been com
puted accurately to order n = 70 for k = 1,2, ... ,5. In all 
cases, the generic asymptotic growth of Eq. (4.13) is ob
served. The n! growth of the akn

) satisfies Carleman's condi
tion which would imply Pade summability on compact sub
sets of the cut plane I arg A I < 1T. Convergence of [N - I,N] 
and [N,N] Padeapproximantsto (I"') fork = - 1,1,2 were 
first observed by Austin. 14 

The behavior of the series expansion for (r- I
) stands 

apart from those described above. By setting k = 0 in Eq. 
( 4.14) and comparing Eqs. (4.11) and (4.15), it follows 
that a~)1 - 3nE (n), or 

a~\ - ( - 1)n + 13DNLM r(n + N + 1 )(~3)n, n- 00 • 

( 4.19) 

Since a<.!.\ is positive, we consider CF representations of the 
form 

( 4.20) 

where C(A) has the usualform in Eq. (2.13). All CF repre
sentations are observed to be S fractions. Their coefficients 
behave asymptotically as in Eq. (4.13), in accordance with 
the large-order behavior in Eq. (4.19). 

The analysis of perturbation expansions for the nonlin
ear problems in (4.1) now proceeds as in Sec. III B. The 
nonlinear problems define the new coupling constant {3, 

'" '" {3 =A (r P ) = I c~n)A n+ 1= I gn A n+ I. (4.21) 
n=O n=O 

The formal relations ofEqs. (3.27) and (3.28) apply, and 
the assumptions similar to Eq. (3.30) of the oscillator prob
lems are made, with the following minor modification: 

lim (gn + I /ng") = - ego, (4.22) 
n_", 
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We shall now employ Eq. (3.29) and elucidate the 
asymptotics for the particular case p = 1. The relevant pa
rameters are go = A (1) and g I = 2A (1)A (2). This case is seen to 
be analogous to case 2 of Sec. III B. The net result is [cf. Eq. 
(3.42) ] 

E(n)_exp[ -gl/3~] nA (n)g~, n-+oo. (4.23) 

This may be written as 

E~1M- (- 1)n+ IDNLM exp[ - jA JiiM/A }JiM] 

xrcn + 2N + 1) [~N3A }JiM r, n-+ 00 • 

(4.24) 

V. RENORMALIZED RSPT AND EIGENVALUES OF 
INFINITE FIELD HAMILTONIANS 

An examination of the region of analyticity of eigenval
ues E (Ii) and the nature of their RS perturbation expansions 
can establish the theoretical summability of these expan
sions. From a practical aspect, however, RSPT, being a 
"low-field" expansion, can be relied upon to furnish accu
rate estimates of E(Ii) only for small values ofthe coupling 
constant Ii. Methods for accelerating the convergence of 
these summability methods may increase this region of Ii 
values by perhaps an order of magnitude. Recently/6 a "re
normalized" perturbation theory has been devised to permit 
accurate perturbative calculations of E (Ii) over an infinite 
range of Ii values. It has been applied successfully to the 
"linear" oscillator and hydrogenic problems and will now be 
applied to the nonlinear oscillator problems introduced 
above. The goal is to calculate (1) the eigenvalues E )t,q) (Ii ) 
of the Hamiltonians in Eq. (3.1) accurately over the entire 
real interval 0<1i < 00, and (2) the eigenvalues Ftq)(O) of 
the "infinite-field" Hamiltonians corresponding to the non
linear oscillators of above, i.e., 

H (p,q) = - ~ ~ + (X 2p )X2q • (5.1) 
00 2 dx2 

The technical discussions of this method of renormalization, 
presented in Ref. 30, are omitted. Again it is emphasized that 
only continued fractions were employed for the following 
numerical calculations. Pade summability is expected to 
break down for q> 2, however. An examination of other 
summability methods, including Borel, is currently in prog
ress. 

The eigenvalues F )t,q) (0) of (5.1) are significant for the 
following reason. A scaling x -+a

I/2
x, where 

a = Ii - lI(p + q + I), Ii> ° (representing a unitary transfor
mation), may be applied to the eigenvalue problems asso
ciated with (3,1) to give 

[Under this coordinate transformation, (x2p
) scales as a P, 

by its definition in Eq. ( 1.5).] This is, in fact, but the leading 
term in the infinite-field expansion 

=lill(p+q+ I) f F)f,q)(k)1i -2kl(p+q+ I), (5.3) 
k=O 
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which, for q>2, should be convergent for Iii I > R > 0.7 

We now outline a method to calculate the F)t,q)(O). 

First, construct the "renormalized" Schrodinger equation 
[dropping the (p,q) and K indices for notational conve
nience]: 

HR (/3)t/J 

so that the G (p.q) ( 1) correspond to the eigenvalues of H <:;,q) 

in (5.1). Now assume an RS perturbation expansion of the 
form 

00 

G(/3) = I G (n)1i n (5.5) 
n=O 

for each eigenstate. By scaling the coordinates in (5.4) as 
X-+'T'1/2X , where O<? = 1 - fl< 1, the eigenvalues of (5.4) 
and (3.1) are related as 

GK (fl) = (1 - fl) 1I2E (j3 /(1 - fl) (p + q+ 1)/2) . (5.6) 

This relation effectively defines a renormalization map 
R: fl -+ Ii which, restricted to the nonnegative real line, maps 
flE [0,1) onto liE [0, 00 ). By equating the series in ( 1.6) and 
(5.5) termwise, and using the general binomial expansion 

(1-fl)-a= f r(a+k) flk, 
k=O r(a)(k + 1) 

we find the relation 

(5.7) 

G (n) = ± r(k(p + q - 1 )/2 + n - ~) E (n) 

k=O r(k(p + q + 1)/2 - ~)r(n - k - 1) . 
(5.8) 

A similar type of renormalization and linear transformation 
( 5.8) occurs in the case of Wick -ordered perturbation series 
associated with simple field theories.7.37 The renormalized 
series coefficients G (n) could, in principle, be calculated 
from the E (k) by the above relation. Practically speaking, 
however, the HVHF method is easily applied to the pertur
bation problem in Eq. (5.4), requiring but a minor modifica
tion of the difference equations (3.5) and (3.6). An asymp
totic analysis ofEq. (5.8) reveals that G(n) = O(E(n» as 
n-+ 00. 

Again, we have not rigorously established the summabi
lity of the RS Ii series or the renormalized fl series for the 
nonlinear oscillator problems. In Ref. 36, it is shown, using a 
theorem of Sokal,38 that if the Ii series is Borel summable, 
then the fl series is Borel summable in [0,1]. 

In Table II are presented estimates of the eigenvalues 
F )t,q) (0) of the Hamiltonians H <:;.q) in Eq. (5.1) for 
p = 0,1,2, q = 2 (quartic anharmonic oscillators). These es
timates were obtained from the convergents W 49 ( 1) and 
W SO ( 1) to the continued fraction representation of the renor
malizedflseries in Eq. (5.5). A slight "trick" was employed 
here, as described in Ref. 36, so that the continued fractions 
were S fractions: for oscillator problems such as (4.4), the 
perturbation W(x) = (X2p )X2q 

- ! x 2 is not positive defi
nite, since W(x) <0 for x< 1. To overcome this difficulty, 
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TABLE II. Lower and upper bounds to the eigenvalues F<[-2)(0) of the infi
nite field Hamiltonian H (,,2) as defined in Eq. (5.1). The lower and upper 
bounds are obtained from the convergents wso( I) and w49( 1), respectively, 
of the continued fraction representation of the renormalized pseries in Eq. 
(5.5). The actual numerical entries are the lower bounds. Replacing the 
final n digits of the entry by the n digits in parentheses gives the upper 
bound. The entries in parentheses below the p = 0 row are numerical values 
calculated by Bell et al. 39 and Reid40 (scaled appropriately due to a different 
normalization). The estimate 0.489 05<Fp·2)(0) <0.489 07 has been ob
tained by Handy32 using a method of moments. 

K 
p 0 I 2 

o 0.66795(801) 2.39347(84) 4.6961(76) 
(0.667986) (2.393644) (4.696795) 

0.4890640(36) 2.200 9(28) 4.67(71 ) 

2 0.49464(5) 2.27(31) 4.9(5.7) 

3 0.5344(59) 2.35(79) 

we "shift" the perturbation up by an amount I::. = flg, g> 0, 
to guarantee that W(x) >0 for all x#O. We thus consider 
the modified series expansion 

00 

G(fl) = G(O) =flg + L G (n) fl n , (5.9) 
n=1 

where G (1) = G (1) + g, G (k) = G (k) for k~2. Typically, we 
have choseng = E(O). This choice is somewhat arbitrary, but 
it ensures that the minimum of W(x) is nonnegative. For the 
"linear" problems, where p = 0, we can calculate the mini
mum value of g that guarantees positivity of W(x). 36 In all 
cases, the CF representation is found to be an S fraction. The 
upper and lower bounds yielded by the convergents W 49 ( 1) 
and w50 ( 1), respectively, are given in Table II. The eigenval
ues F }.?,2) have been calculated accurately by Bell et al. 39 and 
Reid.40 These values are included in Table II for reference. 
(Because of a different scaling of the Hamiltonian, the eigen
values reported in these papers must be divided by the factor 
22/3.) Recently, Handy32 has independently obtained the ap-

proximate value 0.490 45<;Ff,I,2) <;0.490 47 using a method 
of moments. 

The renormalization relation in (5.6) may also be em
ployed to calculate the eigenvalues E jf,q) (A) over the entire 
range 0 <A < 00. We "invert" the scaling transformation 
X_'T.1/2X , r = 1 - fl, used to derive Eq. (5.6), to obtain 

E(,.1,) = 'T- 1G(1 - r) , (5.10) 

where l' is the root of the equation 

A-r"+q+I+ r -l=O, (5.11 ) 

which satisfies l' = 1 when A = 0, 1'-0 as ,.1,- 00. In fact, 
l' - A - lI(p + q + I) as ,.1,- 00. In order to calculate E jf,q) (A), 
we then (i) calculate the renormalized coefficients G jf,q)(k) 

by HVHF applied to Eq. (5.4); (ii) compute l' from Eq. 
(5.11) to a prescribed accuracy using the Newton-Raphson 
method; (iii) "sum" the fl series by using Borel, Pade, or 
other summability techniques; and (iv) computeE(,.1,) from 
(5,10). 

In Table III are presented the estimates of E 6P,q) (A) for 
q = 2, P = 0,1, a range of A values. The maximum error in 
these calculations is expected to be incurred in the high-field 
limit, i.e., fl = 1. Thus, for a given value of p, the errors in the 
estimates of E(,.1,) for 0 < 00 will be less than for those given 
in Table II. For A = 10 000, the values 
A - lI(p + 2 + I) E jf,2) (A) approximate the eigenvalues 
F jf,2)(O) of Table II quite well. The relative behavior of the 
ground state eigenvaluesE ~,q)(,.1,) for 0<;,.1,<;3, p = 0,oo.,4,is 
shown in Fig. 1. 

VI. CONCLUDING REMARKS 

The model Hamiltonians studied here are very simpli
fied versions of those used to model self-interacting systems. 
The large-order behavior of Rayleigh-Schr6dinger eigenval
ue expansions may be related to that of the associated linear 
eigenvalue problems. This is expected since the nonlinearity 
of these problems is quite "tame," manifesting itself as a 
modified coupling constant. The analysis was performed 

TABLE III. Estimates of ground-state eigenvalues E i,"2) (A) of one-dimensional quartic anharmonic oscillators in Eq. (3.11) for p = 0 ("linear" Bender
Wu case), 1,2, and 3. The entries represent the lower bound estimates afforded by the [24,25] (P) Pade approximant to the renormalized Pseries in Eq. 
(4.5), with p = I - rand rbeing the root ofEq. (4.10). Replacing the final n digits in each entry with the n digits in the accompanying parentheses gives 
the upper bound estimate yielded by the [24,24] (P) Pade. 

P 
A 0 2 3 

0.1 0.559146327183519(21) 0.529717430561641 0.536324651544448(9) 0.55671875180(6) 
0.5 0.696175816(25) 0.597374410 315(6) 0.600 6198959(61) 0.6272896(905) 
1.0 0.8037705(7) 0.6490584854(5) 0.644 39619(20) 0.670209(17) 
2.0 0.951567(9) 0.718266089(90) 0.69971864(72) 0.72169(73) 
3.0 1.060 263(9) 0.768002287(92) 0.73796956(74) 0.75609(16) 
4.0 1.14878(9) 0.80785182(3) 0.7679447(51) 0.7825(6) 
5.0 1.224578(94 ) 0.84153959(61 ) 0.7928970(5) 0.804 2(4) 

10.0 1.504 95(9) 0.96303100(6) 0.880525(7) 0.8788(91) 
20.0 1.86565(73 ) 1.1131251(3) 0.984887(91 ) 0.964 9(55) 
50.0 2.4996(8) 1.3635033(6) 1.152113(20) 1.0995(95) 

100.0 3.13126(47) 1.5996590(6) 1.30394(5) 1.2164(78) 
1000.0 6.6939(44) 2.780180(82) 2.00811(4) 1.7346(77) 

10000.0 14.397(8) 4.907511(5) 3.14556(62) 2.511(7) 
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FIG. 1. Ground-state eigenvalues E~P,2)(A,) of the generalized one-dimen
sional quartic anharmonic oscillators defined in Eq. (3.11). p = 0 ..... 4. 

only for a few specific cases. It is expected, however, that the 
pattern will appear in general. 

The Rayleigh-Schrodinger eigenvalue expansions asso
ciated with these radial Hamiltonians are easily calculated 
via the HVHF method. No wave functions need be calculat
ed, and the only input into the algorithm is the unperturbed 
energy of the eigenstate in question. For hydrogenic prob
lems, the unperturbed continuum states present difficulties 
for conventional perturbative treatments, which include the 
method of Surjan and Angyan.2 The HVHF method avoids 
these difficulties. Another method of bypassing these prob
lems is the reformulation of hydro genic eigenvalue equa
tions by means of a specific realization of the so ( 4,2) Lie 
algebra. 4 1-43 This method is certainly feasible for the hydro
genic problems discussed in Sec. IV. However, the reformu
lated equation is equivalent to a perturbation problem de
fined over a nonorthogonal basis set. As such, it would 
introduce some additional complications into the Surjan
Angyan formulas. 

Also, the methods employed here could be applied to 
more realistic and complicated situations, for example, non
radial perturbations where A and B in Eq. (1.3) represent 
the dipole moment operator. A so(4,2) Lie algebraic treat
ment of such problems would be quite straightforward, be
ing similar to the Zeeman and Stark effects which have al
ready been studied in this way.42.44 A HVHF approach 
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would involve a coupled system of equations, similar in basic 
form to that encountered in the Stark effect. 14 
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Comments on the paper "On the WKBJ approximation" [J. Math. Phys. 28, 556 
(1987)] 

Nanny Fr6man and Per Olof Fr6man 
Institute a/Theoretical Physics, University 0/ Uppsala, Thunbergsviigen 3, S-752 38 Uppsala, Sweden 

(Received 7 August 1987; accepted for publication 18 November 1987) 

Attention is drawn to the fact that the "standard form for the generalized WKBJ 
approximation" ofEl Sawi [J. Math. Phys. 28, 556 (1987)] already had been derived by N. 
Froman [Ark. Fys. 32, 541 (1966)]. 

The aim of this paper is to draw attention to the fact that 
the higher-order approximation, which is called "the stan
dard form (SF) for the generalized WKBJ approximation" 
in El Sawi's paper "On the WKBJ approximation,"1 was 
derived by N. Froman2 already in 1966. The improved form 
derived by El Sawi 1 is given by his Eq. (3.7) and corresponds 
to N. Froman's2 Eqs. (7a) and (7b). Considering the two 
lowest orders of approximation, El Sawi obtains his Eqs. 
(3.14), (3.13), and (2.8). Noting that the function T3 in his 
Eq. (2.8) can be written in the simpler form 

T = LX ~ 1-1/4!!.~ 1-1/4 dt 
3 a 2 dt 2 ' 

one can write his Eq. (3.13) as 

tP = LX (1 + ~ 1-3/4 ~ 1-1/4)pI2 dt. 
2 a 2 dt 2 

With this expression for tP2' El Sawi's Eq. (3.14) is seen to 
agree with the next lowest order of approximation in Ref. 2; 
see Eqs. (1), (7a)-(7c), (8c), (9a), and (9b) in that paper. 
The correction giving the next order of approximation is 
given by Eq. (9c) in Ref. 2. A recurrence formula for obtain
ing the approximation to any order directly is given by Eq. 
(8a) in Ref. 2, and on the basis of this formula Campbell3 

calculated explicit expressions for the ten lowest orders of 

approximation, the first three of which agreeing with those 
previously given by N. Froman.2 The great advantages of 
using the above approximation instead of the WKBJ approx
imation in higher orders was documented in a paper by 
Dammert and P. O. Froman.4 

A more general approximation, now called phase-inte
gral approximation, generated from an a priori unspecified 
base function (and containing the approximation in Ref. 2 
and hence also that in Ref. 1, as a special case) was derived 
by N. Froman and P. O. Froman.5

•
6 Combined with the rig

orous method for solving connection problems published in 
Ref. 7, this approximation forms part of the phase-integral 
method developed by the present authors. 

1M. EI Sawi, J. Math. Phys. 28, 556 (1987). 
2N. Froman, Ark. Fys. 32,541 (1966). 
3J. A. Campbell, J. Comput. Phys. 10, 308 (1972). 
40. Dammert and P. O. Froman, J. Math. Phys. 21,1683 (1980). 
5N. Froman and P. O. Froman, Ann. Phys. (NY) 83, 103 (1974). 
6N. Froman and P. O. Froman, Nuovo Cimento B 20,121 (1974). 
7N. Froman and P. O. Froman, JWKB Approximation, Contributions to the 
Theory (North-Holland, Amsterdam, 1965)(Russian translation: MIR, 
Moscow, 1967). 
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Canonical transformations in quantum mechanics: A canonically invariant 
path integral 

A. Y. Shiekh 
Blackett Laboratory, Imperial Col/ege, London SW7 2BZ, England and the International Centre/or 
Theoretical Physics, Miramare, Trieste, Italy 

(Received 3 April 1987; accepted for publication 16 September 1987) 

A particular form of the path integral is presented that allows the implementation of general 
canonical transformations in quantum mechanics, as well as a consistent quantization 
procedure. 

I. PATH INTEGRAL APPROACH TO QUANTUM 
MECHANICS 

Classical mechanics is a description of nature using 
commuting variables that is well formulated by the Hamil
ton least action principle. But classical mechanics is not a 
complete model of nature, leaving several features unex
plained. Some of the discrepancies in the classical theory 
have been overcome in the quantum generalization. 

Dirac l
•
2 proposed how a quantum theory might be in

duced from the classical theory. He postulated that the clas
sical commuting variables become noncommuting operators 
and suggested how the quantum dynamics be obtained from 
the classical Hamilton equations of motion. Since the quan
tum theory is the more fundamental theory (the classical 
predictions following in the Ii-O limit), it might be argued 
that this should be the starting point. Dirac's scheme, how
ever, has the advantage of starting from a well understood 
theory. In this scheme, to each classical system correspond 
many quantum generalizations (each yielding the same clas
sical predictions for Ii - 0). Dirac's method, however, is am
biguous3 in not generating one unique member of the quan
tum generalizations. Some further specification (such as 
normal ordering) is required to completely specify the quan
tum theory. This might not seem a disadvantage; but due to 
this ambiguity, classical techniques such as the use of ca
nonical transformations cannot be used to directly induce a 
quantum counterpart. This results in the loss of powerful 
techniques such as the Hamilton-Jacobi approach so often 
employed in classical mechanics.4 

This work is a preliminary investigation of the alterna
tive path integral quantization technique of Feynman,5.6 in 
an attempt to overcome some of these problems. The path 
integral technique, although equivalent, differs significantly 
from the usual operator formulation of quantum mechanics, 
in that it employs commuting (or badly called "classical") 
variables. Although these variables commute, the theory be
ing equivalent to the operator formalism must contain "op
erator ordering" within its structure. Understanding just 
how this occurs is crucial in the use of the path integral and is 
reviewed below. 

II. DERIVING THE PATH INTEGRA17 

Although no formalism of quantum mechanics is more 
fundamental than any other, each is supposed to be equiva
lent and so one should be derivable from another. Assuming 

a knowledge of traditional quantum mechanics one may de
duce the path integral formalism. Starting from the position 
to position amplitude for Heisenberg eigenstates, 

(qb,tb Iqa,ta )· 

(This may be generalized to the transition between any two 
states.) Inserting position resolutions of unity; 

1 = J: '" dqlq)(ql 

leads to 

N 

X II (q(k),k Iq(k - l),k - 1). 
k~1 

Recall that for Heisenberg eigenstates 

Iq,t + at) = exp[ (i/Ii)H(q,p,t + at /2)at ] Iq,t), 

H being a Hermitian operator. The use of midpoint time is 
crucial for this evolution to be accurate to order at, as it 
must. So 

(qb,tblqa,ta ) 

J
'" N-I N 

= 1~"!' _ "," . XII dq(j) JI (q(k)1 

xexp[ - ~ H(q,P,k- ~)at ]Iq(k-I), 

where 

at=. (tb - ta )/N. 

Proceeding by expanding the exponential leads to 

(qb,tb Iqa,ta) 

J'" N-I N 

= 1~"!' _ '" ... XII dq(j) JI (q(k) I 

X f (- (i/Ii)H(q,p,k - !)at )m Iq(k - I). 
m~O m! 

Further inserting momentum resolutions of unity 

For the m = 1 case this may be done in one of two ways, 
leading to alternative integrands, namely, 
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(q(k) I( - (i/li)H(q,p,k - !)at )IP(k» (p(k) Iq(k - 1» 

or 
A 

(q(k) lP(k» (p(k) I( - (i11l)H(q,p,k - !)at )Iq(k - 1» 

which equals 

(q(k) lP(k» (p(k) Iq(k - 1) 

X ( - (i11l)H(q(k - 1 ),p(k),k - !)at), 

where 
A 

H(q,p,t) == (pIH(q,p,t) Iq)/( plq)· 

To evaluate this one should commute factors in the 
Hamiltonian operator (using [q,p] = ilil), such that q oper
ators are shifted to the right and can be applied to the posi
tion eigenstates, while p operators (now on the left) apply to 
their eigenstates. This sifting induces additional terms that 
carry the operator ordering information for the path inte
gral. 

The m = 2 case has three such alternatives; namely, 

!(q(k) I( - (i/II)H(q,p,k - Dat )2Ip(k» 

x(p(k)lq(k-1) 

X!(q(k) I( - (i11l)H(q,p,k - !)at )Ip(k» 

X (p(k) I( - (i11l)H(q,p,k - Dat )Iq(k - 1» 

X !(q(k) Ip(k» 
A 

X (p(k)l( - (i11l)H(q,p,k - !)at)2Iq(k - 1). 

This implies (using the m = 1 results) that these are 
each, to order at, equivalent to 

!(q(k) Ip(k» (p(k) Iq(k - 1» 

X ( - (i11l)H(q(k - 1),p(k),k - !)at)2. 

This result generalizes, by induction, to finite m, leading 
to 

(qb,tb Iqa,ta) 

= !~"!, J~ '" .. J~ '" ... X( dq(j) ill dp(i) 

N 

X rr (q(k) lP(k» (p(k) Iq(k - 1) 
k=1 

xexp[ - (i11l)H(q(k - 1),p(k),k - !)at], 

where 
A 

H(q,p,t) == (pIH(q,p,t) Iq)/(plq)· 

Now recall 

Substituting these results leads to 

(qb,tb Iqa ,ta) 

= lim . . . . .. rr dq(j) rr ~ f '" f'" N - I N d (.) 

N_", _'" _'" j=1 ;=1 2trfz 

xexp[l.-. f {p(k)(q(k) - q(k - 1)) 
II k= I 

- H(q(k - 1),p(k),k - !)at} J, 
at = (tb - ta )IN, q(O) = qa' q(N) = qb 

[the phase space (Hamilton) path integral], where 

A 

H(q,p,t) = (pIH(q,p,t)lq)/(plq), 

which may beformally written as 

(qb,tb Iqa,ta) = J J Dq Dp exp[ ~ S(q,p) J ' 

q(ta) = qa' q(tb) = qb' 

S(q,p) = fb dt(pq - H(q,p,t»). 

This is formal due to the fact that this expression depends 
upon which finite difference scheme is adopted in the discre
tization. The reasoning behind this will become clear later. 

Why this object is referred to as a "path integral" or 
"sum over histories" follows from considering the points 
q(j), p(j) connected by lines. Then we have a broken line 
path from qa to qb; the sum in the exponent being the action 
of classical mechanics. But unlike classical mechanics the 
least action path is not, a priori, preferred over any other. 
Each path is equally considered and carries a phase weight
ing. The amplitude contribution from each and every path is 
then summed to yield the total end amplitUde. A heuristic 
but very appealing argument for the classical limit is that 
paths around the classical contribute amplitudes that are in 
phase (since the classical path is that with an extremum 
action); while those far from it contribute largely differing 
phases and so tend to cancel each other out. In this way 
contributions from around the classical path are favored and 
classical mechanics recovered in the 11-0 limit. These argu
ments can be made more precise. 

In general, the result of performing the phase space inte
grals depends on the sequence in which they are performed. 
It is understood that if there is any ambiguity, the momen
tum integrals are to be performed first. How this comes 
about, and its cure, is discussed elsewhere.s 

III. STOCHASTIC TERMS 

Beginning from the Hamiltonian path integral, 

1· f'" f'" Nrr-I d ( .) rrN dp(i) [. ~ {p(k)(q(k) - q(k - 1») - H(q(k - 1 ),p(k),k - !)at}] 1m ...... q] --expl£.. ' 
N-oo _'" _'" j=) ;=1 2trfz k=1 II 

at= TIN. 
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This consists of many integrals of the form 

I -foo foo .J d [.{paq-H(q,p,t)at}] = uq p exp I . 
-00 -00 ~ 

Taylor expand H about q,p = 0 to yield 

I = f: 00 f: 00 dq dp 

[
. {paq - p2at 12m (q,t)} ] X exp I ~----''--''''''''''-~----'-=':'''':'''~ 

X (Coo(t) + CIO(t)q + COl (t)p + ... ), 
further, temporarily expand exp[ipaq/~] to yield 

I = f: 00 f: 00 dq dp 

xexp[ - ip
2
at ] 

2~(q,t) 

X(Doo(t) + D20 (t)q2 + D02 (t)p2 + ... ), 
having held only p2 in the exponential. The p integrals may 
then be performed using 

foo exp[ - a.r]ds = ~ , 
-00 \la 

~ exp[ - as2]ds = - exp[ - a~]ds, 
J

oo Joo 1 
-00 -00 2a 

J
OO Joo 3 S4 exp[ - a.r]ds = -2 exp[ - a~]ds, 
-00 -004a 

etc. (odd integrals disappearing), 

which shows that each p contributes like (at) - 1/2, since 
eachp2 generates a 1/a, where a = iat 12m~. 

In performing the p integrals in 

I f oo foc .J d [.{paq - p2atI2m(q,t)}] = uq pexp ,.~----,,--,,,,,,,,,,---~~ 
-00 -00 ~ 

X (CooCt) + CIO(t)q + COl (t)p + ... ) 
and obtaining the Lagrange formalism; p becomes maql at, 
so that in the Lagrange formalism aq- (at)I/2 [cf. 
p- (at) -1/2 in the Hamiltonian formalism] . Itisin this way 
that the contributing class of paths are seen to be stochastic 
(or Brownian) in nature. This behavior must be carefully 
taken into account when working to order at (as before), 
and is the manifestation of the path integrals sensitivity to 
the finite difference scheme adopted in discretization. 
Terms, such as (aq)4/at in the Lagrangian, give (in the 
at-O limit), for paths smooth inp and q, no contribution. 
This is because finite p implies aq-at and so (aq)41 
at - (at) 3. But such terms are finitely contributing for the 
dominating unsmooth paths (aq - (at) 1/2) and will be re
ferred to as stochastic. This dependence on stochastic paths 
is where operator ordering is concealed. It is here that it is 
seen that a Hamiltonian can contribute like (at) - I, since it 
behaves like p2/2m for small p; and that this is the strongest 
behavior that is not divergent when the at - 0 limit is taken. 

The midpoint rule (being accurate to second order) 
generates no stochastic terms and is the reason why it cor
rectly reproduces the quantum mechanics. This is seen when 
looking at the usual definition of the differential, 
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dl(t) == lim l(t) - l(t - at) . 
dt 4/-0 at 

Higher order differentials follow from repeated application, 

= lim (dl(t) _ d
2 
l(t) ~ + ... ) 

4/_0 dt dt 2 2! 

[from Taylor expansion (I being assumed analytic). 
The "strongest" terms in the action (such as that stem

ming frompq) are of order (at)o, stronger terms not occur
ring physically as they lead to infinities in the at-O limit. 
Time derivatives appearing in such terms should be repre
sented accurately to order at, since we must work to this 
order. In this way the formula given above for the derivative 
is seen to be an inconsistent definition if used in a formalism, 
such as path integration, that is sensitive to first order in at. 
Alternatively using a symmetric (midpoint) definition 

lim (f (t + at) -I (t - at) )l2at 
4/_0 

= lim (dl(t) + d 3
/(t) (at)2 + ... ). 

4/_0 dt dt 3 3! 

This has all the error terms disappearing for the path 
integral in the at - 0 limit, and so is a correct definition for 
use within the path integral. Other schemes might, in con
text, give no contribution, but the midpoint scheme is guar
anteed not to. It might now be argued that the formal expres
sion 

(qb,tblqa,ta) = f f DqDPexp[ is (!,P) ], 

q(ta) = qa' q(tb) = qb' 

S(q,p) = r'b dt(pq - H(q,p,t»), 
J1a 

can be made unambiguous if it is noted that all consistent 
discretization schemes lead to no stochastic terms and so the 
same answer in the at-O limit. As was seen earlier, this use 
of midpoint expansion was not always necessary in Carte
sian coordinates; but becomes essential when using a general 
coordinate system and is a matter approached in more detail 
later. 

Before continuing, the knowledge gained so far may be 
used to perform the momentum integration in general. Start
ing from the Hamiltonian path integral, 

(qb,tb Iqa,ta) 

= lim .. . ... II dq(j) II ~ 
J

oo foo N - I N d (.) 

4/_0 _ 00 - 00 j= I ;= I 21Tfz 

xexp[l.- f {p(k)(q(k) - q(k - 1)) 
~ k=1 

- H(q(k - l),p(k),k - ~)at}] 
and looking at one such integral, 

I = lim foo foo dq dp 
.6.1_0 - 00 - 00 

Xexp[ (i/~) {paq - H(q,p,t)at}]. 

Taylor expand H about q,p = 0 to yield 
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I = l!~o f: 00 f: 00 dq dp 

xexp[ (i/fz) {paq - (p2/2m(q,t) 

+ a(q,t)p + V(q,t»)at}], 

where 

~=a2HI ,a= aH I ,V=Hlp~o, 
m ap2 p~o ap p~o 

p2at being the strongest "physical term" allowed [recall 
p - (at) - 1/2] and V( q,t) the weakest that contributes in the 
at -+ 0 limit. Surprisingly the p integration has become Gaus
sian and may be evaluated using 

f: 00 exp[F( p) ]dp = $ exp[Fo], 

where 

F( p) = - ap2 + (3p + X 

and Fo is the minimum of F( p) w.r.t. p, i.e., 

Fo = X + {32/4a. 

This means that part of the least action principle of clas
sical mechanics, namely, 

oS =0 
op 

continues to be valid quantum mechanically. 
This leads to the general configuration space (La

grange) path integral, 

f
oo N-I 

(qb,tblqa,ta) = l!~o (21Tfziat)-NI2 _oo"'XII dq(j) 

xexp[.i. at {f In(m(q(k ~ 1),k - !) 
fz k ~ I 2,at 

+ m(q(k - 1),k - ~)eq(k) -X!k - 1») 

- ~ a( q(k - l),k - ~) r 
- V(q(k-l),k- ~)}] 

[the configuration space (Lagrange) path integral], where 

~ =aa~lp~o' a= aa: Ip~o' V=Hlp~o· 
See Abers and Lee9 for a discussion of the log term. 

IV. CANONICAL TRANSFORMATIONS IN QUANTUM 
MECHANICS 

In this preliminary work canonical transformations for 
the path integral lO are identified to be a subset of those of 
classical mechanics, and a time discretization scheme is 
found that allows the transformation to a trivial Hamilto
nian, as well as a consistent quantization of a classical sys
tem. 

Traditional quantization through operators2
•
3 does not 

generate a unique quantum theory. Equivalent classical sys-
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tems (related by a canonical transformation) in general 
yield differing quantum systems. II Also, in the operator for
malism, it is not clear how to implement a canonical trans
formation due to the use of noncommuting variables. The 
ambiguities in quantizing the classical theory means that one 
cannot fall back on the classical theory to perform the ca
nonical transformation. The path integral description of 
quantum mechanics5

•
6 offers an alternative method of quan

tization and poses a possible way out of this dilemma, since it 
uses commuting variables in its structure. 

Starting from the classical action, one can form the path 
integral expression 

f f exp(i f (pi! ~ H)dt)Dq Dp. 

This formal expression is deceptive in that it employs 
commuting variables, but is supposed to be equivalent to the 
traditional operator formalism. The above formal expres
sion is in fact ill defined. In order to evaluate it one can 
discretize it in time; but the answer is in fact dependent upon 
the finite difference scheme adopted. Factor ordering is car
ried within the prescription. 12

-
14 In general, however, the 

prescription will change under a canonical transformation, 15 

so a quantization scheme based on a particular prescription 
will in general generate inequivalent quantum systems from 
equivalent classical ones. These features have been dealt 
with in more detail in the Introduction. However, a particu
lar discretization scheme has been found that is invariant 
under general canonical transformations, and opens the way 
to a consistent quantization scheme, as well as a quantum 
mechanical application of the Hamilton-Jacobi theory of 
classical mechanics.4

•
12 

V. CANONICAL TRANSFORMATIONS IN THE PATH 
INTEGRAL 

In classical mechanics a canonical transformation is one 
that preserves the least action principle.4 For the path inte
gral one might analogously require that there be a path inte
gral representation in the new variables (Q,P,t), if one exist
ed in the old ones (q,p,t). Such a transformation should be 
system independent, that is to say, the transformation 
should be canonical not only for some specific system, but 
for all problems with the same degrees of freedom. The am
plitude may alter under such a transformation by at most a 
phase factor, i.e.,jormal/y, with end points (a,b) in phase 
space held fixed, 

f f exp(i f (pi! ~ H)dt )Dq Dp 

= exp( i(Fb ; Fa ) ) 

X f f exp(i f (Pi) ~ K)dt )DQ DP, 

V H(q,p,t), 

with Fbeing an arbitrary smooth function. Assuming that a 
canonically invariant discretization prescription exists (just 
such a scheme being sought), that is to say this formal state
ment becomes true for that scheme. Any other expression 
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should be manipulated into this form with the resulting 
O(if) term additions to the Hamiltonian. These terms may 
be replaced by "potential-like" terms of the same effect, 16 the 
technique for achieving this being illustrated later. It is being 
claimed that the quantum canonical transformation is a 
cleaner object when used with an invariant path integral 
scheme. 

Since the above equation is to be true for all Hamilto
nians, the integrands must be equal. This is perhaps most 
easily seen by choosing Hamiltonians that are highly local
ized in phase space. The integrands must then be equal at the 
"localization point." By choosing Hamiltonians localized at 
each point, it follows that the integrands must be equal 
everywhere. This implies that 

. dF 
pq-H=PQ-K+ Tt 

if the end points in phase space are fixed, i.e., we should work 
with a coherent state type path integral. 15 This is the same 
requirement as in classical mechanics,4 as well as the condi
tion that the Jacobian of the transformation be unity (which 
follows from above4). 

Suppose F = F(q,Q,t); then because 

pq _ H = PQ _ K + ( aF) q + (aF) Q + (aF) , 
aq QI aQ ql at qQ 

and by the independence of q and Q, 

p = ( ~:) Q/ P = - (~~t, K = H + ( ~) qQ ' 

with F being now seen to be the generating function of the 
canonical transformation. One concludes from this that the 
quantum canonical transformations are the same as those 
for classical mechanics, excepting that scaling transforma
tions are excluded. It is possible that the momenta [defined 
by p=.(a L(q,q)/aq)q ] are not all independent of the coordi
nates. Independence, and so a Hamiltonian description, can 
be achieved by employing the constraint analysis of Dirac, 
where the constraints are moved into the action using La
grange multipliers.8.17 

If one could perform general canonical transformations 
in quantum mechanics, then one might consider emulating 

I 

where 

qm (k) =.!(q(k) + q(k - I»), 

Pm (k) =.!(p(k) + p(k - 1)), at=. (tb - to ) IN. 

The end points not being integrated over, allowing them 
to be held constant. This is most closely related to the coher
ent state path integral15 where end points are naturally not 
integrated over and there are an equal number of coordinate 
and conjugate momenta integrations. In general a given 
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the Hamilton-Jacobi philosophy of classical mechanics. In 
this approach,4.12 rather than directly solve the equations of 
motion following from a given Hamiltonian H(q,p,t), a ca
nonical transformation is implemented that renders the 
transformed Hamiltonian [Kamiltonian K (Q,P,t) ] equal to 
zero. The work then lies in finding this transformation, the 
generator of which is determined by the Hamilton-Jacobi 
equation. For this purpose it is convenient to work with an 
alternative generating function given by 

Y (q,P,t) =.F(q,Q,t) + QP, 

so 

. . dF 
pq-H=PQ-K+

dt 

. (ay) = -QP-K+ - q 
aq PI 

+- P+-( ay). (ay) 
ap ql at qp' 

from which follows, by the independence of q and P, 

( aY ) ( ay ) ( ay ) Q= - ,p= - , K=H+ - , 
ap qt aq Pt at qP 

leading to the Hamilton-Jacobi equation 

H(q,( ay ) ,t) + (ay) = o. 
aq Pt at qP 

Classically one has transformed into a frame that 
"tracks" the system so that it then has trivial motion (con
stant phase space position). The transformation then carries 
the motion. 

VI. THE SYMMETRIC PATH INTEGRAL 

Due to the higher order sensitivities of the path inte
gral,12 in order to correctly transform the path integral one 
can start from some time discretized version. An especially 
convenient scheme for the propagator is the symmetric pre
scription given by 

I 
phase space path integral (with fixed end points) must be 
kneaded into this form with the corresponding if additions 
to the Hamiltonian, which is then highly quantum mechani
cal in nature. What has been achieved is an "exposure" of all 
stochastic terms. The use of the symmetric (midpoint) finite 
difference expressions was discussed and motivated in the 
introduction to path integrals. By considering Pm as a dum
my variable, this midpoint ordering can be seen to corre
spond to "Weyl ordering" in the operator formalism, 18 but it 
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must be borne in mind that this object, like the coherent state 
path integral, is not a physical amplitude. The properties of 
midpoint investigated earlier suggest that this proposed path 
integral might be the canonical invariant sought. 

This manner of path integral has been investigated by 
Klauder l5 and would seem to be the starting point for mak
ing the path integral a well defined mathematical object. 19 

VII. TRANSFORMING THE PATH INTEGRAL 

Consider a general canonical transformation of the p 
and q implemented by a generating function F(q,Q,t) , 

p= (~:)Qt' P= - (;~t, K =H + (~\Q 
(we could use any other type of generating function4

) or 
equivalently, 

q = q(Q,P,t), Q = Q(q,p,t) , 

p=p(Q,P,t), P=P(q,p,t), 

such that 

(~;t = (tt .. (~;t = -(;~tt' 
(~:t = - (:~L, (~:t = (:~)h . 
It is useful to first consider thelormal canonical trans

formation of the path integral with no consideration of sto
chastic terms. 

Formally, with all end points fixed, 

J J exp(i (pq ~ H)dt)Dq Dp 

=>exp(/Fb ~ Fa ») 
X J J exp(i J (Pi) ~ K)dt )DQ DP, 

where 

K(Q,P,t) = H(q,p,t) + (~)qQ ' 

so that using the symmetric expansion scheme this is interpreted as 

i(Fb - F )/11 l' foo foo Nrr-I dQ(j)dP M (j) e a 1m ... 
N-oo -00 -ooj=1 21Tfl 

[

• N {PM (k)(Q(k) -Q(k-I»)-K(QM(k),PM(k),k-!)at}] 
X~pII ' 

k = I Ii 

I 
where 1m (k) =/(qm (k),Pm (k),k - !), 

K(QM(k),PM(k),k -!) IM(k) =/(q(QM(k),PM(k),k - !), 

= H(qM(k),PM(k),k _ 1..) + (aFM) , 
2 at qQ 

p(QM(k),PM(k),t - !),k - !), 

!Q=(;~)h' I:=(~~t .. !t=(~)QP' QM(k) =!(Q(k) + Q(k - 1)), 

PM(k)=!(P(k) +P(k-I»), .Ill (k) =/(q(k),p(k),k) - I(q(k - I ),p(k - I ),k - I). 

qM(k) = q(QM(k),PM(k),k - !), 

PM(k) = p(QM(k),PM(k),k - !). 
Under this notation an m sUbscript means at the q, p 

midpoint, while an M subscript means at the Q, P midpoint. 
In general, the naively transformed expression is not 

equal to its parent, due to the generation of extra (stochas
tic) terms in the process. That is to say, a general discretiza
tion prescription is not canonically invariant. 15 The task 
ahead is to correctly perform a canonical transformation and 
determine the stochastic terms so generated in the hope that 
they sum to zero, as required of a canonically invariant 
scheme. 

VIII. MIDPOINT EXPANSIONS 

Of use are midpoint expansions, since in the symmetric 
prescription all functions are evaluated at the midpoint. 

Adopting the following notation: 
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Note that this implies that 

qm (k) =!(q(k) + q(k - 1 »), 

QM(k)=!(Q(k) +Q(k-l»), 

whereas 

similarly for p, P. 
Then by Taylor expansion 

1m = 1M + AIM.QQ 
+ klM,PP 

+ AIM,lt 
+ ~/M,QP 
+ ~/M,Qt 
+ ~/M,Pt 
+ ''', 

aQaQ 
ap.IlP 
atat 
aQaP 
aQat 
.IlPat 
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tJ.I = IM,Q tJ.Q 
+ /.M

P 
1:.P 

+ IM,t tJ.t 
+ 14IM,QQQ tJ.QtJ.QtJ.Q 
+ 141M, PPP 1:.P1:.P1:.P 
+ 141 M,ttt tJ.ttJ.ttJ.t 
+ ~/M,QQ P tJ.QtJ.Q1:.P 
+ AI M,QQt tJ.QtJ.QtJ.t 
+ AIM, PPt 1:.PtJ.PtJ.t 
+ ~/M,Q PP tJ.Q1:.P1:.P 
+ ilM,Qtt tJ.QattJ.t 
+ !IM,Q Pt tJ.Q1:.PtJ.t 
+ .... 

By considering F as a function of Q, P, and t, as opposed 
to q, Q, and t, we may develop 

I1F = F M,Q aQ 
+F P 1:.P M, 

+FM,t at 
+ 14F M,QQQ tJ.QtJ.QtJ.Q 
+ IF PPP 1:.P1:.P1:.P 2<1 M, 

+ 14FM,ttt 
+ II<' P 
~M,QQ 

+VM,QQt 
+ II<' PP 
~M, t 

+ II<' PP 
~M,Q 

+VM,Qtt 
+ !FM,QPt 
+ .... 

tJ.ttJ.ttJ.t 
tJ.QtJ.Q1:.P 
tJ. Q tJ. Qat 
1:.P 1:.P tJ.t 
tJ.Q1:.PtJ.P 
tJ.QtJ.ttJ.t 
tJ. Q 1:.P tJ.t 

The generating function derivatives may be converted to 
p,q derivatives by starting from 

8F= (aF) 8Q + (aF) 8q + (aF) 8t 
aQ qt aq Qt at qQ 

= - P8Q + p8q + ( aF) 8t 
at qQ 

leading to 

F.Q = - P + q,QP' 

F,P=q,Pp, 

F.t = q,tP + (a;)qQ ' 

~- P P 
c/ - qM,QPM, - qM, PM,Q 

F.QQQ = q,QQQP + 2q,QQP,Q + q,QP,QQ' 

F,QQ P = q,QQ Pp + 2q,Q PP,Q + q, pp,QQ' 

F PP=q PPp+2q PpP+ q pPP, ,Q ,Q ,Q, ,Q , 

F. PPP = q, PPPp + 2q, PPp, P + q, Pp, PP, 

F.Qtt = q,QttP + 2q,QtP,t + q,QP,'" 

F. Ptt = q, PttP + 2q, Pp,t + q, pp,,,. 

Having used the necessary and sufficient condition for a 
canonical transformation,4 

q P P_qPp -} 
,Q , "Q - , 

which follows from the canonical conditions given earlier. 
Care should be taken of which variables are being held con
stant. 

We may now convert the path integral in the search for 
additional contributions beyond the formal conversion. 
These additional stochastic terms will stem from both the 
Jacobian and action. 

Look for stochastic contributions from the Jacobian. 
Since 

f ... f Ntf dq(j)dPm (j) 
j=1 27rli 

= f ... f Ntf dqm (j)dPm (j) 
j=l 7rli 

and 

the Jacobian of interest arises from 

dqm (j)dPm (j) .... dQM (j)dPM(j)· 

This is not unity because qm (j), Pm (j) and QM (j), 
PM (j) are based at different points in phase space (recalling 
that we are transformingq andp as opposed to qm and Pm)' 

The Jacobian 

f - (a
qm

) (a
pm

) (a
qm

) (a
pm

) 
aQM Pt aPM Qt aPM Qt aQM Pt 

which leads to 

+ l(qM,QQQPM, P + qM,QPM,QQP - qM, PPM,QQQ - qM,QQPPM,Q) 
+ !(qM,Q PPPM, P + qM,QPM, PPP - qM, PPM,Q PP - qM, PPPPM,Q) 

tJ.QtJ.Q 
1:.P1:.P 
tJ.ttJ.t 
tJ.Q1:.P 
tJ.QtJ.t 
1:.PtJ.t 

+ l( P + P Pp p) 
8 qM,QttPM, qM,QPM, ,, - qM, M,Qtt - qM, "PM,Q 

+ A (qM,QQ PPM, P + qM,QPM,Q PP - qM, PPM,QQ P - qM,Q PPPM,Q) 
+ A (qM,QQtPM, P + qM,QPM,QPt - qM, PPM,QQt - qM,QPtPM,Q) 
+ A (qM,QPtPM,P + qM,QPM, PPt - qM,PPM,QPt - qM, PPtPM,Q) 
+"', 

but, for a canonical transformation, 

q,QP, P - q, PP,Q = } 
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everywhere. By applying this at the M midpoint yields 

/ = 1 + !(qM,QPPM,QQ - qM,QQPM,QP) ilQilQ 
+ !(qM, PPPM,Q P - qM,Q PPM, pp) ilPIlP 
+ !(qM. P,PM,Q' - qM,Q,PM, p,) iltilt 
+ ~(qM, PPPM,QQ - qM,QQPM, pp) ilQIlP 
+ A (qM, P,PM,QQ + qM,QPPM,Q' - qM,QQPM, P, - qM,Q,PM,QP) ilQilt 
+ A (qM, P,PM,Q P + qM. PPPM,Q' - qM,Q PPM. P, - qM,Q,PM, pp) ilPilt 
+ .... 

Continue by looking at the action term Pm (k)ilq(k) and comparing it to PM (k)ilQ(k) + M(k) - (aF M (k)lat }qQilt, 
its formal counterpart. This leads to 

ilQilQilQ 
ilPilPilP 
iltiltilt 
ilQilQIlP 
ilQilQilt 
IlPllPilt 
il Q ilP ilt 
ilQllPilP 
ilQiltilt 
ilP ilt ilt 

Finally, determining stochastic contributions from the Hamiltonian. By again applying the canonical transformation at 
the M midpoint 

the original Hamiltonian becomes 

Collecting up the stochastic terms 
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ilQilQ 
llPilP 
iltilt 
ilQIlP 
ilQilt 
ilPilt 

Jacobian 
contribution 
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i{Ti(qM,QPM,QQ - qM,QQPM,Q) 
+ i (q Pp PP _ q PPp p) UM,M, M, M, 
+ r.. (qM,tttPM + 3qM"PM,tt - F M,ttt) 

+ !(qM,QPM,QP - qM,QPPM,Q) 

+ A(qM,QQtPM + qM,tPM,QQ + 2qM,QPM,Qt - FM,QQt) 
+ A(qM, PPtPM + qM"PM, PP + 2qM, PPM, Pt - F M, PPt ) 

I( P P P P F p) + 4 qM,Q tPM + qM,tPM,Q + qM, PM,Qt + qM,QPM, t - M,Q t 
+ !(qM,PPM,QP - qM,QPPM,P) 

+ A(qM,QPM,tt + 2qM,tPM,Qt + qM,QttPM - F M,Qtt) 
+ A(qM, PPM,tt + 2qM,tPM, Pt + qM, PttPM - F M, ptt ) 
+ ... 
- AHM,QQ 
-lH PP 

8 M, 

-AHM,tt 
IH P -4 M,Q 

-!HM,Qt 
- !HM,Pt 
+ ... }/I!. 

aQaQaQ 
aPaPap 
atatat 
aQaQap 
aQaQat 
aPapat 
aQapat 
a Qapap 
aQatat 
aPatat 

aQaQat 
aPapat 
atatat 
aQapat 
aQatat 
aPatat 

Working to order at, the correctly transformed path integral then has the form 

pi; 
contribution 

Hamiltonian 
contribution 

i(F -Fl/I!. J JNrr_1 dQ(j)dPM(j) rrN . . 
!=.e b a hm ... (1 + Jacobian stochastic terms) 

N-oo j=1 2~ k=1 

[
. {PM(k)(Q(k) - Q(k - 1») - K(QM(k),PM(k),k - !)at + action stochastic terms}] 

X~l . 
I! 

Now work to replace the stochastic terms by a potential-like term 16 

V(QM)at 

of the same effect (to order at). This can only be achieved if the stochastic terms are of order at. 

and 

So further define 

J=.ei(Fb-Fal/l! lim J ... JNtr dQ(j)dPM(j) 
N-oo j= 1 2~ 

[
. ~ {PM (k)(Q(k) - Q(k - 1») - K(QM(k),PM(k),k - ~)at - V(QM(k»)at}] 

Xexp l£... 
k = 1 I! 

Working to order at 

! = ei(Fb - Fal/l! lim ... rr } M } J I N-I dQ( ')dP (.) 

N-oo j= 1 2~ 

N 

X rr (1 + Jacobian stochastic terms + i action stochastic terms/I!) 
k=1 

[
. {PM (k)(Q(k) - Q(k - 1)) - K(QM(k),PM(k),k - !)at}] 

Xexp l------------------------------------~---
I! 

Consider now the particular cases of (i) a Hamilton-Jacobi transformation, (ii) a point canonical transformation. 

IX. HAMILTON-JACOBI TRANSFORMATIONS 

The Hamilton-Jacobi transformation is the special case where the canonically transformed Hamiltonian (Kamiltonian) 
given by 

K=H+(aF) at qQ 

is null, i.e., 
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H(q,p,t) + (aF) = 0, at qQ 

but recall 

p= (aF) , aq Qt 

so that the generator (r) of the required transformation is given by 

H(q,(ar) ,t) + (ar) = 0, aq Qt at qQ 

the Hamilton-Jacobi equation. It should be recalled that this Hamiltonian will in general look "quantum mechanical" due to 
the adoption of Ii terms when Weyl ordering. In this special case of a Hamilton-Jacobi transformation 

i(r-rJ/f!. f fN-ldQ(j)dPM(j) N . . 
1= e b a hm ... II II (1 + Jacobian stochastic terms 

N-oo j~l 2ff1l k~l 

., . [. {PM(k)(Q(k) - Q(k - l)J)] + 1 action stochastic terms/Ii)exp 1 Ii 

to be compared with 

f 

N - 1 dQ( ')dP (.) 
J = ei(rb - raJ/f! lim f .. · II } M } 

N-oo j~ 1 2ff1l 

[
. {PM (k)(Q(k) - QCk -l))}] 

Xexp 1 . 
Ii 

These integrals are ill defined and may be made tractable by the inclusion of a "mass" term, 

i(r -r J/f! . f fNII- 1 dQ(j)dPM(j) lIN . . 1= e b a bm .,. (1 + Jacobian stochastic terms 
N.A-oo j~t 2ff1l k=l 

., . [. {PM(k)(Q(k) - Q(k - 1)) - PM
2(k)at /2A}] + 1 action stochastic terms/Ii)exp 1 Ii ' 

J = i(rb - raJ/f! lim f···f If dQ(j)dPM(j) fi: (1 _ lV(QM(k»)at) 
N,A_oo j~l 2ff1l k=l Ii 

[
. {PM(k)(Q(k) - Q(k - 1») - PM

2 (k)at /2A}] 
Xexp 1 , 

Ii 

where the stochastic terms are 
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aQaQ 
aFaF 
atat 
aQap 
aQat 
aFat 

aQaQaQ 
apaFap 
atatat 
aQaQap 
aQaQat 
apapat 
aQaFat 
aQaFap 
aQatat 
aFatat 

Jacobian 
contribution 

pq 
contribution 
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I::..QI::..Ql::..t 
!::..P!::..P I::..t 
I::..tAtAt 
AQ!::..PAt 
AQAtAt 
!::..PAtAt 

In this special case of a Hamilton-Jacobi transformation K = 0, so 

as was shown previously. 

Hamiltonian 
contribution 

This leads to the Hamilton stochastic terms canceling may of their pi; counterparts, since the Hamilton stochastic 
contribution 

= i{ - A( - r M.QQ' + qM.QQ,PM + 2qM.Q,PM.Q + qM.,PM.QQ) 
- A( - r M. PP, + qM, PP,PM + 2qM, P,PM, P + qM"PM, pp) 

-l( - r M,ttl + qM,,,,PM + 2qM,,,PM.' + qM"PM,,,) 
l( r P P P P p) 

-4 - M,Q' +qM,Q ,PM +qM,Q,PM, +qM, ,PM,Q +qM"PM.Q 
- !( - r M,Q" + qM,Q"PM + qM,Q,PM,' + qM,,,PM,Q + qM"PM,Q') 
- !( - r M, P" + qM, P"PM + qM, P,PM" + qM,,,PM, P + qM.,PM, p,) 
+ ... }ili, 

yielding the set of stochastic terms: 

!(qM,QPPM,QQ - qM,QQPM,QP) ..:iQ..:iQ 
+ !(qM, PPPM,QP - qM,QPPM, pp) !::..P!::..P 
+ !(qM, P,PM,Q' - qM,Q,PM, p,) AtAt 
+ l(qM, PPPM,QQ - qM,QQPM, pp) AQAP 
+ A(qM, P,PM,QQ + qM,QPPM,Q' - qM,QQPM, P, - qM,Q,PM,QP)..:iQ..:it 
+ l(qM. P,PM,QP + qM, PPPM,Q' - qM,QPPM, P, - qM,Q,PM, pp) !::..Pl::..t 
+ ... , 

i{MqM,QPM,QQ - qM,QQPM,Q) 
+ -b.(qM, PPM, PP - qM, PPPM, p) 

+ -b.(r M.m - qM,mPM - 3qM,,,PM,,) 
+ !(qM,QPM,Q P - qM,Q PPM,Q) 
+ !(qM,QPM,Q' - qM,Q,PM,Q) 
+ !(qM, PPM, P, - qM, P,PM, p) 

l( P P P P ) + 4 qM, PM,Q' + qM,QPM, , - qM,Q,PM, - qM, ,PM,Q 
+ !(qM,PPM,QP - qM,QPPM, p) 

+ !(qM,QPM,,, - qM,,,PM,Q) 
+ !(qM, PPM,,, - qM,,,PM, p) 
+ .. '}ili 

having used 

..:iQ..:iQ..:iQ 
!::..P!::..P !::..P 
I::..tAtAt 
I::..QAQ!::..P 
..:iQ..:iQ..:it 
!::..P!::..P I::..t 
AQ!::..Pl::..t 
A Q!::..P!::..P 
I::..Ql::..tAt 
!::..PAtl::..t 

I::..QI::..Ql::..t 
!::..P!::..P I::..t 
I::..tAtAt 
AQ!::..PAt 
AQAtl::..t 
!::..Pl::..tl::..t 

Jacobian 
contribution 

Action 
contribution 

r M,Q" = qM,Q"PM + 2qM,Q,PM" + qM,QPM,,, , r M, P" = qM, P"PM + 2qM, P,PM" + qM, PPM"" 

which were developed earlier. 
From the Appendix it follows that only the highlighted terms contribute, namely, 

!(qM,QPPM,QQ - qM,QQPM,QP) I::..QI::..Q 
l (qM, P,PM,QQ + qM,Q PPM,Q' - qM,QQPM, P, - qM,Q,PM,Q p) I::..Ql::..t 
nUill) (qM,QPM,QQ - qM,QQPM,Q) I::..QI::..QAQ 
!U/Ii) (qM,QPM,Q' - qM.Q,PM,Q) AQI::..QAt. 
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Their nature can be discovered from recalling that (in 
the limit ~t--+O) P- (~t) -1/2 as does P, which informs us 
that the leading stochastic terms contribute, respectively, 
like M, (~t)3/2, ~t, (~t)3/2. This is because differentiating 
w.r.t. P induces a (~t) 1/2. Considering the two remaining 
terms, namely, 

!(qM.QPPM,QQ - qM,QQPM,QP) ~Q~Q 

-b,U/Il)(qM,QPM,QQ - qM,QQPM,Q) ~Q~Q~Q, 

which have leading behavior that must then be ofthe form 

!E(Q,t)~Q~Q, n(i/Il)G(Q,t)P~Q~Q~Q, 

to be or order ~t. 
Performing these integrals (see Appendix) leads to 

leading contributions, 

- !(Il/i)E( Q,t)~t / A, !(Il/i)G( Q,t)~t / A, 

where lI2A is the coefficient preceding the p2 term in the 
Hamiltonian. A distinction is then made between the case 
when this term is present, and as here when not (tackled as 
lim A --+ 00 ). In the latter case the terms are lost trivially; 
while the former is contained in the example of a point ca
nonical transformation, considered next. In this case the sto
chastic terms mutually cancel. 

Collecting all stochastic terms to be converted, 

!(qM,QPPM,QQ - qM.QQPM,QP) ~Q~Q } I( PP pp) ~Q~P + 4 qM, PM,QQ - qM,QQPM, 
I( PP P P pp) ~P~P + 4 qM. PM,Q - qM,Q PM. 

+ ... , 
i{ -b, (qM,QPM,QQ - qM,QQPM,Q) ~Q~Q~Q 

l + !(qM,QPM.Q 
P 

- qM,Q PPM,Q) ~Q~Q~P 
I ( P P P p) ~Q~PM + 4 qM, PM.Q - qM,Q PM, 
I ( P PP PP p) ~P~P~P + n qM, PM, - qM, PM, 

+ .. , , 
- ~t [ !PMPM,QQ ~Q~Q } +!PMPM,Q 

P ~Q~P 

+ !PMPM, 
PP M~P 

+ ... ]l2m(qM )}/Il. 

In actual fact we have allowed rather too many canoni
cal transformations; as those generating terms containingpn 

(n > 2) are unphysical and lead to infinite contributions. 

X. POINT CANONICAL TRANSFORMATIONS: AN 
EXPLICIT EXAMPLE 

It is possible, in the special case of a point canonical 
transformation,18 to explicitly calculate the stochastic con
tributions. According to the previous results, these should 
sum to zero. 

In the case of the point canonical transformation, only 
thepm 2~t /2m(qm) "term" of the Hamiltonian need be con
sidered, since this is the strongest term permissible [order 
(~t) 0] and the only one that is active in the calculation of the 
order ~t effective potential V. 16 

So look at 

Jacobian 
contribution 

pq 

contribution 

Hamiltonian 
contribution 

~Q~Q 
~Q~P 

~P~P 

For the case of a point canonical transformation, consider the generating function Y(q,P,t) =.F(q,Q,t) + QP. SO as 
shown earlier, 

(ay) (ay) (ay) Q= - , P= - , K=H+ - , ap qt aq Pt at qP 

leading to a general point canonical transformation generated by 

Y(q,P,t) = Q(q,t)P + G(q,t), 

i.e., 

q=q(Q,t), p=q,Q-I(Q,t)P+g(Q,t), 

g being the inverse of G. Then 

924 

POP -2 2 
qM,Q PM,QQ = , qM,QQPM,Q = - qM,Q qM,QQ' 

qM,QPM,QQ = [2qM,Q -2qM,QQ2 - qM,Q -lqM,QQQ ]PM + qM,QgM,QQ' 

-2 2p + qM,QQPM,Q = - qM,Q qM,QQ M qM,QQgM,Q' 

PM,PM,QQ = (qM,Q -IPM + gM) [(2qM,Q -3qM,QQ 2 - qM,Q -2qM,QQQ )PM + gM,QQ]' 

PM2/2m(qM) --+ (2qM,Q -IPM + gM )2/2m(qM)' 
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Carrying only contributing (order ll.t) terms ::::::> 

- i V(QM )ll.t Ifz = (!)qM,Q -2qM,QQ 2 ll.Qll.Q 
+ (i/12fz) [3qM,Q -2qM,QQ2 - qM,Q -lqM,QQQ ]PM ll.Qll.Qll.Q 
- (ill.t ISm(qM )fz)[2qM,Q -4qM,QQ 2 - qM,Q -3qM,QQQ ]PM 

2 ll.Qll.Q. 

In this case, 

I j(Fb-F )/fl l' foo foo Nrr-l dQ(j)dPM(j) rrN = e a 1m ... (1 + Jacobian stochastic terms 
N-oo -00 -ooj=l 21rii k=l 

. t' t h . t IZ) [.{PM (k)(Q(k)-Q(k-l»)+(qMQ-2(k)PM
2
(k)/2m(qM)+"·)ll.t}] + I ac Ion s oc ashc erms 71 exp I -~---------'---':":":':'-----:":'-----'~----'-

fz 

to be compared against 

J = /(Fb-Fa)/fl lim foc .. ·foo Ntf dQ(j)dPM(j) IT (1 _ iV(QM(k»)ll.t) 
N-oc -00 -ooj=l 21rii k=l fz 

[
. {PM (k)(Q(k) - Q(k -1)) + (qM,Q -2(k)PM

2 (k)/2m(qM) + . ")ll.t}] 
X~I , 

fz 

evaluating the integrals to order ll.t (see Appendix, with 
a = m(qM )qM,/' a function of Q,t only) yields 
ZAt{ -4 2 [3 -4 2 -3 ] 

1m'}" qM,Q qM,QQ - qM,Q qM,QQ - qM,Q qM,QQQ 

+ [2qM,Q -4qM,QQ2 - qM,Q -3qM,QQQ J}/4m(qM) = O. 

One might argue, in fact, that this constitutes a proof of 
invariance of the symmetric path integral under a general 
canonical transformation. This is because, by the group 
property, a general canonical transformation may be decom
posed into successive q and P transformations. The general P 
transformation is obtained from the general q (point) trans
formation by following it with an exchange transformation 
(q-P, P- - Q) which generates no additional stochastic 
terms. 

XI. GENERAL CANONICAL TRANSFORMATION 

Since no extra potential term is generated for the sym
metric scheme in the transformation between the Hamilto
nian and trivial Kamiltonian; using the fact that canonical 
transformations form a group, one can make a general ca
nonical transformation via the Hamilton-Jacobi transfor
mation. In this way we see indirectly that there is no contri
bution generated by a general canonical transformation. 

The argument leading to this point assumed the use of a 
physical Hamiltonian [one for which Hll.t is of order (ll.t )P, 

(p>O) in the path integral], and here it is understood that 
only canonical transformations that generate such Hamilto
nians are considered. 

Having achieved a Hamilton-Jacobi transformation 
one is led to the path integral 

where 
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I 
K(Qb,Pb,tb IQa,Pa,ta ) 

= f .. ,fNtr dQ(j)dPM(j) 
j= 1 21rii 

lI
N [,{PM(k)(Q(k)-Q(k-1))}] 

X exp 1-------------
k = 1 fz 

= 21rii8(Qb - Qa )8(Pb - Pa ) 

SO that the kernel becomes simply 

K(qb ,Pb,tb Iqa ,Pa ,ta ) 

= 21rii/(rb -ra )/fl8 (Qb -Qa)8(Pb -Pa), 

where r is a generating function of the Hamilton-Jacobi 
transformation, and the new coordinates (Q,P) are constant 
(determined from the end conditions of q,p). This is not a 
physical quantity (cf. coherent states) and has still to be 
converted to an amplitude between physical states. 

XII. SUMMARY 

It would seem that within the symmetric scheme, no 
additional terms are generated by a general canonical trans
formation. This was explicitly demonstrated in the case of a 
point canonical transformation. 

This suggests that the symmetric scheme is a canonical
ly invariant prescription (see Fig. 1). 

This allows a consistent quantization of a classical sys
tem regardless of which canonical variables are used in its 
description, as well as the use of the trivializing Hamilton
Jacobi transformation in quantum mechanics. 

It should perhaps be remarked that the midpoint rule is 
favored (not compelled) over others, in that it generates no 
additional terms during the canonical transformation. Note, 
however, that to get into and from the midpoint scheme, 
stochastic fz2 terms appear. The virture of no terms occur
ring during the transformation is that the Hamiltonian is 
then trivalized by the Hamilton-Jacobi transformation. The 
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Original 
Theory 

fCilluit:lll) 
H(q,p,t) 

~ ''''''0) • 
_ m,dpoinl • 

quonIit.1ion 

Canonically transformed _ midpoinl • 

Classical Theory quIRtiz.t1on 

K(Q,P,t) ~ ("'''0) • 

FIG. I. Consistent quantization. 

Quantized 
Originel Clessical 

Theory 
H(q,p,t) 

c...tiel1 
tr.ansform.ation .. 

Transformed 
Theory 

fQullnlum) 
K(Q,P,tJ 

appearance of stochastic terms during the transformation 
would spoil this attempt (see Fig. 2). 

It is also not clear what a canonical transformation is 
outside of the midpoint scheme. It still remains to relate this 
invariant path integral to a physical amplitude. 

That this scheme is so well behaved and would seem to 
be the manner of starting point for making the path integral a 
well defined mathematical object,'9 tends to indicate that it 
is a useful portrayal of the path integral. 

XIII. THE COHERENT STATE PATH INTEGRAL 

Beginning from the coherent state defined by 

Ip,q) =exp[ - (illi)qp]exp[ (i/li)pq] 10) 

(Ref. 15), where 10) denotes the normalized ground state 
for a harmonic oscillator with unit angular frequency (this 
definition differs by a phase factor from the common 
choice). Then 

(Pb,qb,tb lPa,qa,ta) 

becomes, on inserting resolutions of unity, 

J
OO Joo dpdq 

1 = _ 00 _ 00 lP,q) (p,ql 21T1i ' 

(Pb,qb,tb lPa,qa ,ta) 

= Joo ... Joo ... N if dp(j)dq(j) 
-00 -00 j=1 21T1i 

N 

X II (p(k),q(k),k lP(k - 1),q(k - 1),k - 1), 
k=1 

Operator 
formulation 

H(p,q) '\.. 

~" 
(.to.int) 

Path Integral 
formulation 

HIf(P,q) 

Path Integral / 

I 

Operator 
formulation 

~ K(Q,P) ,'------' 
(",l<Ip.;nt) 

I Path Integral 
formulation 

Itm(Q,P) 

formulation _ tnducod lol'ms 

, Path Integral 
formulation 

K{Q,P) H{p,q) _ No;nducodlorms 

FIG. 2. The midpoint crossing. 
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where the end points in phase space are not integrated over. 
Recall that for Heisenberg eigenstates 

'" Ip,q,t + !::.t) = exp[ (illi)H(q,p,t + !::.t 12)!::.t ] lP,q,t) 

(accurate to order !::.t), H being a Hermitian operator, so 

(Pb,qb ,tb IPa ,qa ,ta) 

= lim ... "'II Pi qi J
OO Joo N-I d ( ')d ( .) 

N-oo -00 -00 j=l 21T1i 

N [ i "'( 1 ) ] X II (p(k),q(k)lexp --H q,p,k-- !::.t 
k=l Ii 2 

X Ip(k - 1),q(k - 1» 

where the end points in phase space are not integrated over. 
Proceeding by expanding the exponential, leads to 

(Pb,qb,tb lPa,qa,ta) 

= lim ... "'II Pi qi J
OO Joo N - 1 d ( ')d ( .) 

N-oo -00 -00 j=l 21T1i 

'" 
X IT (p(k),q(k)1 i (- (illi)H(q~,k-P!::.tt 

k= 1 m=O m. 
X lP(k - 1),q(k - 1). 

Taking advantage of the resolution of unity, the operator 
Hamiltonians may then be freely transferred back and forth 
across a 

lP,q) (p,ql· 

For the m = 1 term this leads to alternative integrands, 
each therefore equivalent to order !::.t, namely, 

(p(k),q(k) lP(k - 1 ),q(k - 1) (p(k - 1),q(k - 1) I 
X( - (illi)H(q,p,k - ~)!::.tllP(k - 2),q(k - 2» 

or 

(p(k) ,q(k) I( - (illi)H(q,p,k - ~)!::.t llP(k - 1 ),q(k - 1» 

X (p(k -1),q(k - l)lP(k - 2),q(k - 2», 

which equals 

(p(k),q(k) Ip(k - 1),q(k - 1) 

X(p(k-l),q(k-l)lP(k-2),q(k-2» 

X ( - (illi)H(p(k),q(k); 

p(k - 1 ),q(k - 1 );k - !l!::.t) , 

where 

'" H(p,q;p,g;t) = (p,qIH(q,p,t)lp,g)/(p,qlp,g). 

To evaluate this object one should commute factors in 
the Hamiltonian operator (using [q,p] = iii! which implies 
[a,a t ] = !), such that a operators are shifted to the right 
and can be applied to the coherent state, while the at opera
tors (now on the left) are also suitably applied. This sifting 
induces additional terms that carry the operator ordering 
information for the path integral. 

The m = 2 case has three such equivalent alternatives; 
namely, 
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!< p(k),q(k) I( - U/li)H(q,p,k - !>at )2Ip(k - I ),q(k - I» (p(k - I ),q(k - I) Ip(k - 2),q(k - 2» 

X~(p(k),q(k)l( - (i/li)H(q,p,k-!)at)lp(k-I),q(k-I» 

x (p(k - I ),q(k - I) I( - (i11l)H(q,p,k - Dat )Ip(k - 2),q(k - 2» 

X!( p(k),q(k) Ip(k - I ),q(k - I» (p(k - I ),q(k - I) I( - (i11l)H(q,p,k - !)at )21P(k - 2),q(k - 2» . 

This implies (using the m = I results) that these are each, to order at, equivalent to 

!(p(k),q(k) lP(k - I),q(k - 1)(p(k - 1),q(k - 1) lP(k - 2),q(k - 2» 

X( - (i11l)H(p(k),q(k);p(k - I),q(k - I);k - ~)at)2. 

This result then generalizes, by induction, to finite m, leading to 

f
oo foo N - I d ( ')d ( .) 

(Pb,qb,tb lPa,qa,ta) =!~ _ 00'" _ 00'" jDI P ~~ J 

A: L X IT (p(k),q(k) Ip(k - I ),q(k - 1) exp [ - ~ H(P(k),q(k);P(k - I ),q(k - I );k - ~)at], J k= I II 2 
where 

H( p,q;p,g;t) = (p,qIH(q,p,t) Ip,g)/( p,qlp,g). 

From the definition of the coherent state 

lP,q) =exp[ - (illl)qp] exp[ (i/ll)pq] 10) 

and the fact 

[q,p] = illi, 
as well as 

~+B = ~eBe- [A,B) 

if [A,B] commutes with A and B, it then follows that 

(p,qlp,g) = exp{[(i/2) (p + p) (q - g) - H (p - p)2 + (q - g)2]]lII} 

from which we deduce 

. foo foo N - I d ( ')d ( ') [. N 
(Pb,qb,tb lPa,qa,ta) = !~~ _ 00'" _ 00 jDI P ~~ J exp I k~1 {!(p(k) + p(k - I») 

X(q(k) -q(k-1))+ (i/4)[(p(k) -p(k_I»)2+(q(k) -q(k_l»)2] 

- H(p(k),q(k);p(k - 1),q(k - 1 );k - !)at}/lI]. 

where at= (tb - ta )IN. 
Now, as shown in the Appendix, in the at ..... 0 limit, ap does not contribute while aq is of order (at) 1/2. Only the term 

p2at 12m (q,t) ofthe Hamiltonian need be considered, since this is the strongest permissible [order (at)°] and the only one 
that is active in the calculation to order at. More specifically the term - (aq) 2/411 contributes like a potential of strength III 
4m (q,t), where !m (q,t) is the coefficient of the strongest (i.e., p2) term of the Taylor expanded Hamiltonian. This leaves 
conversion of the Hamiltonian to midpoint variables (if not already in this form) to yield the representation 

. foo f"" N-I dPm (j)dq(j) 
< Pb,qb,tbIPa,qa,ta) =!~ _",,'" -00 jDI 21rl1 

[
. ~ {Pm (k)(q(k) - q(k - 1)) - H(Pm (k),qm (k),k - !)at}] 

X~l~ , 
k=1 II 

where at = (tb - ta )IN. [Displaying the Hamiltonian in 
midpoint variables has the virtue that it then has the same 
functional form in the induced differential (Schrodinger) 
equation for the kernel. 12] 

iant investigated earlier. To then determine, for example, the 
point to point amplitude 

(Xb,tb Ixa,ta), 

This object is now identified to be the canonical invar- insert coherent state resolutions of unity, to yield 
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(Xb ,tb iXa ,ta ) 

= foo foo dPh dqb foo foo dPa dqa 
- 00 - 00 2TTft - 00 - 00 2TTft 

X (Xb,tb iPb,qb,tb ) (Ph,qb,tb iPa ,qa,ta ) 

X (Pa,qa,ta iXa,ta), 

but from the definition for the coherent state 

(x,t ip,q,t ) = (TTft) -1/4 

xexp[ - {(x - (q + iPW + p2}/21i], 

which may be derived by developing and solving for (xiP,q) 
partial differential equations in P and q and using the fact 
that 

(xiO) = (TTft) -1/4 exp [ - x2/21i] 

(Ref. 20), leading to 

= foo foo dPh dqb foo foo dPa dqa 
- 00 - 00 2TTft - 00 - 00 2TTft 

X (TTft) -1/4 exp [ _ {(xb - (qb ~:b W + Ph 2}] 

X (Pb,qb,tb iPa,qa,ta ) 

X (TTft)-1/4 exp [ _ {(xa - (qa ~:a))2+p/}]. 

but for the special case of Hamilton-Jacobi 

(Pb,qb,tb iPa,qa,ta ) 

= 2TTft exp[i(rb - ra )/1i]8(Qb - Qa )8(Pb - Pa ), 

where the generator r is determined from the Hamilton
Jacobi equation, 

H(q,(ay) ,t) + (ay) = 0, 
aq PI at qP 

where r = Y - QP. 
Then 

(xb ,tb iXa ,ta ) 

f
OO foo dPdQ 

- -00 -00 2(TTft)3/2 

[ 
{(Xb - (qb + iPh »)2 + Ph 2}] 

Xexp - 21i 

X exp [ i ( r b ; r a ) ] 

[ 
{(Xa - (qa - iPa»)2 + Pa 2}] 

Xexp - , 
21i 

where the Hamilton-Jacobi analysis yields 

qa (P,Q,ta ), Pa (P,Q,ta ), ra (P,Q,ta ), 

qb (P,Q,tb ), Ph (P,Q,tb ), r b (P,Q,tb ); 

this is illustrated for the case of the simple harmonic oscilla-
tor. 

Here again, the result of performing the phase space 
integrals, in general, depends on the sequence in which they 
are performed. It is understood that ifthere is any ambiguity, 
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the momentum integrals are to be performed first. How this 
comes about, and its cure, is discussed elsewhere.8 

XIV. AN EXPLICIT EXAMPLE: THE SIMPLE HARMONIC 
OSCILLATOR 

The p,q symmetry resulting from this choice of units 
avoids the ambiguities in the sequence of performing the 
phase space integrals. 8 

The Hamilton-Jacobi equation for Y(P,q,t) , where 

r(Q,q,t) = Y - QP 

and 

_(ay) P- , 
aq PI 

(
ay) 

Q= ap ql 

..!.. (ay )2 + q2 + ~ + (ay) = O. 
2 aq PI 2 4 at qP 

A solution can be found of the form 

Y(q,j,t) = W(q,j) - (1+ 1i/4)t, 

where 1 is an arbitrary function of P; and W is determined 
from 

- - +!L=J, W= dqv(2/-l), 1 (a~2 2 J 
2 aq PI 2 

Y = J dqv (21 - q2) - (I + :) t 

= v(21 - q2)q/2 + larcsin(q/v(2/») 

-(/+ :)r 

[Ref. 21, p. 86, Eq. 2.271 (3)], which generates 

P= - =v(2/-q), (
ay) 2 

aq PI 

(
ay) dl Q= - = [arcsin(q/v(2/»)-t]-, 
ap ql dP 

then unravel 

q = V(2/ )Sin( Q ~ + t ). 

P = V(2/ )COS( Q ~ + t)' 
r = Y - QP = 1 sin( Q ~ + t )cos( Q ~~ + t ) 

dP lit 
+IQ dl -QP-4"' 

a nonlinear, time dependent canonical transformation. Re
call 
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(Xb,tb Ixa,ta) 

= f f d~~Q (1rli)-1/4 

[ 
{(Xb - (qb + iPh »)2 + Ph 2}] 

Xexp - 21i 

xexp[i(rb ; r a )](1rli)-1/4 

[ 
{(Xa - (qa - iPa»)2 + Pa 2}] 

Xexp - 21i ' 

where the Hamilton-Jacobi analysis yields 

qa (P,Q,ta ), Pa (P,Q,ta ), ra (P,Q,ta ), 

qb(P,Q,tb ), Ph (P,Q,tb ), rb(p,Q,tb )· 

For the simple harmonic oscillator, Hamilton-Jacobi 
leads to 

where T=tb - ta' 
Let r = v' J, then 

( I ) - iT 14 f f r dr dO xb,tb xa,ta = e (1rli)3/2 

where 

a=(l-~exp[ -2i(0+tb)] -!exp[2i(0 +ta)])/Ii, 

{3 = iv'2(Xb exp [ - i( 0 + tb )] - Xa exp [i( 0 + ta )] )/Ii, 

r = - (Xb 2 + Xa 2)/21i - i(tb - ta )/4, 

and 0= Q dP / df; the Jacobian of the transformation 
P,Q-- J, 0 being unity. This demonstrates that, in general, 
the amplitude is independent of the arbitrary function f 
(now a dummy variable). Translating 0--0 - (tb + ta )/2 
leads to the simplification 

a = (1 - e- iT cos(20»)/Ii, 

{3 = iv'2(xbe- ilJ - xaeilJ)e - iT12/Ii, 

r = - (Xa 2 + Xb 2)/21i - iT /4, 

{ 
[_ (e- iT + l)r+2e-iTrcos20+iv'2(Xbre-ilJ-XareilJ)e-iTI2_!(Xa2+Xb2)]} 

X9P Ii ' 

now transform these "cylindrical polar" coordinates to Cartesian, 

but 

f~ 00 exp [ - ax2 + {3x ]dx = .J@0exp[~] . 
Hence 

(Xb,tb Ixa,ta) = eiTI4 (2i1rli sin n -1/2 exp[i{ (Xa 2 + x/)cos T - 2xaXb }I(21i sin n] 
where T=tb - ta (Refs. 6 and 12), or more precisely 

(Xb,tb Ixa,ta) = eiTI4 exp[ - i(1T/4 + 1T/2Int( T /1T»)] 

X [v'(21rlilsin TI)] -I exp[i{ (Xa 2 + Xb 2)COS T - 2xaXb }/(21i sin n] 

to avoid the root ambiguity, where lnt( T /1T) is the integer part of T /1T. 22,23 
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APPENDIX: WORKING OUT THE GENERAL GAUSSIAN INTEGRALS 
By differentiating [w.r.t v(/) or p,(/)] the Gaussian integral, 

{"'oo .. ·Loooo ~D:II dU(;:(j) exp[<~: {v(k)u(k) - v
2
(k)6.tI2a

fz
+ v(k)u(k) +P,(k)V(k)}] 

= exp [ _ /i I {v(k)6.t 12a + V(k)P,(k)}] , 
k = I fz 

one may develop: 

Integral 

= Joo ... Joo Nif du(j)dv(j) , 
- 00 - 00 j = I 21Tfz 

Integrand 

[ 

N-I {v(k)u(k) - :2(k)6.t 12a}] . 
X exp i k ~ I -'--'--'---'--'---7-'-'--'-----"-

Integral 
Integrand (Equivalent integrand) 

vn(/) (n>l) 0 
u(/) 0 
v(/) u(/) - (fzli) 
vn(/) u(/) (n>2) 0 
u2(/) - (fzli)6.tla 
v(/) u2(/) 0 
V2(/)U2(/) 2 (fzli) 2 

Vn (/) U2(/) (n>3) 0 
U3

(/) 0 
V(/) U

3
(/) 3 (fzli)26.t la 

v2(/) u3 (/) 0 
v3

(/) u3
(/) - 6 (fzli) 3 

VN(/) u3 (/) (n>4) 0 
etc. 

These expressions continue to be valid to order 6.t if a is 
a function of u,t; since to this order they may be held con
stant at the midpoint value. Further, (J IJp,(/»)y 
-(JIJp,(/-l))y =6.t(J 2/JtJp,)y induces a 6.v(/), and 

since all currents are held constant (at zero), so the contri
bution of 6.v containing terms is null. It is integrals such as 
these that tell us that U (6.Q) contributes with strength order 
(6.t)1/2 and v(P) at order (6.t)-1/2, excepting that for the 
presence of v's (P's) only [nou's (6.Q 's)] the contribution is 
zero when the currents are turned off. 

From these arguments one concludes that the stochastic 
terms previously carried are all those that contribute to or
der 6.t. 
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Recently Froman et al. [J. Math. Phys. 28, 1813 (1987)] obtained a simple formula for the 
energy shift due to the compression of an atom. In the model considered the usual condition 
(associated with the corresponding uncompressed atom) that the wave function must vanish 
at r = 00 is replaced by the boundary condition that the wave function must have a node at the 
finite distance r = a. The treatment of the problem of obtaining the energy shift due to the 
compression is based on the phase-integral method developed by Froman and Froman. In the 
present work the formula for the energy shift is generalized to a possible additional choice of 
the base function in the phase-integral treatment. The normalized wave function close to the 
origin is also obtained. As an application, the resulting general formula for the energy shift is 
particularized to the case of a hydrogenic atom and a numerical illustration of the accuracy of 
the formula for the two alternative choices of the base function is given. 

I. INTRODUCTION 

In a previous paper,l which forms part I of the present 
work, and which is henceforth denoted by I, Froman et al. 
studied a model of a compressed atom, which was first intro
duced in 1937 for the case of the hydrogen atom by Michels 
et al.2 Problems concerning confined atoms have been stud
ied by many authors since then. For a comprehensive discus
sion of representative works up to 1983 see I, and as an exam
ple of the continuing interest in the problem of a compressed 
atom see Ref. 3. The aim of I and the present paper is to 
derive simple, accurate analytical results for a system con
sisting of a nonrelativistic quantal particle bound in an un
specified, smooth, spherically symmetric, single-well poten
tial, which is enclosed in a large, impenetrable sphere with 
the aid of the phase-integral method developed by Froman 
and Froman. For the general background of that method we 
refer to I and the references given therein. It is important to 
note that the phase-integral approximations used in that 
method are more general than the JWKB approximations 
since they contain an unspecified function Q( r,E) , the base 
function, which can be chosen in a way appropriate for the 
problem under consideration. 

Our model problem involves the boundary condition 
that the wave function must have a node at !he finite distance 
r = a. An analogous model situation occurs for odd parity 
states in a symmetric double oscillator, a problem which has 
been treated rigorously by Froman4 with the aid of the 
phase-integral method. In Sec. II, for our model problem, 
Froman's solution of the double-oscillator problem is ex
ploited to obtain the energy shift due to compression. The 
resulting formula agrees with a formula obtained in I in a 
more rigorous way. In I the base function Q(r,E) is chosen 
such that the phase-integral approximations are valid also 
when r tends to zero. In the present investigation the base 
function Q( r,E) may either be chosen as in I or according to 
condition (8a) in Ref. 5. 

The introduction of an alternative choice of the base 
function Q(r,E) in the present paper enables us in Sec. III to 

generalize the formula for the normalized wave function 
close to the origin obtained by Froman et al.5 to the present 
boundary value problem. 

In Sec. IV the phase-integral formula for the energy shift 
due to compression is applied to the particular case of a com
pressed hydrogenic atom and the accuracy of the formula 
thus obtained is demonstrated numerically. For either 
choice ofthe base function mentioned above, a considerable 
improvement of the accuracy is obtained by taking the sim
ple third-order correction into account. 

Consider a nonrelativistic particle moving in a spheri
cally symmetric potential. The state considered corresponds 
to the angular momentum quantum number I and the energy 
E. The radial SchrOdinger equation is written as 

d 2
", 

dr + R (r,E)", = 0, (1) 

where, with obvious notations, 

R (r,E) = (2mllJ2)(E - V(r) - faU + 1 )/2mr). (2) 

To obtain a useful approximate expression for the radial 
wave function, we shall use the phase-integral method, in
volving phase-integral approximations of arbitrary order, 
devised by Froman and Froman (see I and the references 
given therein). In the context ofthe present paper there are 
two distinct situations and two main alternatives, which we 
denote cases A and B, for choosing the base function Q(r,E) 
in these phase-integral approximations. As our first alterna
tive (case A) we choose the last-mentioned function such 
that the phase-integral approximations are valid also when r 
tends to zero, which is achieved if we impose the condition6

,7 

lim r(Q2(r,E) - R(r,E») = - 1, case A. (3) 
r_O 

If the potential behaves as - Zfz2/(maor) close to r = 0, 
where ao is equal to the Bohr radius and where the atomic 
number Z is assumed to be positive, we may as an alternative 
choose Q(r,E) as in Ref. 5 such that 

limr(Q2(r,E) -R(r,E»)=/(/+ 1), caseB. (4) 
r_O 
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A possible choice in each case is 

Q2(r,E) =R(r,E) - (l/4r) 

2m (l +!)2 
= fz2 (E - V(r» - r ,case A, 

(5a) 

and 

Q2(r,E) = R(r,E) + /(/ + l)lr 

= (2mlfJ2 )(E - VCr»), case B. (5b) 

For the phase-integral approximations of the order 
2N + 1, we have 

N 

q(r,E) = Q(r,E) L Y2v ' 
v=O 

with the first few quantities Y2v being 

Yo= 1, 

with 

Y2 = !Eo, 

Y4 = _1..~ 
8 

1 ( 1 d)2 - 8" Q( r,E) dr Eo, 

(6) 

(7a) 

(7b) 

(7c) 

€ = R - Q2 _1_ [5(dQ2 )2 _ 4 2 d
2Q2

] 
o Q2 + 16Q6 dr Q dr' (8) 

Explicit expressions for Y 2v up to Yg are given in Refs. 8 and 
9 and for up to Y20 in Ref. 10. 

II. ENERGY LEVELS FOR THE UNCOMPRESSED AND 
COMPRESSED ATOMS 

In the treatment of the radial Schrooinger equation ( 1 ) 
with (2) for an atomic electron in a free, uncompressed 
atom, the boundary conditions are u (0) = u ( (0) = O. If, 
however, the atom is enclosed in a sphere of radius a, the 
boundary conditions are instead u(O) = u(a) = O. This 
change of boundary conditions causes a shift upward of en
ergy level. This effect has been studied theoretically during 

(a) Case A 

several decades by many authors: see I and the references 
given therein. 

and 

We introduce the definitions 

L(E) = 1.. i q(r,E)dr, cases A and B, 
2 r 

(9) 

K(r2,E) = 1.. i i q(r,E)dr, cases A and B, (10) 
2 r(r,) 

where in (9) r is the closed contour of integration pertinent 
to the case one is treating, i.e., r stands for r A or r B depict
ed in Fig. 1 (a) and 1 (b), respectively, together with r(r2 ), 

and whereq(r,E) is given by (6) with (7) and (8). It should 
be noted that r2 is a point in the classically forbidden region. 

For the uncompressed atom, i.e., for infinite values of a, 
the approximate quantization conditions pertaining to cases 
A and B are given by Eq. (19) with (20a) and (20b), respec
tively, in Ref. 11, which in the notation of! read as 

L(E s"") = (s + !)1T, case A, 

L(E s"") = (s + 1+ 1)1T, case B, 

(1Ia) 

(lIb) 

and wheres = 0,1,2, ... is the radial quantum number. Incase 
B the function Q 2(r,E) has a first-order pole at r = 0 and a 
first-order zero on the positive real r axis and the quantiza
tion condition (11 b) differs from the generalized Bohr
Sommerfeld quantization condition (1Ia), which applies to 
a smooth function Q2(r,E) with two zeros. 

In our model the compression of the atom corresponds 
to moving the node of the wave function in the classically 
forbidden region from r = 00 to r = a. The effect on each 
energy level of such a change in boundary condition can be 
understood by means of the following analogy. Consider a 
one-dimensional symmetric double oscillator symmetric 
around r = a. For convenience we denote the variable by r, 
although it may be extended to - 00. The square of the base 
function with reversed sign is illustrated in Fig. 1 of Ref. 12, 
where, however, the center of symmetry should be moved 
from the origin to r = a (cf. Fig. 2 of Ref. 12) and where the 

(b) Case B 

.. 

a __ ++~~~r---~--~------~---a~--r --+-------?'------~----+-__ r 

FIG. 1. (a) and (b) show forreal values 
ofrthe qualitative behavior of _ Q2(r) 

in cases A and B, respectively. The cuts 
in the complex rplane, introduced in or
der to make Q( r) single-valued, are indi
cated by bold lines; the contours of inte
gration occurring in the formulas are 
also depicted. The contour r A is a 
closed loop encircling the two classical 
turning points to and t I' The contour r B 

is a closed loop encircling the origin and 
the classical turning point t l • The con
tour r(r2 ) isa nonclosed contour which 
goes from a real value r2 on the lower 
Riemann sheet, passes around the classi
cal turning point t l , and returns to the 
corresponding real value r2 on the upper 
Riemann sheet. The phase of Q(r), 
which is also indicated, is chosen such 
that Q(r) = IQ(r) I on the upper lip of 
the cut in the classically allowed region, 
which implies that the contour integrals 
over r A and r B are positive. 

o 

Q=/QI Q=-iIQI 

@\Q-~;? 
Q=IQI Q= -ilQI 

@(~ 
932 J. Math. Phys., Vol. 29, No.4, April 1988 Staffan Yngve 932 



                                                                                                                                    

turning points from left to right are denoted by to, t l , 2a - t l , 

and 2a - to in our notation. For this symmetric double oscil
lator an odd-parity bound state solution of the Schrodinger 
equation (1) has a node at r = a and according to Eq. (51) 
in Ref. 3 (rewritten to suite our notation), the energy levels 
for odd-parity states are obtained from the approximate 
quantization condition 

L(E~d) -! exp{ - 2K(a,E~d)} = (s + !)1T, 

S = 0,1,2,... . (12) 

In (12) Land K are defined by (9) and (10), respectively, 
with the contours of integration r( = r A) and r(r2 ) illus
trated in the lower part of Fig. 1 (a) where r = a is taken as 
the point of symmetry for the double oscillator. 

In Ref. 3 the square of the base function is chosen equal 
to R (r,E) and formula ( 12) is derived under the assumption 
that Q2(r,E) is smooth and may be continued analytically 
into the complex plane. We shall now assume that (12) is 
valid also when there is a possible small discontinuity of the 
derivative of Q 2(r,E) at the center of symmetry r = a. Ifwe 
construct a symmetric double oscillator by using a simple 
oscillator from - 00 to a and joining this simple oscillator 
by the function (defined from a to + 00) obtained by reflec
tion in the line r = a of the original potential function, a 
discontinuity of the derivative at r = a will, in general, occur 
(cf. Fig. 2 in Ref. 12). 

We conclude that (12) is an approximate quantization 
condition for a confined simple oscillator for which the wave 
function has a node at r = a. One can easily generalize (12) 
to the case of a radial problem with two turning points to and 
t I' Denoting by E: the eigenvalue of the boundary value 
problem (1) with boundary conditions u (0) = u (a) = 0, 
for which obviously 

(13) 
a- 00 

we hence in the two-turning-point case obtain E: from the 
approximate quantization condition (12) with E ~dd re
placed by E:. Subtracting the resulting quantization condi
tion from (1Ia), we obtain the approximate formula 

L(E:) - L(E SOO) 

=! exp{ - 2K(a,E:)} 

= ! exp{ - 2K(a,E SOO)}, cases A and B. (14) 

By approximating E: by E SOO in the second member of ( 14 ) 
we introduce only a very small error. It should be noted that 
E: and E,: in general depend on I. 

Introducing into (14) the approximate formula 

dL(EOO) 
L(Ea)_L(Eoo)=(Ea_Eoo) s (IS) 

s s s s dE SOO 

and replacing in the resulting equation in accordance with 
the quantization condition (lla) for case A and (lIb) for 
case B dL(E ': ) IdE ': by 1T dsldE ,:, i.e., by 1TI(dE SOO Ids), 
we obtain the approximate formula for the energy shift due 
to compression: 

933 

E~ _ E,: = _1_ dE,: exp{ - 2K(a,E,:)}, 
21T ds 
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(16) 

where dE,: Ids can be obtained, e.g., from spectroscopic 
data for the uncompressed atom. 

For a rigorous derivation (in case A) of (16) see I. 

III. GENERALIZED FERMI-SEGRE FORMULA 

The normalized radial wave function of the electron in 
the model of a compressed atom can be written as 

rr )-112 t/Jnorm (r,E~) = t/J(r,E~)\jo ~(r,E~)dr , (17) 

where t/J(r,E~) is the real, unnormalized bound-state solu
tion of (1) with (2) corresponding to the eigenvalue E:, i.e., 
t/J(r,E:) vanishes for r = 0 and r = a. The integral appear
ing in (17) can be expressed in a convenient form by means 
of a method devised by FurryJ3 and simplified by the present 
author. 14 The general formula given in Ref. 14 and adapted 
to the present situation is, according to (4.6) with (4.5) in I, 

f [t/J(r,E:)]2dr 

= ~ {~(t/J i¢ -"if dt/J)} (18) 
2m JE dr dr E~E~' 

Formula ( 18) is an exact relation provided that t/J and "if are 
exact solutions of ( 1) which, for any value of E, have the 
properties that t/J-O as r-O and "if-o as r-a, and that, 
furthermore, t/J(r,E:) = "if(r,E:). It should be noted that 
the expression on the right-hand side of ( 18) is independent 
of r since the Wronskian t/J d"ifl dr -"if dt/JI dr is independent 
ofr. 

To obtain useful approximate expressions for the radial 
wave functions t/J and "if , which appear in ( 17) and (18), we 
shall use the phase-integral approximations mentioned pre
viously. In the first half of the present section we shall regard 
case B and as in Ref. 5 we shall assume that R (r,E) close to 
r = 0 is represented by the expression 

R(r,E) = _I(l + 1) + 2Z + ao-
2 f bn (.!...-)n, (19) 

r aor n~O ao 
where the quantities bn are dimensionless. In the derivations 
preceding formula (26) we further assume that the square of 
the base function Q 2 has precisely one zero t I on the positive 
real r axis, that this zero is well separated from the pole at 
r = 0, and that no other zeros of Q 2 lie on or close to the 
positive real r axis. According to the results obtained in Ref. 
15 (pp. 74-79) for the first-order phase-integral approxima
tion the particular solution t/J( r,E), for which t/Jlr' + I - 1 
when r-O for any value of E, is given by the approximate 
formula (7.28) in Ref. 15, which reads as 

t/J(r,E) = (1TC I ) -112Q -1/2(r,E) 

Xcos (1' Q(r,E)dr - (I + ! )1T). (20) 

where 

CI = Res [t/J(r,E)] -2, 
r=O 

when 21 + 1 is a non-negative integer, (21) 

and where r is a point lying in the interior (i.e., sufficiently 
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faraway from both end points) of the interval 0 < r < t l , with 
tl the zero of Q 2(r,E). For higher-order phase-integral ap
proximations see (12a) in Ref. 5. 

In the limit as a- 00 the solution ¢(r,E) of the radial 
Schrodinger equation is in the first-order approximation giv
en by formula (8) in Ref. 16. For a < 00 there will be a phase 
correction and the solution ¢(r,E) of the radial SchrOdinger 
equation (1) which vanishes at r = a (for any value of E) is 
approximately 

- -1/2 ¢(r,E) = C[Q (r,E) 

xcos [L' Q(r,E)dr - ! 1T - <I>[] (22) 

when O<r<tl (first-order approximation). Here <1>[ is a 
phase correction (independent of r) which tends to zero in 
the limit as a- 00. The requirement that the functions 
¢(r,E) and ¢(r,E) shall be equal for E = E~ gives, by means 
of (20) and (22), the quantization condition 

i
t, 

o Q(r,E~)dr = (s + 1 + 1)1T + <1>[ (23) 

and the condition that 

C[ = ( - 1 )SI( 1TC[) 1/2, when E = E~. (24) 

The approximate solutions ¢ and ¢ given by (20)-(22) 
satisfy the conditions required for the approximate validity 
of ( 18) if the conditions (23) and (24) are fulfilled; hence 
we can obtain an approximate expression for the normaliza
tion integral. In fact, from (20)-(22) and (24) it follows 
that 

¢ d¢ _¢ d¢ 
dr dr 

(-1)' (i" ) = sin Q(r,E)dr - (I + 1)1T - <1>[ 
1TC[ 0 

(25) 

and when this expression is inserted into (18) and use is 
made of (23), we obtain 

[ ~(r,E~)dr 

= ~ (~ [it' Q(r,E)dr - <I>[]) . (26) 
21Tmc[ aE 0 E~E~ 

Expression (26) can, with the aid of the quantization condi
tion (23), be rewritten as 

[
If (dEa)-1 

~(r,E~)dr=-- __ S • 

o 2m c[ ds 
(27) 

The same final formula (27) would have been obtained if we 
had used phase-integral approximations of higher order. 

Inserting (27) into (17) and recalling that 

we arrive at the formula 

. (¢norm(r'E~») [2mC[ dE~]I/2 hm = ---- , 
,-0 ,1+1 ,,2 ds 

(28) 

where, according to Ref. 5 for integral values of I, 
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C = (2Zlao)2[+1 {IT [1 +(~_I(l+ 1)~) '2 

[ [(2/+ 1)!J2 j~O Z2 2 Z3 ) 

(29) 

wherein j takes all non-negative integral values up to 1 and 
where 

R[ = 0, for I = 0 and 1, (30a) 

R[ = 18[;24 + ;35 + (;13 )l for 1 = 2, (30b) 

R[ = 45 [6 !2 + 22.!l + 13(~)2] Z4 Z5 Z3 

+ 675[~ + ~!2 + 6~] Z6 Z3 Z4 Z7 

+ 45 ~ [14!2 + 18.!l + 27(~)2] Z2 Z4 Z5 Z3' 

for 1 = 3. (30c) 

It should be noted that formula (29) with (30) is exact. The 
structure of formula (28) as compared, e.g., to the more 
complicated formula for the uncompressed atom obtained 
by Durand and Durandl7 should be noted. The quantity C[ is 
determined entirely from the local properties of the function 
R (r,E) close to r = 0, whereas dE~/ds is a global quantity 
that can be obtained, e.g., by means of spectroscopic data. 

It should be noted that formula (28) is obtained formal
ly from the generalized Fermi-Segre formula (18) in Ref. 5 
by replacing the derivative of the energy eigenvalue with 
respect to the quantum number by dE ~I ds and replacing the 
energy eigenvalue by E~ in the expression for C[. For 1 = 0 
formula (28) with (29) and (30) is recognized as the usual 
Fermi-Segre formula l6 with dEnldn replaced by dE:ldn. 
Since Co does not depend on the energy, for s states the 
change of the normalized wave function due to compression 
depends entirely on the difference between (dE~/ds) 1/2 and 
(dE'; Ids) 1/2. 

If dE ~I ds is unknown, it can be calculated from (14) 
and (11) as 

dE~ 1T 

Ts= (alaE) [L(E) -!exp{-2K(a,E)}])E~E~' 

cases A and B, (31) 

where L and K are obtained from (9) and ( 10). It should be 
noted, however, thatthe introduction of (31) into (28) may, 
in case B, deteriorate the accuracy of (28) for higher values 
of I. By calculating the energy eigenvalue (and dE~/ds) for 
the optimalaltemative A orB, (28) with (29)-(31) consti
tutes a formula for the normalized wave function at the ori
gin, which should be sufficiently accurate for many pur
poses. 

IV. APPLICATION TO THE CASE OF A HYDROGENIC 
ATOM 

In the application to the case of a hydrogenic atom the 
potential V(r) in (2) is the attractive Coulomb potential 

V(r) = - Zlflmaor. (32) 
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WeshallchooseQ2(r,E) according to (5a) with (32) incase 
A and according to (5b) with (32) in case B. Inserting the 
respective Q(r,E) with the phase shown in Fig. 1 into (9) 
with (6)-(8), we obtain 

L(E) = [([Z2~/(ma~>]/_2E)1/2_ (l+!)]1T, 

case A, (33a) 

L(E) = ([ Z2~/(ma~)]1 - 2E)1/21T, case B. (33b) 

We realize immediately that for the free hydrogenic atom 
(l1a) with (34a), as well as (l1b) with (34b), yield the 
well-known exact formula 

E; = - [Z2~/(ma~) ]/2n2, 

where 

n=s+I+1. 

Introducing the notation 

E~ = - [Z2/N(ma~) ]/2n~, 

(34) 

(35) 

(36) 

where na is the "effective principal quantum number" for 
the compressed hydrogenlike atom, we obtain from (14) 
and (33 )-(36) the formula 

na - n = (1I21T)exp{ - 2K(a,E;)}, cases A and B. 
(37) 

We shall evaluate the quantity exp { - 2K (a,E ; )}, 
withK(a,E; ) defined by (l0) and (6)-(8) up to the third
order approximation and with E; given by (34). As in I we 
put 

r = Zr/ao (38) 

and introduce expression (34) for E s'" into the alternative 
expressions (5a) with (32) and (5b) with (32) forQ2(r,E), 
obtaining in cases A and B, respectively, 

'" [1 2 (/ + !)2] 112 _ 
Q(r,E s )dr= - n2 + r - r dr, 

E=E;, case A, (39a) 

'" [1 2 ] 1/2 _ 
Q(r,E s )dr= - n2 + r dr, case B. 

(39b) 

It can easily be shown with the aid of (39a), (39b), (2), 
(32), and (6)-(8) that the functions Y 2v for the energy E; 
can be expressed in terms of the variable r and the param
eters n and I. Hence K(a,E;) defined by (10) can be ex
pressed in terms of the parameters n, I, and 

a = Za/ao. (40) 

For the quantity aIQ(a,E;) I appearing in our final formula 
I 

Case A 
I , 

(15): 

2 

/(~p) ~ 

",,-~! ! -------.... / ~ 
1s ',j I t 

, , C>I 
2p '\: I 

25 

,,: ,2p ~ 
" 

25 

-CI 
t.i 
a:: 

, 

10-1 
\ 

(25)\ 
I 
I 

(1 s): 
I , , 
I 
I 
I 
I , 
\ 

, 
I 

Case 8 

(1 s) 

25 

I ' 

:25/ , , 

FIG. 2. The relative error ofn. - n is plotted against a/n2 = Za/(aon2) for 
the states Is (n = I, 1= 0), 2s (n = 2, 1= 0), and 2p (n = 2, I = I). The 
left-hand figure is based on the choice 

~Q2(r,E~) = - n.- 2 + 2Zaolr - (I + !)2a~/r2 
and the right-hand figure is based on the choice 

~Q2(r,E~) = - n.- 2 + 2Zaolr, 

where in both cases we have n. = n for the uncompressed hydrogenlike 
atom. The solid lines correspond to a positive error and the broken lines 
correspond to a negative error. It should be mentioned that the cusps in the 
figure actually correspond to a relative error equal to zero, although for 
practical reasons this is not seen. Here (Is), (2s), and (2p) on the respective 
curves indicate the first-order phase-integral approximation for the respec
tive states and Is, 2s, and 2p on the respective curves indicate the third-order 
phase-integral approximations. 

( 43) for K (a,E ; ) we easily obtain the following expressions 
for cases A and B, respectively: 

aIQ(a,E;) 1 = [a2/n2 - 2a + (l + !)2r12, 

a> t 1, case A, 

aIQ(a,E;)1 = [a2/n2 - 2a]1I2, 

(41 ) 

(42) 

With the aid of (6)-(8) and (39)-(42) and with due 
regard to the contours of integration shown in Fig. 1, we 
obtain from (10) with r2 = a> t 1, after the resulting inte
grals have been evaluated in the first and third order, 

exp {- 2K(a,E;)} = exp {- 2(K(I) +K(3) + ... )}, 
cases A and B, (43) 

where for case A we have 

exp{ _ 2K (I)} = (a - n
2 + naIQ(a) I)N(a - (/ + !)2 - (/ + !)aIQ(a) 1)1+ 112 exp { _ 2aIQ(a) I} E = E;, a> f

1
, 

a - n2 - naIQ(a) I a - (/ + !)2 + (/ + !)aIQ(a) I ' 
(44a) 

K (3) = [n2 _ (l + !)2] - 1 [aIQ(a) I] -3 -i4[ - a3/n2 + 002 - 3(/ + !)2a2/n2 _ 3n2a _ n2(1 + !)2 + 2(1 + !)4], (44b) 

and for case B we have 

exp {- 2K(I)} = [(a - n2 + naIQ(a)I)/(a - n2 - naIQ(a)I)]N exp{ - 2aIQ(a)I}, E= E;, a>t1, (45a) 

K(3) = [aIQ(a)l] -3i4[2a3/n4 
- 6ii2/n2 + 9a] + F(l + l)aIQ(a)l/a. (45b) 
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In Fig. 2 the accuracy of formula (37) with (43) is illustrat
ed for both cases A and B, i.e., with the use of (44) and (45), 
respectively. The approximations deteriorate and eventually 
break down as a approaches the zero t1 of Q 2 (r,E) on the 
positive real r axis. We see that the choice of Q 2 (r,E) as in 
case B (corresponding to the omission of the centrifugal bar
rier in the first order of approximation) gives within its re
gion of validity a good accuracy when the third-order cor
rection is included. It should be noted, however, that this 
modification cannot in general be used for high values of I. 
For the choice of Q 2 (r,E) as in case A, which in the first
order approximation corresponds to the replacement of 
l(l + 1) by (l + !)2, we obtain a considerable numerical im
provement by taking the simple third-order correction into 
account. 
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Petrov types D and II perfect-fluid solutions are obtained starting from conformally flat 
perfect-fluid metrics and by using a generalized Kerr-Schild ansatz. Most of the Petrov type 
D metrics obtained have the property that the velocity of the fluid does not lie in the two-space 
defined by the principal null directions of the Weyl tensor. The properties of the perfect-fluid 
sources are studied. Finally, a detailed analysis of a new class of spherically symmetric static 
perfect-fluid metrics is given. 

I. INTRODUCTION 

In a previous paper,1 the first results concerning perfect
fluid solutions of Einstein's equations in generalized Kerr
Schild form were given. The generalized Kerr-Schild met
rics have the following form: 

gaP = gaP + 2H1a1p, (1) 

where gaP is the metric of any space-time, H is a scalar field, 
and la is a null geodesic vector field for both metrics g and g. 

As is well known, the Kerr-Schild ansatz has been a 
powerful tool in searching for solutions of Einstein's equa
tions in either the vacuum case or the Einstein-Maxwell 
case.2-6 In contrast, excepting a metric due to Vaidya,7 no 
perfect-fluid solutions in generalized Kerr-Schild form were 
known up to the appearance of Ref. 1. In our opinion, there 
were two reasons for that lack. First, it was usual to start 
from metricsg which were solutions of the vacuum Einstein 
equations. But, if TaP and TaP are the energy-momentum 
tensors for the metrics g and g, respectively, it was shown in 
Ref. 1 that the following interesting relation holds8

: 

(2) 

where f is a scalar field. Therefore, if TaP vanishes then la is 
a null eigenvector of TaP' so that TaP cannot be the energy
momentum tensor of a perfect fluid. The same happens when 
la is an eigenvector of Tap. Thus in order to obtain perfect
fluid metrics g we must consider only the case in which la is 
not a null eigenvector of Tap. Of course, the most interesting 
case arises when TaP itself is an energy-momentum tensor 
for a perfect fluid. 

The second reason emerges from the fact that it is neces
sary to allow great freedom in choosing the vector field I a. 

For example, in the classical Kerr-Schild metrics (Ref. 2), 
the great variety of shear-free null geodesic vector fields in 
flat space-time was used. For any metric g, there will be, in 
general, a great number of null geodesic vector fields. 9 But, 
in order to solve the Einstein equations, it is also very useful 
to know an explicit expression of the general solution for 
vector fields of this kind. In the classical Kerr-Schild met
rics it was very useful that the Kerr theorem 10 provides the 
general solution for the shear-free geodesic null vector fields 
in flat space-time explicitly. This is not the case for an arbi-

aJ Present address: Theoretical Astronomy Unit, School of Mathematical 
Sciences, Queen Mary College, Mile End Road, London EI 4NS, Eng
land. 

trary metric g. However, it is known that the geodesic 
(shear-free) null vector fields in a conformally flat space
time are the geodesic (shear-free) null vector fields in flat 
space-time, and conversely. Thus if we start from a confor
mally flat space-time then we can use the Kerr theorem. 
Moreover, the conformally flat perfect-fluid metrics have an 
additional advantage: all metrics of this kind are known. 
They are either generalized interior Schwarzschild solutions 
or generalized Friedmann solutions. 11 

Therefore, we shall start from conformally flat perfect
fluid metrics g. We devote Sec. II to writing down the Ein
stein equations for this case. The case when the vector field 
I a is shearing was studied in Ref. 1. On the other hand, the 
case when I a is shear-free was solved only in a very particu
lar subcase. In this paper, we try to solve the shear-free case 
in general. There are two outstanding subcases which are 
studied in Sec. III. 

All the solutions we obtain are Petrov types D and II. 
We also point out that most of the type-D metrics are new 
since the velocity of the fluid does not lie in the two-space 
spanned by the two multiple null eigenvectors of the Weyl 
tensor. Apart from the results obtained in Ref. 1, only two 
metrics (Wahlquist,12 Kramer13

) with this property were 
known previously. 

In Sec. IV we give some explicit examples. In Ref. 1 two 
explicit examples of how the method works and their respec
tive metrics were given. Although the method always works 
in the same way, in this paper we present some explicit solu
tions again. In particular, a class of spherically symmetric 
static perfect-fluid metrics is obtained. The properties of the 
perfect-fluid sources themselves are discussed in Sec. V. Fin
ally, Sec. VI is devoted to the study of the new class of spheri
cally symmetric static perfect-fluid space-times. 

II. THE EINSTEIN EQUATIONS 

Hereafter, we choose the metric g and the null vector 
field lof ( 1) with the following properties. First, g is a solu
tion of Einstein's equations for a perfect-fluid energy-mo
mentum tensor, 

RaP = X(Tap - ~apn, (3) 

TaP == (q + p)UaUp + pgaP' ~PUaUP = - 1. (4) 

Second, g is conformally flat, that is to say 

CaP).!' =0, (5) 
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where CapAI'- is the Weyl tensor for the metric g. Or, equiv
alently, g can be transformed into 

gap dxad:xf3 = 2qi( - du dv + dzdz), (6) 

where l/J2 is a positive function of the coordinates (the con
formal factor) and where suitable coordinates {u,v,z,z} have 
been chosen for the flat metric. Finally, we choose the null 
geodesic vector field la to be shear-free. The general solution 
for vector fields of this kind in the metric (6) is known and is 
given by 10. 11 (Kerr theorem) 

la dxa=du+ Ydz+ Ydz+ YYdv, (7) 

where Y is a complex function of the coordinates defined 
implicitly by 

F( Y,zY + u,vY + z) = a (8) 

and where F is an arbitrary analytic function of three com
plex variables. 

Now, we choose a null tetrad {/,k,m,m} associated with 
I as follows: 

m = mo + ZI, k = ko + Zmo = Zmo + ZZI, (9) 

where 

(10) 

and 

Z= -mo·ull·u. (11 ) 

Therefore, in this null tetrad we have 

(12) 

or, equivalently, 14 

l/JOI = l/J02 = l/J12 = 0, l/Joo = (X12 ) (q + p) (/aUa )2, 

l/J1I = (X/8)(q + p), l/J22 = (X/8)(q + p)(laua ) -2, 

A = (XI24)(q - 3p). (13) 

The spin coefficientsl4 for the null tetrad (9) are given in 
Refs. 1 and 15 explicitly. Here, we only remark that 

x = € = (1 = A. = f3 = o. (14) 

If we are looking for solutions g for a perfect-fluid energy
momentum tensor 

TaP = (q+p)uaup +pgaP, gaPuaup = -1, (15) 

and if we define 

U={)H - 2Ha, V=DH - 2Hp, (16) 

the Einstein equations become finally I (X is the gravitational 
constant) 

XP = XP - DV - V(3p + p) - 3Hp2 - 4Hpp 

+ H(p2 + 4l/Joo), (17) 

Xq=Xq+ V(p-p) -DV+3H(p2+p2), (18) 

(/aua )2 = 2l/Joo{X(q + p) + 4Hl/Joo 

-2[DV +2Vp+2Hp(p_p)]}-I, (19a) 

maua = 0, (19b) 

{)V+ (p+p)U+ ('T'-a)V 

(20) 
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pM! = -Htl(p +p) - ()U + aU - rU - 'T'U -flY 

- 4Hl/J1I + H(y + r)(p - p) - W, (21) 

where we have put 

W= (lI4l/Joo) [DV + 2Vp + 2l1p(p - p) 1 

X [DV + 2Vp + 2Hp(p -p) - 4Hl/Joo - 8l/Jll]' 
(22) 

The expressions (17)-( 19) are not equations, but they 
define q, p, and ua as functions of q, p, ua

, and the unknown 
H. Thus we need only solve Eqs. (20) and (21), which are 
differential equations for H. However, in addition to Eqs. 
(20) and (21) we have the compatibility conditions for U 
and V, that iS,I,15 

DU+ (2p-p)U+ ('T'+1T)V 

+ H[pa + ()p + 21T(p - p)] = 0, (23) 

8U+pM!+jiV- Ua+2Hp(Y+r) =c.c. (24) 

Also, from the definition (16) of V it follows that 

V - V= 2H(p -pl. 

The Weyl tensor for the metric g is given byl6 

tpo = tpl = 0, - 6tp2 = [D - 2(p - p)] V, 

tp3 = (2p -p)U +H[pa +8p + r(p -p)]' 

¢4= -[8-(3a-2r)]U. 

(25) 

(26) 

Therefore, all the metrics g are algebraically special and the 
vector field la is a multiple null eigenvector of the Weyl 
tensor. 

When V=O, from (23), (25),andtheNewman-Pen
rose equations, it follows that U = a and p = p. Then, from 
(26) it is evident that g is conformally flat. Thus we shall 
only consider the case V #0. 

It has become clear to the authors that cases which have 
a function W nonlinear in H do not have solutions in general. 
This is because W is always of greater order in H than Vand 
U. And then, Eqs. (16) and (21) are not compatible in gen
eral. I,I5 Perhaps, this fact has something to do with a 
theorem due to Xanthopoulos (see Refs. 5 and 6). More
over, it is convenient to assume that 

p=p. (27) 

This assumption simplifies the calculations substantially. 
Therefore, we shall treat the following two cases: 

case A, DV + 2Vp = 0, (28) 

case B, DV + 2Vp - 4Hl/Joo = o. (29) 

Of course, there are more cases in which Wbecomes linear in 
H, for example, when DV + 2Vp - 8l/Jll = a and 
DV + 2Vp - 4Hl/Joo - 8l/Jll = O. These two cases would 
provide different resulting metrics, which is a proof of the 
variety of possibilities in our Kerr-Schild transformation. 
However, all the cases are formally equivalent to either the 
case A or the case B, and then the calculations are just a pure 
repetition in other cases. We shall study both cases in the 
following section. 

Because of (13) and (27) we can use the Bianchi identi
ties for the metric g as given in the Appendix of Ref. 1. These 
identities and the Newman-Penrose equations for the metric 
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g (when they are conveniently restricted to each case) will 
be used repeatedly (but not explicitly) in Sec. III. Anyway, 
we shall omit the details. 

III. THE SOLUTIONS 

First, we assume the condition (28). From this assump
tion and (27), Eqs. (20), (21), (23), (24), and (25) be
come, respectively, 

.5V+2pU+(r-a)V=O, (30) 

pM! = - 2Hflp -.5U + aU - 'TU - p,V - 4H4>w (31) 

DU+pU+ (r+17-)V=O, 

~U- Ua=.5U- 'Va, 
V=V. 

(32) 

(33) 

(34) 

The compatibility of (30) with (28), making use of (32), 
leads us to 

(35) 

We can consider two cases. 
(AI) p2 - 4>00#0. Then Eq. (35) tells us that 

U = rpV /(p2 - 4>00)' (35') 

(A2) p2 - 4>00 = O. Then Eq. (35) implies that we must 
have 

r=O. (35") 

Incase (A1),from (28) and (32) and by applying the oper
ator D to (35') we obtain 

1T= 0, 

r[pD4>oo + 24>00(p2 + 4>00)] = o. 
(36) 

(37) 

Therefore, we can consider two subcases again. 
(Ala) pD4>oo = - 24>00(p2 + 4>00)' From the New

man-Penrose equations and the Bianchi identities it is easily 
shown that this condition is equivalent to 

4>00 = Cp2, (38) 

where C is an arbitrary positive real constant. In order to 
distinguish this case from the case (A2) we must assume 
that 

(39) 

(Alb) r = O. In this case (37) is automatically satis
fied. Furthermore, this case is different from the case (A2) 
since now we havep2 - 4>00#0. 

Next, we are going to solve the three subcases (Ala), 
(Alb), and (A2) separately. 

The subcase (Ala): From the above considerations, 
Eqs. (30) and (28) are already compatible and Eq. (32) is 
satisfied. Also, Eq. (31) now becomes 

aH = 2H(/L + r + Y) -/LV /p + 2V(/Lp + 4>11 

+ A)/p2(1- C) + 2VrT/p2(1 - C)2. (40) 
The compatibilities of this equation with Vand U give 

us, respectively, 
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(41) 

ar = /Lr(2 + C) - (r - y)r 

+ 2rA _ 2r(/Lp + 4>11 + A) 
p p(1- C) 

2r4>11 (1 - 2C) 2'T~ 

pC p(1- C) 
(42) 

Equation (41) is compatible with (28) and (30). Finally, a 
new integrability condition arises from (42) and the New
man-Penrose equations, 

(1 + C)/LP + 2A + 2(2C - 1) 4> II/C = O. (43) 

It is easily shown that condition (43) is possible. 
The subcase (A 1 b): Now, we assume 

r = 0, p2#4>00 

so that (35') tells us that 

u=o. 

(44) 

(45) 

Thus Eqs. (28) and (30) are compatible and Eqs. (32) and 
(33) are automatically satisfied. Moreover, Eq. (31) be
comes 

pM! = 2Hp(r + Y -/L) - 4H(4)1I + A) -/Lv, (46) 

which is compatible with (45). The compatibility of (46) 
with V leads us to 

aV = V(2.u + r + Y) - 2V(24)1I + A)/p -/L4>ooV /p2 

- 4H4>00(/Lp + 4>11 + A)/p2. (47) 

Also, from (44) and (45) Eq. (30) becomes 

.5 V = a v. ( 48) 

Equations (47) and (48) are compatible and the integrabi
lity of ( 47) and (28) gives us the following condition: 

V {24>1I + 4>oo(7/LP +)4>11 + 4A) 

+ 2.u4>00 
2 

+..!.. [2D4> 11 + J!:... D4>oo] } 
p3 p P 

+ 4; (/LP + 4>11 + A) (D4>oo + 4p4>00 + ~002) = o. 
(49) 

It is very difficult to know if the expression ( 49) is possible in 
general. In fact, Eq. (49) should be interpreted as an equa
tion from which V is obtained as a function of H. Then we 
shouldputthis VinEqs. (28), (47), and (48) and we should 
obtain an (or more!) expression for Hwhich is not, in gen
eral, a solution of Eqs. (16) and (46). This procedure is 
useless in general. However, we can assume 

/LP + 4>11 + A = 0 (50) 

so that Eq. (49) becomes 

2"" + 4>00(4)11 - 3A) 
'I'll 2 

P 
2/L4>002 1 [ /L] + --3 - + - 2D4>1I + - D4>oo = o. 

P P P 
(51) 

This is a condition on only g and therefore we only have to 
check it. In fact, it may be shown that (51) is possible. 

The subcase (A2): This case is defined by the assump
tions 
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7=0, ¢OO=p2 (52) 

so that Eqs. (28) and (30) are compatible. Furthermore, 
Eq. (31) may be written 

pM! = 2H[p(r + r) - I1P - 2(¢11 + A)] 

(53) 

The compatibility of this equation with V gives us 

6.v = 2(8U - aU) - 4H(pp + ¢11 + A) + (Vip) 

X [pep + r + r) - 2(2¢11 + A)]. (54) 

In order to make this expression compatible with (28) we 
must have 

PP+¢l1+A=O (55) 

and then, Eqs. (53) and (54) become, respectively, 

pM! = 2Hp(p + r + r) - p V - 8U + aU, (56) 

6.v=2(8U-aU) + (Vip) 

X [pep + r + r) - 2(2¢11 + A)]. (57) 

The compatibility of (56) with U is 

pAU + 88U - 3a8U 

+ U[3aa - p(5p + 3r + r)] = o. (58) 

Keeping this equation in mind, Eqs. (57) and (30) are com
patible. Now, the Weyl tensor is given by 

3¢2 = Vp, ¢3 = Up, ¢4 = - (8 - 3a) U. (59) 

Since V does not vanish, we only can obtain solutions of 
Petrov types D and II. For Petrov type-D solutions we must 
have 

8U = U(3a - 2pU IV). (60) 

Otherwise, the solutions are Petrov type II. By using the 
condition (33), and after a little computation, it is easily 
shown that Eqs. (60), (58), and (32) are compatible. 

Now, we are going to solve case B. Therefore, we assume 
conditions (29) and (27) so that Eqs. (20), (23), (24), and 
(25) become, respectively, Eqs. (30), (32), (33), and (34). 
Furthermore, Eq. (21) now may be written 

pM!= -2HAp-8U+aU 

-rU - 7U - pV + 4H¢11' (61) 

The compatibility of (30) with (29), making use of (32), 
leads us to (36) and (37). Also, we must have 

(p2 + ¢oo) U = 7( Vp - 2H¢oo). (62) 

Consequently, as in case A, we could consider two subcases 
again but it turns out that the only interesting case arises 
when 

7=0 

and then, from (62) we have 

u=o. 

(63) 

(64) 

Thus, Eqs. (29) and (30) are compatible and also Eq. (32) 
is satisfied. On the other hand, Eq. (61) becomes 

pAR = 2Hp(r + r -p) + 4H(¢1l - A) - pV, (65) 

which is compatible with (64). The integrability of (65) and 
V leads us to 
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AV = V(2p + r + r) - 2A( Vip) - p V¢oolp2 

+ 4¢l1V Ip + 4(H Ip) [2D¢11 + 2p¢11 

+ (¢oo!p)(¢l1 - A - 2pp)]. (66) 

This equation is compatible with (30). Moreover, it may be 
shown that under the conditions 

p¢oo = 2p¢w 

D¢l1 + ¢oo(¢l1 - A)/2p = 0, 

(67) 

(68) 

Eq. (66) is compatible with (29). In fact, condition (67) is 
not very much restrictive because it is satisfied for the met
ricsg which have a constant energy density. In other words, 
all the generalized interior Schwarzschild metrics satisfy the 
above-mentioned condition (67). II 

The results obtained in this section can be summarized 
as follows. 

Let us choose the conformally flat perfect-fluid metric g 
and the shear-free geodesic null vector field f a such that they 
verify the possible conditions given in the first row of Table I. 
Then, let us define U and V by (16) and let us solve the 
integrable system of equations for U and V which appear in 
the second row of the table. Once this has been done, the 
solutions H of the compatible system of equations given by 
( 16) and the third row of the table provide us generalized 
Kerr-Schild metrics g. These metrics are solutions of the 
Einstein equations for a perfect-fluid energy-momentum 
tensor (15), where the energy density ij, the pressure p, and 
the velocity ija are given, for each case, in the fourth row of 
the table. The Weyl tensor of the resulting metrics as well as 
their Petrov types are also shown in Table I. 

As we can see in the table, the Petrov type-D metrics of 
cases Ala and A2 satisfy ¢3#-0 and ¢4#-0. Therefore, for 
these metrics, k a is not a multiple null eigenvector of the 
Weyl tensor, and then the form of ija tells us that the velocity 
of the fluid does not lie in the preferred two-space defined by 
the multiple null eigenvectors of the Weyl tensor. Thus these 
solutions are new. On the other hand, the metrics of cases 
Alb and B have ua lying in that preferred two-space so that 
they may be already known. II 

The particular case V = CHp (where C is a constant 
#- - 2) belongs to the more general case Ala and it had 
been solved previously by one of US.

17 Likewise, the case 
V = - 2Hp solved in Ref. 1 (when u = 0) belongs to the 
general case A2. 

IV. EXPLICIT EXAMPLES 

In this section we give some examples of how the equa
tions may be solved for each particular case. 

( 1 ) The most simple metric g we can choose is the "flat" 
Robertson-Walker metric, 

ds2 = 2R 2( - du dv + dzaz), R =R(t), q = q(t), 

_ () _u+v . _ 3(q+p)R 
p - p t, t=~, q - - R ' 

R 2 _ X R 4 d a _ R(du + dv) -3 q , Ua X - - 21/2 ' 

fa dxa = du + Y dz + Yaz + YY dv, X == dX . 
dt 
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TABLE I. Integrability conditions, compatible systems of equations, and properties for Kerr-Schild metrics. 

Case Ala Alb A2 B 

Condition on g and I (27),(36),(38),( 42) (27),( 44 ),(50),(51) (27),(52),(55) (27),(63 ),(67),(68) 

(64 ),(29),(66),(30) 

(65) 

(7)-09) 

Equations for U and V (35'),(28),(30),(41) (45),(28),( 47),( 48) (32), (33), (58), (28), (30),( 57) 

(56) Equation for AIl (40) (46) 

q,p, and ua (7)-09) with (27),(28) 

Weyltensor 3"'2 = Vp 3~2 = Vp 
"'3 = TV /0 - C) 1/13 =0 

"'4 = 2rV /pO- C)2 "'4 = 0 
Petrov D D 

We try to solve the equations for the case A2. Thus we must 
restrict the metric g and the vector field f a such that condi
tions (27), (52), and (55) are satisfied. It is easily shown 
that these conditions are verified if and only ifls 

Y = 0, q + 3p = O. 

Then, the Robertson-Walker metric must be restricted such 
that 

q= (AIR)2, R =Be±c" 

C=(XI3)1/2A, A,B=const. 

Equations (32), (33), and (58) for U and Eqs. (28), (30), 
and (57) for V leads us to 

U =f(z,z,u)le± c', V = G(z;Z,u)le±2C', 

where the functionsf and G verify the following equations: 

af = C.c., aG B = _ 2 af, 
az au az 

(69) 
aGB=+21/2Cf, _21/2 a

2
f =+c af . 

az - azaz - au 

A particular solution of these equations is given by 

BG = + 2112C [M(z) + M(z)], f= aM, 
- az 

where M is an arbitrary complex function of the variable z. 
Now, we know that the system of equations (56) and (16) 
for H is compatible. The integration of this system is stan
dard and we obtain for H 

H=B [M(z) +M(z)] + Ee±2C', 

where E is an arbitrary constant. These metrics belong to the 
class of generalized Robinson-Trautman solutions. 11.19 Un
less we have M = const, the resulting metrics g are Petrov 
type II. 

Another particular solution of Eqs. (69) is given by 

GB = - 2a exp{ + C(u + z + z)/2 1/2} = - 2f, 

a = const, 

and then, the solution ofEqs. (56) and (16) for His 

CH = +21/2aBexp{ =FC(u + z +Z)/21/2} + Ee±2C'. 

In this case, Eq. (60) is also satisfied and therefore the result
ing metrics g are Petrov type D. Since 1p3 and 1p 4 do not vanish 
they are new. 
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with (27),(29) 

(59) 
3"'2 = Vp - 2Ht/Joo 

"'3 = 0 
"'4 = 0 

IIorD D 

(2) In this example we take the interior Schwarzschild 
metric in canonical coordinates, that is to sayll 

d~ = - (Ar)2 dt 2 + N -2 dr + r(dO 2 + sin2 0 d(p) , 
(70) 

Ar = a - bN, N 2 = 1 - (rIR)2, a, b, R = const, 
(71) 

Xq = 31R 2, XP = (3bN - a)IR 2Ar, (72) 

ua dxa = -Ardt, (73) 

and we try solve the equations for the case B. It may be 
shown that the only shear-free geodesic null vector field 
which satisfies T = 0, (27) and (68) is given by 

fa dxa = M( - dt + drlArN) , (74) 

where 

M=2 112A (1 + cos e) (A + B sin wt + w cos wt) 

X [sin e(A sin fJJt + B)] -2, (75) 

Br=aN-b, w2=A2_B2= (a2_b 2)IR2. (76) 

A null tetrad associated with fa and such that maua = 0 is 
given by20 

8112ka dxa = r( 1 - cos e) (w cos wt - A - B sin wt) 

X (Ardt + drIN), 

21/2ma dxa = rei~( - dO + i sin e d</J), 

so that the only non-null spin coefficients are 

p =MN IAr, Il =AN 12M, 

a = - (1 + cos e)e-i~/21/2rsin e, 

r = (A) 1/2(1 - cos e) 

(77) 

(78) 

x [Nw cos wt + (riR 2)(a sin wt - b)]. (79) 

Solving the system of equations defined by (29), (30), (66), 
( 16), and (65) for Vand H we obtain 

V = ~ [ ~ rl' - ~ f]. 2H = ( ~ ) f. (80) 

wheref(r) is a solution of the following differential equa
tion: 

A~N2f" + (~/R 2) (4bN - a)1' - 2Arf= O. (81) 

The resulting metric g is a Petrov type-D static spherically 
symmetric perfect-fluid solution. In the following sections, 
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we are going to discuss the properties of the solutions we 
have obtained. 

V. PROPERTIES OF THE SOLUTIONS 

It is evident that the properties of the generalized Kerr
Schild metrics g depend, in general, on the properties of the 
initial metrics g themselves. However, some considerations 
may be made without loss of generality and then the specific 
properties of the explicit solutions can be deduced. 

Thus, for example, in Ref. 1 it was shown that Petrov 
type-N metrics cannot be obtained by means of the Kerr
Schild transformation as defined by us. Also, the Petrov type 
of the resulting metrics has been always given in Sec. III. It is 
convenient to remark that this has been possible because we 
knew the Petrov type of the initial metrics (they are confor
mally flat) . 

With regard to the symmetries of the solutions, one of 
us 15 has shown the following result: "s is a Killing vector 
field of the Kerr-Schild metric g if and only if 

£(S)1 =/1, £(S)gaP = - 2[£(S)H + 2Hf]la1p, 
(82) 

where/is a function ofthe coordinates and we use standard 
notation for Lie derivatives." This result provides us a meth
od to find all the Killing vector fields of the explicitly known 
Kerr-Schild metrics. For the first solution of the previous 
section, the former conditions (82) lead us to 

- - dM 
+ (A lz+A2) -=0, 

dz 
(83) 

where A I, A2, andA3 are arbitrary constants (A3 real). From 
these expressions it is evident that, in general, the only Kill
ing vector is given by A I = A2 = 0, that is to say 

a a 
S=---. au au (84) 

But also, there are some particular cases depending on the 
form ofthe function M(z). These are the following: 

(a) IfM(z) = cz + d, c,d = const, c#O, 

then 

S .- a . a 
=IC--IC-az az 

is another Killing vector. 
(b) IfM(z) = d, then 

! + ~, i (~ - !), i[ z ! -z ~] 
are Killing vectors as well. 
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(c) If M(z) = (alb) log Ubz +A2), a,b = real 
const, then 

Ubz +A2)i. + cA2 - ibz) i. az az 
is another Killing vector. 

(d) If M(z) = c(Alz +A2) -2(1 +A,I.4,) - ial(A
I 

+ AI) and E = - B2 then (83) with A3 = ° is a Killing 
vector. This is the only new Killing vector which is not a 
Killing vector of the initial metric g. 

Similarly, the symmetries of the second solution of the 
previous section may be obtained. The result is that there are 
the following two Killing vectors: 

.(a a) a a 1 (a a) 
I az- az ' -a,;- au +"2 az+ az . 

Both of them were Killing vectors for the initial Robertson
Walker metric g. 

In relation to the properties of the density and pressure 
of the solutions, first of all we must obtain the explicit ex
pressions for these quantities, which are given by 

Xq = 1 exp( + 2Ct) + (M + M)(A 2/3B 3)exp( + 4Ct) , 
(85) 

xP = - (l13) exp (+ 2Ct) + (M + M)(A 2/3B 3) 

xexp( +=4Ct), (86) 

for the first metric obtained in Sec. IV, and by 

Xq = 1 exp( += 2Ct) + (21/2aA 2/3CB 3) 

Xexp[ +=4Ct +=C(u +z+z)/21/2], (87) 

xP = - (l13) exp (+= 2Ct) + (21/2aA 2/3CB 3) 

xexp[ += 4Ct += C(u + z + z)/21/2], (88) 

for the second metric, where 

1=(AIB)2(1 +EIB2). 

From (85)-(88) it is clear that the solutions do not have 
singularities in general. Furthermore, both metrics satisfy 

x(q - P) = (4113) exp (+ 2Ct). (89) 

Finally, we are going to study the properties of the ve
locity of the fluid of the Kerr-Schild metrics. By using the 
formulas of Ref. 21, making a change of null tetrad and after 
some standard and straightforward calculations we obtain 
for the shear, vorticity, and expansion of the fluid the follow
ing expressions: 

O"ap: A= _(_I_)1/2{(l+E)V+~DH 
18 tPoeL 2 

-;2 [Mf-2H(r+r» 

-+ (1 - E) [2DtPlI - 2tPII DtPoo] 
L tPoo tPoo 

- :~: (2tP1IP - JltPoo)} L -I, 

B = - 0/2L 2)[HT(l - E) + (1 + E) U], 
C=O, 

UJap: U = (1I2L 2) (1 - E)(HT + fho 
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v=O, (94) 

0: 0 = _1_ {(1 + E)(DH + 4Hp) + 2¢J11
2 

DH 
2L ~ooL 

-;2 [aH - 2H(y+ r)] 

- (1 - E) + [2D~11 - 2~1I D~oo] 
L ~oo ~oo 

_ (2~lIp -J.L~ooj~EH IL2 - 3)}, (95) 

where we have used the notation of Ref. 21 and we have put 

L 2 = 2~11/~oo + EH. 

Moreover, E = 1 for case A and E = - 1 for case B. These 
expressions are valid in general. From (93) we see that the 
solutions obtained in this paper do not have vorticity. This is 
a direct consequence of assumption (27). On the other hand, 
they have, in general, shear, expansion, and acceleration. 
The explicit expressions of these quantities for the explicit 
metrics of Sec. IV may be easily obtained from (90)-(95). 
However, the static and spherically symmetric solution is 
shear-free and expansion-free (of course!). In the next sec
tion, we are going to study this particular solution. 

VI. A CLASS OF STATIC, SPHERICALLY SYMMETRIC 
PERFECT-FLUID METRICS 

In Sec. IV, we obtained the metric 

dS2 = _ (Ar)2 dt 2 + N -2 dr + redO 2 + sin2 0 d~2) 

+ (Ar)2f(r) ( - dt + drlArN) 2, (96) 

wheref(r) is a solution of the differential equation (81). By 
making the following change of the timelike coordinate: 

dT=dt+ [fIArN(I-j)]dr, (97) 

the metric (96) becomes 

ds2 = - (Ar)2(1 - f)dT 2 + [lIN 2(1 -f) ]dr 

+ r(d0 2 + sin2 Od~2), (98) 

In this form, the metric is manifestly static and spherically 
symmetric. By using the formulas of previous sections we 
can get the velocity of the fluid 

u=Ar(l-j) l12 dT (99) 

and the density and pressure 

xi} = Xq + (N 2Ir)j' + [1 - 3(rIR)2] fir, (100) 

XP = XP - (N 2Ir)j' - [1 - (3 - 2aIAr)(rIR)2] fir, 
(101 ) 

where Xq and XP are the density and pressure of the 
Schwarzschild interior solution and are given in (72). By the 
way, we remark that the metric (98) is a generalization of 
the Schwarschild interior metric. The Schwarzschild metric 
is the particular casef(r) =0 [as is evident from (98)
(101) or directly from (80)]. 

If we want to study the properties of the solution (98) 
we have to solve the differential equation (81). This equa
tion is linear and of second order and, in general, it has four 
regular singular points. 22

•
23 This type of equation is called 

Heun's equation. 22
•
23 However, there are two cases in which 
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the equation has only three regular singular points (so that it 
can be reduced to the hypergeometric equation23

). These 
cases are defined by b = 0 and b = a. When b = a, it may be 
shown that there is not any regular solution. Then, we do not 
consider this case here. 

Let us begin with the easier case b = O. In this case, (81) 
can be reduced to a hypergeometric equation and, in fact, the 
general solution of (81) may be expressed by means of ele
mentary functions as follows: 

fer) = 3C[ 1 - (NR Ir)arcsin(rIR)] + cNR Ir, (102) 

where C and c are arbitrary constants. In order to have a 
regular solution in r = 0 we should impose 

c = O. (103) 

Keeping this condition in mind, from (100) and (10 1) we 
get the density and pressure for this case, 

xi} = (3IR2)[1-2C+ (3CNRlr)arcsin(rIR)], (104) 

XP = - R -2[ 1 + (3CNR Ir)arcsin(rIR)]. (lOS) 

It follows from (104) and (105) that this solution satisfies 
the equation of state 

X(i} + 3p) = - 6C IR 2 = const. (106) 

By physical considerations, we must demand C < 0 so that 
i} + 3p is positive and, also, this assures the correctness of the 
signature for (98) because f( r) < O. This special metric is 
just the static limit of the Wahlquist solution12 and it was 
also given by Whittaker. 24 

Now, let us study the general case b =1=0. By simplicity, it 
is convenient to distinguish several possibilities depending 
on the different values of b la. Thus, for example, when 
b I a<! the regular solution of (81) is 

fer) = C(rIR)2p [(b - a)/2b,(5b - 2a)lb; 

5,2,~,~; (I - N)/2], (107) 

whereFis the solution of He un's equation (see Ref. 22). The 
regular solution of (81) when! < b I a < ! is 
fer) =C[2bl(a-b)p/2(rIR)2p 

X [2b I(b - a),(10b - 4a)/(b - a); 5,2,p; x], 

x = [2b(1 - N)/2(b - a)], (108) 

where C is an arbitrary constant again. Analogously, the 
solution when !<b la < 1 may be given by means of the 
Heun's function F. 

We shall restrict ourselves to the case b la<~ because all 
the possibilities are quite similar. From (107) it may be 
shown 

f C j' 2C 
f(O) = 0, .2 (r = 0) = -R 2' - (r = 0) = -, (109) 

r r R2 

and then, the density and pressure are regular everywhere. 
Moreover, from (72), (100), (101), and (109), we have 

xi}(O) = 3(1 + C)/R 2, 

Xp(O) = R -2[ - 3C + (3b - a)/(a - b)]. 

Therefore, we must choose C as follows: 

- 1 < C < (3b - a)/3(a - b) 
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so that q(O) and tHO) are positive. 
Bearing this condition in mind, and taking into account 

the following relation: 

xp(r=R) =xp(r=R) = -R -2<0, 

we conclude that the pressure is a decreasing function of r 
and that there exists a value r = ro <R such that p(ro) = O. 

Unfortunately, it is very difficult to find out the equa
tion of state for these metrics. However, from (100) and 
(101) it is evident that the following relation holds in gen
eral: 

X(q+p) =X(q+p)(l-j) = [2a/ArR2](I-j). 

This expression proves that there are no solutions in which 
the density and the pressure vanish at the same value of r 
without singularities in the metric [see (98) ] and, therefore, 
the equation of state cannot be that of a polytropic fluid. 
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Geometrical and physical properties of the solutions derived and classified in Part I [J. Math. 
Phys. 28, 1118 (1987)] are examined in detail. It is shown how the imposition of zero shear 
restricts the possible choices of equations of state. Two types of singular boundaries arising in 
these solutions are examined by verifying the local behavior of causal curves approaching these 
boundaries. For this purpose, a criterion due to C. J. S. Clarke (private communication) is 
given, allowing one to test the completeness of arbitrary accelerated timelike curves in terms of 
their acceleration and proper time. One of these boundaries is a spacelike singularity at which 
causal curves terminate as pressure diverges but matter-energy and charge densities remain 
finite. At the other boundary, which is timelike if the expansion 0 is finite, proper volume of 
local fluid elements vanishes as all state variables diverge but causal curves are complete. If 0 
diverges at this boundary, a null singularity arises as the end product of the collapse of a two
sphere generated by a given class of time like curves. The gravitational collapse of bounded 
spheres matched to a Schwarzschild or Reissner-Nordstn6m exterior is also examined in detail. 
It is shown that the spacelike singularity mentioned above could be naked under certain 
parameter choices. Solutions presenting the other boundary produce very peculiar black holes 
in which the "surface" of the sphere collapses into the above mentioned null singularity, while 
the "interior" fluid layers avoid this singularity and evolve towards their infinite future. 

I. INTRODUCTION 

As mentioned in the Sec. I of Part I (Ref. 1), SSSF 
(spherically symmetric shear-free perfect fluid) solutions 
characterized by the metric I ( 11) follow from a strategy of 
"mathematical simplicity" in which the field equations are 
considerably simplified by imposing a simple motion on the 
fluid (shear-free motion). [Equation 1(11) denotes Eq. 
( 11) of Part I. All reference to equations of Part I will be 
made in this form. The same conventions on indices, signa
ture, and units as in Part I are being used.] Having derived 
and classified the large class of SSSF solutions denoted as 
ChKQ (charged Kustaanheimo-Qvist) solutions, the natu
ral continuation of the strategy of mathematical simplicity is 
an examination of the properties of these solutions. How
ever, details concerning specific particular solutions (see 
Appendices A and C) will be avoided as much as possible by 
focusing on properties common to all, or at least to a large 
subclass of ChKQ solutions. Although much of the discus
sion in the present paper (especially Secs. II, III, and VI) 
applies to ChKQ solutions in general, it is convenient to 
concentrate the investigation of these solutions on the sub
class in which one of the time-dependent free parameters, 
the function L = L(t), is set to a constant. This large sub
class comprises the "McVittie-type" and "Wyman-type" so
lutions (see Sec. V of Part I). Other ChKQ solutions will be 
examined in the subsequent paper (Part III) together with 
other topics, such as the global and asymptotic properties of 
all ChKQ solutions. The contents of Part II are summarized 
below. 

In Sec. II a review2
•
3 is offered of the invariant charac-

aJ Present address: Racah Institute of Physics, Hebrew University, Jerusa
lem 91904, Israel. 

terization of SSSF solutions in terms of a vector field gener
ating a one-dimensional group of conformal motions. The 
field equations are written in Sec. III in a compact form in 
terms of the Hubble scale factor of the comoving observers, 
H = (grr) 1/2, or the proper radius of the orbits of SO(3), 
R = (goo) 112, either one of which is taken as the basic gravi
tational field variable. It is shown that the field equations 
contain "curvature terms" related to the curvature of the 
three-surfaces orthogonal to the four-velocity ("surfaces 
~/' labeled by constant coordinate time) and to the four
acceleration. In Sec. IV, the McVittie- and Wyman-type so
lutions are introduced, while three possible choices of time 
coordinates are presented in Sec. V. In Sec. VI, it is shown 
how an equation of state (in general, a nonbarotropic equa
tion of state, for the isentropic case see the Wyman solution 
in Appendix A), whether "imposed" or "obtained," must 
comply with the above-mentioned curvature terms in the 
field equations. In general, these curvature terms severely 
restrict the equations of state compatible with the solutions. 
In Sec. VII, it is shown how a simple, though unphysical, 
type of "formal" equation of state can be constructed as a 
boundary condition. Most authors who have previously 
studied ChKQ solutions [authors of category (b), see Sec. I 
of Part I] have examined them as models of collapsing 
spheres, and so have used a particular case of these boundary 
conditions. 

Regularity conditions are presented in Sec. VIII, identi
fying the coordinate representation of the boundaries within 
which scalar curvature invariants and gravitational field 
variables H and/or R are smooth and bounded ("regularity 
boundaries"). In order to understand the nature of these 
boundaries, it is necessary to verify if causal curves ap
proaching them are complete. In order to do this, Sec. IX 
examines the completeness criteria for two types of causal 
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congruences whose description is simple in the coordinates 
currently used: the word lines of observers comoving with 
the matter and "radial" null geodesics. Since the former are 
accelerated curves, a criterion, due to Clarke (private com
munication), of their generalized affine parameter (GAP) 
completeness in terms of their acceleration and proper time 
is offered and rigorously proved in Appendix B. By verifying 
the completeness of timelike and null curves approaching 
the coordinate values associated with the regularity boun
daries where curvature scalars diverge, it is found in Sec. X 
that one of these boundaries [Eq. (49)] is a spacelike scalar 
curvature singularity in which pressure and pressure gradi
ent diverge but the proper volume of local fluid elements, 
matter-energy, and charge densities remain finite. This "fin
ite-density" singularity (FD singularity), similar to that 
arising in some Bianchi models studied by Collins and Ellis,4 

has been reported previously (though usually in a nonrigor
ous manner) by authors studying particular cases of ChKQ 
solutions.5

-
12 

The other regularity boundary examined in Sec. X [Eq. 
( 48) ] is timelike and, since proper volume of local fluid ele
ments vanishes as all curvature scalars diverge, apparently is 
a coordinate representation of a "big-bang" singularity pres
ent in Friedman-Robertson-Walker (FRW) solutions. 
However, causal curves approaching these coordinate val
ues are complete, and so technically speaking, these values 
do not mark a singularity but a singular boundary which 
behaves as a sort of "asymptotically delayed" big bang (AD 
big bang). This situation corresponds to a finite expansion 
kinematic parameter 0, so that infinite volume contraction 
(or expansion) takes place in infinite proper time. This 
boundary was mentioned by Mashhoon and Partovi II and 
by Collins l2 in their study of the Wyman solution; however, 
Mashhoon and Partovi failed to notice that it takes place in 
the infinite futurelpast of the observers comoving with the 
fluid. In both singular boundaries mentioned above, the 
strong and dominant (though not necessarily the weak) en
ergy conditions are violated in general. 

However, if the equation of state is such that 0 diverges 
for a class of comoving observers, the world lines of the latter 
are incomplete, collapsing into a null singularity which will 
be termed a "localized" singularity (L singularity). The 
world lines of all other classes of comoving observers, either 
remain complete evolving towards the AD big bang, or ter
minate in another spacelike singularity which will be called a 
"finite-volume" singularity (FV singularity). The latter sin
gularity is characterized by diverging 0, p, and p (though 
charge density and four-acceleration remain finite) with 
nonzero terminal proper volume of local fluid elements. 

With all the information obtained in Sec. X, the case of 
collapsing spheres matched to a Schwarzschild or Reissner
Nordstr0m exterior is discussed in Sec. XI. Since their evolu
tion terminates at R > 0, collapsing solutions presenting the 
finite-density spacelike singularity do not form black holes. 
This has also been commented by several authors studying 
particular cases of collapsing ChKQ solutions (see especial
ly Refs. 6 and 7). However, in solutions presenting the other 
regularity boundary, the matching surface (i.e., the time his
tory ofthe two-sphere which is the "surface" ofthe sphere) 
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collapses into the null singUlarity (L singularity) mentioned 
previously, but the interior layers continue their evolution 
towards the AD big bang in their infinite future. In some 
cases the evolution of the interior layers terminates in the 
spacelike FV singularity mentioned previously. 

As far as I am aware, these peculiar singularities (the L 
and FV singularities), together with the type of black holes 
associated with them, have never been reported before. One 
of these two cases (the case presenting a AD big bang) is 
probably the only example provided so far in which the col
lapse into a black hole could be "survived" by observers in
side the sphere. The question of censorship of the spacelike 
and null singularities mentioned above is discussed with the 
help of qualitative Penrose diagrams. Since the FD spacelike 
singularity does not involve "shell-crossing" effects, and 
there exist "bad" choices of parameters which make it na
ked, it is suggested that it could provide a new type of exam
ple of naked singularities in spherically symmetric col
lapse. 13 An example of a simple collapsing particular 
charged solution is presented in Appendix C. 

II. KINEMATICS AND SYMMETRIES 

The metric for SSSF configurations (neutral or 
charged) is given in comoving coordinates by I ( 11 ) : 

d~ = _ [H IH]2 dt2 
0/3 

+H2[dr+/2(d0 2+sin20dt,62)] , (1) 

withH=.aH lat, 0 = 0(1) the expansion kinematicparam
eter, and 1= I(r) fixed in general by a choice of radial coor
dinate r. Such a choice was made in Part I by demanding the 
radial coordinate to be such that (/,)2 = I - kP, where a 
prime denotes differentiation with respect to r. This choice 
leads to 

{

r, 
I(r) = sin r, 

sinh r, 

k=O, 

k= 1, 
k= -1. 

(2a) 
(2b) 
(2c) 

The expansion kinematic parameter 0 will be left for the 
time being as an unspecified function. As the contents of this 
section apply to all SSSF solutions, the metric coefficient H 
can be any function satisfying Eq. I ( 15) [or I ( 18) ]. 

The coordinates (t,r,O,t,6) in ( 1) provide a natural repre
sentation reflecting the geometry of SSSF solutions. Since 
the spatial coordinates (r,(),t,6) are comoving with the fluid, 
the four-velocity has the simple form 1(2): 

ua = U(t,r){j, a, 

where 

U(t,r) =. ( - gtt) 1/2 = (0/3 )/(H IH) , 

(3a) 

(3b) 

and {ja f3 is the Kronecker delta tensor. Equations (3) define 
at every point in space-time a unit timelike vector field every
where tangent to the set of three-surfaces ~r (t,(),t,6) labeled 
by constant values of r. These three-surfaces are generated 
by the world lines of observers comoving with the fluid (i.e., 
integral curves of ua

), and are a set of coaxial world tubes 
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describing the time evolution of the orbits of SO(3) (the 
concentric two-spheres generated by the Killing vectors of 
spherical symmetry). Thus each one of these two-spheres is 
completely characterized by a constant value of r which 
"represents" one class of equivalence of comoving observers 
in an orbit of SO (3). Since angular coordinates are ignor
able, the evolution of the fluid can be completely described 
by two-dimensional coordinate patches parametrized by 
(t,r) in which each point represents one of the above-men
tioned two-spheres with proper surface: 

Y(t,r) = 41TR 2 (t,r) = 41T[ f(r)H(t,r)]2 . (4) 

The metric coefficient R = jH = (gee) 1/2 is then invariantly 
characterized as the proper radius, or "curvature" radius of 
these comoving two-spheres. 

Since spherically symmetric fluids are irrotational, the 
three-surfaces ~t (r,O,¢) labeled by constant values of the 
time coordinate can be defined invariantly as spacelike 
three-surfaces everywhere orthogonal to the four-velocity 
field. 14 Therefore, the rest frames of the comoving observers 
lie along these surfaces, and the projection tensor has the 
simple form 

(5) 

so that the projection of any tensor quantity along these rest 
frames is given simply by the spatial components of the ten
sor. While the surfaces ~r clearly have topology S2XR, the 
topology of the surfaces ~t is not obvious. With the coordi
nate choice (2), the induced metric of the latter is conformal 
to that of three-surfaces of constant curvature. Whether this 
fact is a mere coordinate effect or an indication of the topol
ogy of these surfaces will be discussed in Sec. II of Part III. 

The kinematical parameters associated with SSSF solu
tions are the expansion 0 and the four-acceleration aa ap
pearing in the usual decomposition of ua;p (see Refs. 14 and 
15) : 

Ua;p = (0/3)hap - aaup , 

where 

and 

(6a) 

(6b) 

aa==ua;pUP (6c) 

For the metric ( 1) and using (3) and ( 4), the expansion 
e can be expressed as 

e =~ [lnH] =~ [lnR], 
3 dr dr 

where 

~ == ( _ gU) 1/2!.... = U(t,r) !.... 
dr at at 

(7) 

(8) 

is the normalized proper time derivative for the comoving 
observers. 

The absence of shear requires that, for all comoving ob
servers, the relative distances of neighboring fluid particles 
change isotropically as measured in the rest frames of these 
observers. 14 This constraint requires 0 to be constant in 
these rest frames, and thus constant along the surfaces ~t' 
Also, the four-acceleration forcing the fluid to evolve with-
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out shear must have the form 

aa =Bar~(t,r), 

where ~ is the gradient: 

~(t,r) == - [In U]' = [In if IH], . 

(9a) 

(9b) 

The specific form of 0 and aa conveys a sort of "kine
matic isotropy" that follows directly from the kinematical 
constraint of imposing zero shear on the fluid motion. This 
kinematic isotropy can be characterized invariantly by the 
action of the vector field2

•
3

: 

A. a==A. (t,r) ua , 

where 

[InA. ].a = aa => A. = U- I
. 

This vector field satisfies 

(lOa) 

(lOb) 

A. (a;P) = (0/3)A.hap => .2"A hap = (20/3)haP , (11) 

where .2" A denotes the Lie derivative operator along the vec
tor A. a. Hence, for each comoving observer, A. a generates a 
one-parameter group of conformal motions along ua that 
locally preserve relative orientations of neighboring fluid 
particles in the rest frames (the surfaces ~t) as the latter 
evolve in time. Thus, as mentioned by Tauber and Wein
berg,2 these three-surfaces change locally by a sort of "rigid 
magnification. " 

It is worthwhile examining the kinematic isotropy gen
erated by (lOa) in the two limiting particular cases ofSSSF 
solutions: Static particular solutions for which 0 = 0 but 
aa #0, and the FRW (Friedman-Robertson-Walker) solu
tions in which a a = 0 but e # O. In the latter case, A. = A. ( t) 
can be normalized by rescaling the time coordinate, and so 
the vector A. a can be identified with the four-velocity ua. In 
this case, A. a is a conformal Killing vector and it is "the 
same" vector everywhere along the surfaces~" in the sense 
that it is invariant under the action of the three-dimensional 
(3-0) transitive group of isometries Bianchi I, V, and IX 
(depending on the value of k = 0, ± I) whose orbits are the 
surfaces ~t.16 This feature is related to the fact that for the 
FR W solutions, these surfaces are surfaces of constant prop
er time; therefore relative distances along the rest frames 
change isotropically and at the same proper time rate for all 
comoving observers [i.e., these surfaces are rigidly "magni
fied" by the same scale factor H(t) everywhere]. For the 
static limit of SSSF solutions, the vector A. a in (lOa) be
comes the timelike Killing vector field characterizing spheri
cally symmetric static solutions. 

For SSSF solutions that are neither static nor FRW, the 
imposition of zero shear requires the four-acceleration to 
have the specific form given by (9). This four-acceleration 
deviates all fluid particles from geodesic motion in such a 
way that the required kinematic isotropy occurs. Hence, be
cause of the dependence of the four-velocity on r, the sur
faces of constant proper time ~7' do not coincide with the 
surfaces ~t. From (1) and (3), the proper time r(t,r) for 
comoving observers labeled by different constant values of r 
is 

J dt 
r(t,r) = --- (r constant) , 

u(t,r) 
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so that t = t( T,r) and thus 0(t) = 0( T,r). Although rela
tive distances change at the same proper time rate along the 
surfaces~, (0 must be constant along these surfaces), the 
scale factors are different for different r. These scale factors 
are given by the metric coefficient H = (grr) 1/2, which from 
( 4) and (7) can be identified as a position-dependent Hub
ble scale factor. The relation between the Hubble scale factor 
H at different surfaces ~r labeled by ro and r l is proportional 
to the ratio of the proper time along r 0 and r I' This relation 
follows from (7) and (12), and is given by 

dTo_d(lnHo) (13) 
dTI - d(lnHI) , 

where the subindices "0" and" 1" in T and H indicate evalua
tion ofthese quantities at r = ro and r = rl' 

The difference between FRW solutions and other non
static SSSF solutions can be stated in more precise geometric 
terms. In the former solutions, each 3-D surface ~, is the 
orbit of the group under which it is invariant. For each sur
face ~, in the latter solutions, A a is only invariant under the 
action ofSO( 3) whose 2-D orbits (i.e., the two-spheres with 
proper radius R) are contained in the surfaces ~,. Since in 
these solutions the only symmetry group acting (in an in
transitive manner) in the surfaces ~t is SO(3), these sur
faces are only isotropic (in the geometric sense) with respect 
to observers comoving along a locus which marks the com
mon center of the orbits of this group (see Sec. VIII and Sec. 
V of Part III). At this locus, usually (but not necessarily) 
labeled by r = 0, the four-acceleration vanishes and observ
ers there do not detect any preferential direction. However, 
this feature happens in all spherically symmetric space-times 
in which such a "center" of symmetry exists, since any other 
possible kinematic effect, such as shear or viscosity, will de
pend only on r along the surfaces ~, and must vanish at the 
value of r marking the center. For observers not comoving 
along a center in nonstatic SSSF solutions (other than 
FRW), the four-acceleration gives a preferential direction 
along a jar. Therefore, the kinematical isotropy of these so
lutions does not manifest itself in the form of a simple isotro
pical Hubble law as the geometric isotropy of the FRW solu
tions does. This aspect will be discussed in Sec. XII of Part 
III. 

III. THE FIELD EQUATIONS 

As Appendix A of Part I shows, the Einstein-Maxwell 
field equations for the metric (1) relate the state variables p, 
p, and q with the expansion 0, the Hubble scale factor, and 
its derivatives iI, H', and H " . Since R = jH, these equations 
can be easily rewritten in terms of R and its derivatives. 
Therefore, the straightforward geometric interpretation of 
Hand R discussed in the previous section suggests that ei
ther one of these quantities should be identified as the "met
ric potential" or gravitational field variable of the SSSF solu
tions. The choice of H or R could depend on the approach 
one is giving to a particular solution. For example, in a cos
mological context H could be a better choice; but if the solu
tion is being considered as modeling a star, then R is a better
suited variable to appear in equations of stellar structure. 
For charged solutions, the function E(r) appearing in the 
Maxwell equation I (7b ) , 
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41Tq(t,r) =jE'/R 3 , (14a) 
is related to the electric field measured in the rest frame of 
the comoving observers, 

F,r = - (_gtt)1/2E/J, (14b) 
which is given by I(7a). 

In order to simplify the remaining field equations, it is 
necessary to eliminate derivatives, iI, H', and H " in terms of 
H (or R) and E. As discussed in Appendix A of Part I, the 
derivative H" can be eliminated by using the field equa
tions in the form of the constraint (G rr - G (J (J) 
= 81T( Trr - T(J (J), which leads to the "equation of pressure 
isotropy" I ( 15) : 

[H]'_J'H' _[!£.]2+~_ 2E2 =0, (15) 
H jH H j 3H j 4H 2 

where J = J( r) is the same function appearing in Eq. (AS) 
in Appendix A of Part I. If the first and se~ond integral of 
( 15) are known, first-order derivatives like Hand H I could 
also be eliminated in terms of Hand E. This will be done in 
subsequent sections for the particular case of the ChKQ so
lutions, using the first and second integrals ofEq. (15) [or in 
the form of! ( 18 ) J obtained in Part I. 

From Eq. (7),0 is related to the proper time derivative 
of H (or R) along the surfaces r. Eliminating second-order 
derivatives of H (or R) with the help of ( 15), the field equa
tion G', = 81TT', becomes a first-order equation of motion 
for the comoving observers along the surfaces ~ r' This field 
equation can be given in terms of H or R as 

[~~r=[0:r 
1 [8 3] k 2J 

= H "3 1TpH - + r H 

E2 2/,H' [HI]2 ---+--+ - , 
j 4H 2 jH H 

(16a) 

[~~r = [0t r 
[

2(4 ) E2] [fR']2 = - I-Ii "31TpR3+J +FJ + R ' 
(16b) 

where J(r) is given by Eq. (AS) of Part I. Theform (16a) of 
this field equation appears as a Friedman-like equation, 
while the form (16b) looks like a first-order stellar structure 
equation. 

A useful relation between pi and the functions J and E 
follows by differentiating either one of equations (16) with 
respect to r, and eliminating H /I (or R ") with the help of 
(15), leading to 

~1Tp'R 3 = - J' + EE'/R . (17) 

The specific form of pi illustrates how for SSSF solutions, for 
which ( 15) must be satisfied, the form of p along the surfaces 
~ is severely restricted by the intrinsic curvature of these 
s~rfaces. This follows from the relation 14 between (3) &;, the 
Ricci scalar of the surfaces ~" p, and 0: 

[0/3]2 = J1TP + i (3)&; , (18) 

allowing one to identify, with the help of (16), the form of 
(3)&; as a function of H, J, and E. Bearing in mind that 0 is 
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constant along the surfaces.It> Eqs. (16)-( 18) show thatp 
is constrained to differ from the curvature scalar of each 
surface.It> by a constant [0(t), t = const], albeit a different 
constant at each surface .It. Since a solution of Eq. (15) 
determinesH ', it fixes (3)~ andp along each surface.It up to 
(at most) three arbitrary constants: two integration con
stants of ( 15) and 0 at t = const. In general, these constants 
will be different along different surfaces .It defining 0 (t) 
plus two arbitrary functions of time associated with the inte
gration of (15). 

The field equation G rr = 81TTrr can be obtained from 
Eqs. (16) by eliminatingp from the contracted Bianchi iden
tity Ua Tafl;p = 0, 

dp = _ (p +p)0, (19) 
dr 

and performing the time derivative of p using (16). This 
leads to the following Raychaudhuri equation: 

1 dZR 0 z d 0 J p) a 
/i. dr =9+ dr 3"= -4,,\p+3" +a;a' (20) 

where 

aa;a = IJI (2) + (jR 'IR )(fd IR Z) 

and 

1JI(2) == (1/R 3)[ - J + EE'IR ] , 

(2Ia) 

(2Ib) 

with IJI (2) and d being the invariant conformal scalar "psi
two" computed in Appendix A of Part I and the magnitude 
of the four-acceleration given by (9b). Equation (16) is a 
first integral of (20), and so any solution to the former will 
be a solution to the latter if (19) holds. By inserting the 
contracted Bianchi identity hap Tay;y = 0, 

- pi + EE'IR = (p + p)d , (22) 

into (21a), Eq. (20) becomes the stellar structure equation 
derived by Misner and Sharpl7 for the neutral case and by 
Beckensteinl8 for the charged case. From this point of view, 
one can identify 

M(t,r) ==~1TpR 3 + J (23) 

appearing in (16b) as a sort of "mass function," 7,I9,ZO so that 
Eq. (16b), at each surface .IT' is formally analogous to the 
"energy equation" of a charged relativistic "particle" with 
time-dependent mass given by (23) and charge given by 
E(r) in a central field under the effect of the "potential" 
( jR 'I R). This type of formal analogy will not be developed 
any further. 

The basic equations characterizing SSSF solutions are 
(15) and (16). The former is a sort of "transversal" geomet
ric constraint expressing how p and the intrinsic curvature of 
the surfaces .I t are restricted by the imposition of zero shear 
in an adiabatic fluid flow. Equation (16), on the other hand, 
is an evolution equation whose solution indicates how this 3-
D curvature changes along the surfaces.Ir in a way compati
ble with (15). However, even with a solution of (15), Eq. 
( 16) cannot be integrated unless the dependence of p on r 
and on H (or R) along the surfaces .I r is specified. This 
indeterminacy is the consequence of not having prescribed 
(yet) an equation of state, and will be discussed in Secs. VI 
and VII for the specific case of ChKQ solutions. 
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For charged solutions, the electric charge density q is 
connected to the field variables E and H (or R) by the Max
well equation (14a). Since E I is completely fixed along the 
surfaces .I t by a solution of ( 15), q varies as H - 3 along the 
surfaces .Ir • From a physical point ofview. E should be ob
tained by integrating (14a) given an initial charge distribu
tion; however, Eq. (15) might be analytically solvable only 
for restricted functional forms of E(r) and J(r). The first 
and second integrals of ( 15) obtained in Part I will be re
viewed in the next section. 

IV. McVITTIE-TYPE AND WYMAN-TYPE SOLUTIONS 

The ChKQ solutions, derived and classified in Part I, 
form a large subclass of SSSF solutions. Therefore, they are 
described by the metric (1) with H satisfying the constraint 
(15) [simplified in the form ofEq.1( 18)] under the restric
tions given by I(22a) and I(22b). These restrictions fix the 
functions J [Eq. (A5) in Appendix A of Part I] and E as 
J = p(fh)5 andE = ± E(fh)3, where the functions [andh 
are defined by Eqs. 1(17) and 1(23) in terms of y(r), de
fined by I(16b). 

A first integral of (15) is given by Eqs. 1(21), which, 
translated in terms of H or R, is Eq. 1(40): 

jR I =/' + [H' = (fh)' ± ([h)zQ1/z. (24) 
R H h 

This Q is related to the quartic Q of I (24) by 

Q== W-zQ = 6, - 2pW + cWz + LW-z , (25a) 

W==hIH=[hIR, (25b) 

where the constants 6" p, E, and L = L(t) are defined in 
1(2Ic). As discussed in Sec. IV of Part I, ChKQ solutions 
can be divided in three subclasses, depending on the form of 
the function L (t) appearing in (25a): (I) if L = const, one 
has the McVittie-type (L = 0) and Wyman-type 
(L = const:;60) solutions (see Sec. IV Of Part I); (2) the 
conformally flat subclass with L = L (t), but E = P = 0 (i.e., 
IJI (2) = 0); and (3 ) the most general case with L = L (t) and 
1JI(2) :;60, i.e., E and p nonzero and, for neutral solutions, 
p :;60. In order to simplify the study of ChKQ solutions, in 
this paper I will consider only solutions belonging to case 
( 1 ), while cases (2) and (3) will be examined in Secs. VII 
and IX of Part III. The McVittie- and Wyman-type solu
tions, will be referred to hereafter as M- and W-type solu
tions. 

Using Eqs. (24) and (25), Eqs. (16) can be written 
completely in terms of H (or R) and the functions J and E. 
The Friedman-like equation (16a) now becomes 

[~~r = ~ [: 1TPH
3

] - k + ([h)ZLH
Z 

+[2 [h; r + 2[/y [~] + 6,([h)4 

± 2(hH)2 [//y + p [~ rl Q1/2 , (26) 

where 
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where (16b) becomes a similar expression once (24) is ex
plicitly substituted. The three first terms in the right-hand 
side of (26) are analogous to those found in a Friedman 
equation for the FR W solutions. The third term, which is a 
constant along the surfaces l:, (though a different constant 
for different comoving observers), is analogous to a sort of 
position-dependent "cosmological constant." If L = const, 
Eqs. (24) and (25) are sufficient to write the Raychaud
hurri equation (20) without first-order derivatives, since in 
this case the function d(t,r) defined by (9b) can be ob
tained from (25) with the help the integrability condition 

[H /H]' = [H'/H] 

leading to 

d(t,r) = 6~/: [cW2 -IlW - LW-2] 

(27) 

Ih 2 Ch2_llhH-Lh-2H4 

= H [W 2 - 21lhH + ch 2 + Lh -2H4] 1/2 ' 

(28) 

where Wis given by (25b). With the help ofEq. (28), the 
term a;:' appearing in (20) and (21) can be written explicit
ly. The M- and W-type solutions are characterized by six 
constant parameters a, b, c, E,Il, and L according to which 
these solutions have been classified in the tables of Part I. 
Therefore, each specific combination of these parameters 
leads to a specific form for the functions in (24), (25), and 
(28) and the field equations (14a), (20), and (26). How
ever, it is still necessary to compute the derivative aH fat in 
order to be able to fix the time coordinate and have a link 
between 0 and the evolution of H in terms ofthe chosen time 
coordinate. These aspects will be discussed in the following 
section. 

v. THE TIME COORDINATE 

While the radial dependence of H is completely fixed by 
the integration of the constraint equation (15), the time de
pendence of H is contained in (at most) two arbitrary func
tions of time: T(t) andL(t), which appear in 1(24a) as inte
gration "constants" of (15). These functions are the 
time-dependent free parameters ofthe solutions, and will be 
referred to as the "t parameters." The t parameters appear in 
the explicit forms of H given by 1(28), 1(30), 1(32), I( 43), 
I ( 45), and I ( 46) obtained by inverting the second integral of 
(15) in the form ofI(24a). 

As shown byEq. 1(29), thetparameter T(t) can always 
be rewritten in terms of the elliptic integral in 1(24a) evalu
ated at r = ro>O fixed but arbitrary. Since T(t) is the only t 
parameter of M- and W-type solutions, if 1(29) is used, 
H 0 ( t) replaces T as the t parameter [see Eqs. I ( 30) ] . Hence, 
the t parameter T(t), or any rescaling of it, can always be 
related to the Hubble scale factor H along an arbitrary sur
face l:,. Though the convenience of having the t parameter 
given as T(t) or as Ho(t) might depend on the specific prob
lem being considered. 

In Part I, the time coordinate was left unspecified up to a 
rescaling of the form t = t( t *). In the metric ( 1), the expan
sion 0 has been kept so far as an unspecified function, 
though as mentioned in Part I, its appearance ing" cannot be 
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"absorbed" into a new time coordinate t * = f(3/0) dt be
fore computing H /H explicitly. Once this is done, different 
choices of time coordinate will arise by demanding specific 
relations between 0 and the derivatives of the t parameter. 
However, because of the geometric interpretation of 0, H, 
and R, the condition 

0(t) = 0 => H(t,r) = 0 (29) 

must hold for whatever choice of time coordinate and t pa
rameters. The converse of (29) does not hold in general, as 
will be discussed in Secs. VIII and X, it leads to 
1 U(t,r) 1--+ 00, where U is given by Eqs. (3). 

From 1(24a) it is possible to compute aH fat explicitly 
by following the rules of differentiation of an elliptic integral 
F['I',7J] which it treated as a function of the independent 
variables; 'I' ( W, 7J) and 7J (Ref. 21). Since the time depend
ence of the modulus 7J is contained in the t parameter L(t) 
(see Sec. II of Part I), if this function is set to a constant, 7J 
will also be constant and F = F['I'( W)]. In this case, com
prising M - and W -type solutions, depending on the choice of 
Tor Ho as t parameter, the derivative aH / at turns out to be 

H /H = - Q1/2 l' = [Q/Qo] 112 (Ho/Ho) , (30) 

where Q is given by (25a). This derivative is computed for 
the cases with L = L ( t) in Secs. VII and IX of Part III. By 
inserting Eq. (30) in the metric (1), various choices oftime 
coordinate for the ChKQ solutions can be made. These 
choices, each of which can be associated with a specific form 
of the t parameter, are the following. 

( 1) Keep T( t) as the t parameter and choose t such that 

0= -31' (31a) 

=> ds2 = - Q(t,r) dt 2 +H2(t,r) 

X[dr+p(d0 2=sin20dlp2)] . (3Ib) 

(2) Choose t to be the proper time for comoving observ
ers along r 0' this choice leads to 

0/3 = Ho/Ho = - [Qor /2 l' (32a) 

=> ds2 = _ Q(t,r) dt 2 + H 2(t,r) 
Qo(t) 

X [dr + p(d0 2 + sin2 Od¢2)] . (32b) 

Obviously, the t parameter Ho is better suited for this coordi
nate choice, however, T can be used also provided that 0 is 
given by (32a). 

(3) Choose the t parameter in either one of the forms, T 
or Ho, as time coordinate. Then the expansion 0( n, or 
0(Ho), becomes thetparameter.IfTischosenastimecoor
dinate, the metric becomes 

ds2= _ Q(T,r) dt 2+H2(Tr) 
[0( T)/3]2 ' 

x[dr+/2(d0 2 +sin20d¢2)] , (33) 

with 

0(T)#0. 

If Ho is chosen as time coordinate, the metric takes a form 
similar to (33). 

Each one of the coordinate choices presented above is 
entirely equivalent, though one coordinate choice can be 
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more useful than another for the study of a given aspect of 
the solutions. For example, if it is convenient to single out 
the comoving observers along a particular surface ~r' then 
the choice (32) with t being the proper time at that surface 
~r can be more convenient. Such a situation could arise in 
the case of a bounded sphere, in which case the special sur
face ~r would be the surface at which the sphere is matched 
with the external Schwarzschild or Reissner-NordstrtSm 
field (see Sec. XI). Ideally, Ho, or Ro =foHo could be the t 
parameter, but as Eqs. 1(30) show H(Ho,r) can be quite 
cumbersome, and so this coordinate choice will have, in gen
eral, complicated metric coefficients. The coordinate choice 
(31) does not single out any surface ~r and leads to the 
simplest form of the metric; however, the equation determin
ing T(t) could be more complicated. Since it can be helpful if 
one needs to perform calculations involving the metric, this 
choice is the one usually followed by authors who have stud
ied particular cases of the ChKQ solutions. The choice (33) 
has a coordinate singularity at 0 (n = 0, but has the advan
tage that the metric coefficient H is already determined as a 
function of the coordinates T and r. However, 0 ( T), which 
is now the t parameter appearing in the metric, might be a 
complicated function of Tor Ho. This choice has been fa
vored in the study of the Wyman solution and its charged 
version. 11.12,22 The three types of time coordinate presented 
above will be used throughout this paper and Part III, speci
fying in each case which choice has been made. 

VI. THE EQUATION OF STATE 

As mentioned in Sec. II, the determination of the time 
evolution of the fluid by solving the field equations requires 
one to supply to these equations extra information contained 
in an "equation of state," i.e., a constraint relating the state 
variables p and p. However, it is desirable to choose an equa
tion of state that not only determines the time evolution of 
the fluid, but at least satisfies the "weak energy condi
tion," 14 and bears some minimal relation to the physical 
properties of the fluid. Since the case ofSSSF solutions satis
fying a barotropic equation of state has been extensively dis
cussed in the literature (Refs. 11, 12, 19,20, and 22, and also 
Refs. 1,5, and 8-10 of Part I), this section will concentrate 
mainly on nonbarotropic equations of state. The Wyman 
solution, satisfying a barotropic equation of state is discussed 
in Appendix A. The guidelines to be followed in order to 
prescribe or obtain an equation of state, together with some 
thermodynamical properties of the solutions, will be dis
cussed in this section. A kinetic theory approach will be left 
for Sec. XI of Part III. For the sake of simplicity, the coordi
nate choice (33) will be used and only neutral fluid configu
rations will be considered. 

For a perfect fluid configuration, one defines the parti
cle number and entropy densities, Nand S, respectively, 
which satisfy 

(Nua)'a = dN +N0=0, (34a) 
, dr 

dS =0. (34b) 
dr 

Equation (34a) is a continuity equation implying the con-

951 J. Math. Phys., Vol. 29, No.4, April 1988 

servation of the number of baryons in the fluid, while (34b) 
simply states that the entropy density is constant along the 
world lines of fluid flow. An equation of state can be formally 
given by specifying the matter-energy density considered as 
a primary thermodynamical potentiaJ23: 

p =p(N,s). (35) 

Given an equation of state in the form (35), other thermo
dynamical state variables, such as pressure peN,S) and 
temperature YeN,S) can be obtained through the first law 
of thermodynamics: dp = [(p + p)IN]dN + [NY]dS, 
which can be applied to SSSF solutions by "translating" the 
thermodynamical variables (or parameters) Sand N into 
the coordinates used in (1). For this representation, Eqs. 
(34) become 

N- 1 = t1TH3 , 

S=S(r) , 

(36a) 

(36b) 

which relate the "thermodynamical" coordinates (N,s) to 
the "geometric" coordinates (H,r). Thus the surfaces of 
constant entropy and particle number densities are the sur
faces ~r and H = const, respectively. Equation (36a) con
ceals an arbitrary function of r by assuming that the initial 
particle number density is given by [( 4/3) 1TH] -I evaluated 
in an arbitrary initial surface ~t' In Eq. (36b), S(r) is an 
unspecified function because for a perfect fluid the only in
formation given about it by the second law ofthermodynam
ics [in (34b)] is that it is conserved along the fluid world 
lines, and thus, like the initial particle number density, it is 
not essential to determine the motion of the fluid. However, 
in order to translate into geometric coordinates the informa
tion conveyed in the functional dependence of thermodyna
mical variables on S, the function S(r) must be somehow 
known or inferred. 

Using Eqs. (36), the first law of thermodynamics can be 
projected along the directions parallel and orthogonal to ua

• 

Considering that dN = fir dt + N' dr and dS = S' dr, the re
lations (aplaN). = (p+p)IN and (aplaS)N =YS be
come the Bianchi identity (19) plus 

- t1Tp'H3 + (t1TH3)'(p + p) = YS' , (37a) 

which for M- and W-type solutions becomes 

_ ~+ [!!':'_fh2QI12][(3).cf1! +aa +~ d0] 
R 3 h ,a 3 dr 

YS' 
=~' (37b) 

whereEqs. (16), (17), (20), (25), and (36) have been used 
to eliminatep', H',p + p, andN. Equations (37) convey to 
the thermodynamical state variables Y and S the "trans
verse" geometric constraints that shear-free motion imposes 
on the surfaces ~t' and thus it is in itself a strong constraint 
restricting possible choices of equations of state. 

If S' = 0 in (37a), one has the conditions that the pa
rameters characterizing ChKQ solutions must satisfy in or
der for these solutions to be compatible with a barotropic 
equation of state p = p (p). For the particular case of FRW 
solutions, S' = 0 in (37a) is trivially satisfied implying that 
these solutions always admit a barotropic equation of state. 
For nonstatic ChKQ solutions other than FRW, inserting 
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S' = 0 in Eq. (37a) leads directly to the parameters charac
terizing the Wyman solution (see Appendix A). If S' =1= 0, an 
equation of state of the form (35) can be either prescribed or 
obtained in connection with Eq. (16). If this equation is 
treated as an equation of motion, then it cannot be integrated 
unless one knows how p depends on H (or R) along every 
surface 1:" i.e.,p(H,r). Conversely, ifEq. (16) in the form 
( 18) is used a sort of "definition" of p, then this definition is 
undetermined unless one specifies e, which implies specify
ing a priori how the fluid evolves in time and then finding out 
the matter-energy density associated with this motion. De
pending on how one approaches this field equation, an equa
tion of state of the form (35) can be either "prescribed" or 
"obtained." That is, based on (16), two strategies are possi
ble: (a) the motion of the fluid is obtained by finding e from 
a prescribedp, and (b) the matter-energy density is obtained 
from a prescribed e (i.e., a prescribed motion ofthe fluid). 
Obviously, (a) is a physical strategy, and so, an equation of 
state which follows this strategy is a "physical equation of 
state," while (b) is a "kinematical strategy" associated to a 
"formal equation of state." If a physical equation of state is 
prescribed, it determinesp(N,S) and !T(N,S) through the 
first law of thermodynamics and can be translated into geo
metric terms by Eqs. (40). If a formal equation (')f state is 
obtained by a specific choice of e and S, then Eq. (37b) is a 
sort of "geometric definition" of !TS'. 

Although the prescription of any function e for arbi
trary S(r) is sufficient to have the field equations deter
mined, it is desirable to avoid dealing with fluids divorced 
from any physical concern. Therefore, the guideline to ob
tain a formal equation of state should follow some sort of 
physical justification, such as choosing e from a boundary 
condition or to comply with a given form of S(r). Since there 
are very few examples in the literature24 of nonbarotropic 
physical equations of state that could be applied to simple 
thermodynamical systems like a perfect fluid configuration, 
practically all authors studying SSSF solutions (except 
FR W solutions) have used formal equations of state, either 
obtained as boundary conditions or, in the case of authors 
studying the Wyman solution,II,12,22 by constructing an 
equation of state compatible with S = const. Such an equa
tion of state is, of course, a formal one, See Appendix A, 

Whether "physical" or "formal," an equation of state 
must be compatible with the field equations. This compatibi
lity can be tested by Eq, (37), which together with the Bian
chi identity (19) forms a coupled system of integrability 
conditions of p, relating the state variables p, !T, and S with 
e and de/dr, and the "curvature terms" aa;a and (3)a', 

which are fully determined by the constraint equation (15) 
irrespective of the choice of equation of state. Because of the 
presence of these "curvature" terms, it might be impossible 
to propagate along ua a given set of physically motivated 
initial conditions specified by relations between the state 
variables (p andp, or Sand!T) in an initial surface 1:" and 
at the same time to have a fluid performing shear-free mo
tion so that Eqs. (15), (16) [or (19) ], and (37) are satisfied 
at every subsequent surface 1:,. For example, since for both 
types of equations of state Sand !T appear in (37) intertan
gled in the product!TS', these variables can be separated by 

952 J. Math. Phys., Vol. 29, No.4, April 1988 

inserting in (37) either an empirical or a theoretical relation 
between them. However, such a physically motivated rela
tion could very well be incompatible with the curvature 
terms (3)a' and aa;a. Since perfect fluid thermodynamics do 
not give any further insight into the relation between !T and 
S, the separation of these variables in the product !TS' re
quires one to study the thermodynamics of fluids in small 
deviations from thermal equilibrium and/or kinetic theory. 
The former approach will be discussed below, while the lat
ter will be left for Sec. XI of Part III. 

At first-order deviations from equilibrium,25-27 the heat 
flux vector qa is given by 

qa = _ Kh ap [!T,p + !Tap ] , (38) 

where K = K (N,s) is the coefficient of thermal conductivity 
and ap is the four-acceleration defined by (9), or (28) for 
M- and W-type solutions. If the energy-momentum tensor is 
that of a perfect fluid, then qa must vanish leading to the 
following two options: 

( 1 ) K = 0, !T undetermined, 

(2) K>O, On !T).p + ap = O. 

(39a) 

(39b) 

Condition (39b) reduces for static space-times to the "Tol
man law," 28 which governs the temperature gradient of 
such configurations. For SSSF solutions, this condition is 
!T = U(t,r) , with U given by (3b), so that the vector A. a in 
(10) could be identified as A. a = !Tua • For the particular 
case ofM- and W-type solutions, condition (39b) reads 

!T(T,r) = e(T)/3/[Q(T,r)] 1/2, (40) 

which fixes !T for K> O. If (40) is inserted in (3 7b), the 
latter equation becomes a "definition" of S ' from which S (r) 
is found by integration. However, Eq. (3 7b) is incompatible 
with having S = S(r) [i.e., incompatible with (34b)], as it 
can be verified by writing up explicitly the terms (3) a' , aa;a' 
and J ' appearing in (3 7b ). This incompatibility occurs for all 
nonstatic ChKQ with S ' =1= 0, and it is a simple example of 
how the imposition of shear-free motion, which completely 
fixes (3) gp and aa;a' restricts the forms of state variables and 
equations of state. Therefore, the only option for these solu
tions is to assume that K = 0, which is a strong restriction on 
their range of applicability as models of physical materials. 
Possible kinetic theory implications of having K = 0 will be 
discussed in Sec. XI of Part III. 

VII. BOUNDARY CONDITIONS AS FORMAL 
EQUATIONS OF STATE 

The simplest type offormal equation of state is provided 
by suitable boundary conditions which are sufficient condi
tions to have the field equations fully determined. This 
choice of equation of state follows from a kinematical strate
gy, and is the one usually followed by authors who have 
examined ChKQ solutions. From Eq. (18), a formal equa
tion of state can be obtained by specifying e = e (t), and a 
simple way to do so consists in finding p from a given set of 
physical conditions in an arbitrary surface 1:r which will be 
called the "boundary 1:, surface." Using the coordinate 
choice (32) and choosing a boundary 1:r surface corre-
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sponding to a fixed but arbitrary r = r 0;;;.0, a physically moti
vated boundary condition can be specified by a reasonable 
barotropic equation of state Po = Po (Po) valid only at r o' This 
type of equation of state will be referred to hereafter as a 
"localized equation of state." Given such an equation of 
state, the Bianchi identity (19) at ro, 

dpo _ 3dHo 
Po(Po) + Po - - --n:: ' (41) 

can be integrated yielding: Po =Po(Ho)' Knowing how Po 
depends on H o, the time evolution field equation (16) re
stricted to ro can be integrated. This equation can be ex
pressed either in terms of Ho as 

. 2 3 
(Ho) = (lIHo)(~1rpoB 0) - k 

+ [f~ (hy/h)2 + 2(1 - kYo)(hylh)o] 

+ L(foho)2H~ 
+ 2h 6 [1 - kyo + f~ (hy/h)o] [00] 1/

2
, (42a) 

or in terms of Ro = foBo as 

(RO)2 = - [1- (2/Ro)(~1rpoR ~ + Jo) + E~/R ~] 

+ [1- kyo + f~ (hylh)o ± (fohof[00P/2]2, 

(42b) 

where hy =dh /dy, and (hylh)o indicates that the quantity 
in brackets is evaluated at roo Ifro = 0 (if space-time is regu
lar there, see Sec. VIII) is chosen as the boundary surface, 
Eq. (42a) simplifies to 

(j()2 = (lIHe )(~1rPeH~) - k - 2(hylh)e 

(42c) 

where the subindex c indicates evaluation at r = O. Equa
tions (42) look like Friedman equations for FR W solutions, 
however, there are extra curvature terms that come from 
evaluating derivatives like H' at fixed r. Since these deriva
tives vanish for the FR W solutions, these curvature terms do 
not appear in the corresponding Friedman equations. 

Once Eqs. (42) are integrated yielding Ho = Ho(t), the 
time evolution of comoving observers at the boundary ~r 
surface is known. However, since H can be given as 
Ho = H(Ho,r) [see Eqs. 1(30) and (13)], the time evolu
tion of all comoving observers with r=/= r 0 can also be found. 
From another angle, a localized equation of state fixes e 
through either one of Eqs. (42) and thus determines p 
through (18). The resulting formal equation of state can be 
obtained in the form (35) by translating e (t) into "thermo
dynamical" coordinates, which involves eliminating t in 
terms of Hand r and choosing S(r) so that 
p = p(H,r) = peN,S). The prescription ofa localized equa
tion of state for a given ChKQ solution is a mathematically 
convenient equation of state but because of the presence of 
curvature terms such as (3):Ji' and aa;a' it is unlikely to be 
physically realistic for r=/=ro. 

The choice of boundary l:r surface depends on the spe
cific problem under consideration. For the purpose of using 
ChKQ solutions as bounded spheres matched to a Schwarz
schild or Reissner-Nordstr!6m exterior, ro should label the 
matching surface (the surface of the sphere) so that the time 
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coordinate coincides with the proper time of observers co
moving with this surface (see Sec. XI and Appendix C). 
Most previous work on ChKQ solutions is concerned with 
their use as bounded spheres, though the time coordinate 
choice usually favored is (31). In Sec. XI ChKQ solutions 
modeling bounded spheres will be concentrated on. For un
bounded fluid configurations, the choice r = 0 (if space-time 
is regular at this locus, see Sec. VIII) seems to be better 
suited. For M- and W-type solutions, L is a constant, and 
then the prescription of a localized equation of state deter
mines the only t parameter Ho [or T(t) depending on the 
coordinate choice]. However, if L = L(t), then this extra t 
parameter allows one to prescribe extra conditions on the 
state variables (see Secs. VII and IX of Part III). In the 
following sections, and unless it is specified otherwise, 
ChKQ solutions will be examined assuming that a given lo
calized equation of state has been prescribed. Although these 
equations of state are purely formal, they are mathematically 
simple and are useful inasmuch as they provide one with 
examples of ChKQ solutions in which the time evolution is 
fully determined. 

VIII. REGULARITY CONDITIONS 

Since ChKQ solutions, as spherically symmetric space
time manifolds, can be decribed in 2-D coordinate patches 
(t,r) (see Sec. III of Part III), all relevant quantities asso
ciated with these solutions, whether metric coefficients, state 
variables p, p, and q, or curvature scalars, can be treated as 
real functions of t and r. However, coordinate values t and r 
are restricted by regularity conditions ensuring that these 
functions are smooth and bounded, i.e., at least C I functions. 
Some of these conditions arise from the specific functional 
form of curvature terms present in the field equations inde
pendently of the choice of equation of state, and thus are 
basic regularity conditions. Other conditions follow from a 
specific choice of equation of state and thus are supplemen
tary regularity conditions. Both types of conditions will be 
discussed below. 

A. Regularity conditions for the metric 

Leaving aside the coordinate singularity ansmg as 
e = 0 using the time coordinate choice (33), the regularity 
of the metric (1) follows from the regularity of Hand 
R = jH, treated as non-negative functions of t and r. In Part 
I, the most general form of H was that of a quotient of elliptic 
functions which can be given generically as 

H(t,r) = h(r)E(t,r)/II(t,r) , (43) 

which indicates that a necessary condition for the metric 
coefficients in (1) to be smooth and bounded is 

(44) 

Since the function II (t,r) becomes a constant if L = 0 (see 
tables of Part I), that is M-type solutions, condition (44) can 
only fail to hold in solutions with L =/=0 (though there are 
exceptions to this rule, see Sec. IV of Part III). However, 
besides condition (44), H (and/or R) could diverge if the 
functions hand X=S h 2 dy given by 1(23) and 1(25) di
verge. These functions, which appear as arguments of II and 
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E: in the expressions of the type (43) derived in Part I, will be 
smooth and bounded if, for each category X(\) toX(S) in Eq. 
1(25), the values of the parameters (a,b,c) characterizing h 
are restricted so that ay2 + 2by + c > 0 for r>O [or y>O, see 
Eq.I(16b)]. 

B. Regularity at the center 

In a spherically symmetric space-time, a regular center 
can be defined 17 as the set of events corresponding to fixed 
points of the group SO(3), that is, the world line of the com
mon center of the orbits of SO (3) labeled by a fixed coordi
nate r = re' In solutions in which a regular center exist, the 
conditions 17 

R(t,7e ) =R(t,re ) =0, 

[IR '/R ]r=rc = 1 

(45a) 

(45b) 

will hold for r = 7e • For solutions in which h(O) and X(O), 
and soH(O,t) andH(O,t), are bounded, one can identify the 
locus re = 0 as a regular center. Since R = jH, I( 0) = 0 and 
f' (0) = 1 clearly hold if H(O,t) and H(O,t) are bounded. If 
k = 1 as in (2b), then 1= 0 and f' = 1 for rc = 1T', and so 
conditions (45) also hold also at this locus. This effect oc
curring for solutions with k = 1 will be discussed in Secs. II 
and III of Part III. Throughout this paper it will be assumed 
that (a,b,c) have been chosen so that conditions (45) hold, 
and this requires specifically avoiding solutions correspond
ing to X(I) with c = 0, X(2) with b> 0 and c = 0, and X(4) 

with b = 0 [see Eqs. 1(25)], in which h and X (and so H) 
diverge as r-O. Solutions in which h and X diverge at 7 = 0, 
and so conditions (45) are violated at this locus, will be 
examined in Secs. V and VI of Part III (see also Appen
dix B). 

c. Regularity of curvature scalars 

Curvature scalars formed with contractions of the Rie
mann tensor, such as ga{JfjfaP, fjf apfjfa{J, or fjf a{JY6fjfa{JY6, 

which can be expressed as algebraic combinations of p, p, 
and q, will be regular if these functions are smooth and 
bounded. These state variables can be computed from ( 14a), 
( 16) [or ( 18) ], (20), and (21), which contain "curvature" 
terms, such as (3)fjf and aP;p, whose form as functions of His 
independent of the choice of equation of state. An examina
tion of the field equations shows that all state variables p, p, 
and q diverge as H -+ 0, and since R could vanish regularly at 
7 = 0 [because of (45a)], the condition that H vanishes can 
be expressed in terms of R as R - 0 for r> O. Therefore, one 
basic regularity condition involving the state variables is 

R(t,r) >0, forr>O} I )10 (46) 
H(t,r) >0 :::} E:(t,r > . 

From (8) and (9b), the term d0/dr in the Raychaudhuri 
equation (20) and the magnitude of the four-acceleration 
.!If = lapaP 11/2 diverge if the metric coefficient 
U -I = ( - gtt ) 1/2 vanishes. This requires, for ChKQ solu
tions in general, the converse of condition (29) to hold, that 
is, the fact that H IH can vanish for 0=t0. For M- and W
type solutions, in which H / His given explicitly by (30), the 
converse of condition (29) holds if 0 = 0 with 0 given by 
(26a). Since Eqs. (20)-(22) define p and p', the pressure 
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and pressure gradient also diverge for any equation of state 
as long as there are t and 7 values for which Q vanishes. 
However, the matter-energy and charge densities remain fin
ite as 0 -+ O. Thus a second basic regularity condition ensur
ing that p, p', and curvature scalars remain bounded is that 
H / H should only vanish if0 does. For M- and W -type solu
tions, this condition is 

10 (t,7) I> o. (47) 

For solutions with time dependent L, the converse of 
condition (29) takes a more complicated form and will be 
discussed in Secs. VII and IX of Part III. The behavior of 
curvature scalars as n -0 and as 7-+0 in the cases where 
conditions (45) are violated will be discussed in Sees. V and 
VI of Part III (see also Appendices A and B of Part III). 

D. Regularity conditions following from a chOice of 
equation of state 

Regularity conditions (45 )-( 47) are necessary and suf
ficient. As shown in Appendix C, whether these conditions 
hold or not depends on the parameters (E,J.t,Il.,L,a,b,c) char
acterizing specific particular solutions. However, for those 
solutions in which Hand/or 0 could vanish and so (46) 
and/or (47) would be violated, an equation of state can be 
chosen in such a way that (t,r) values are further restricted 
and the fluid evolves in such a way that Hand/or Q do not 
vanish. Such a choice of equation of state provides further 

T T 

H(t,r) =~o.--. __ 

(a) Type (i) (b) Type(U) 

T T 

H(t,r)-O 

(c) Type (iii) (d) Type (iv) 

FIG. 1. Four types of domain of regularity. The evolution of fluid layers 
(world lines of comoving observers, vertical dotted lines) for the types (i) 
to (iv) of domain ofregu1arity are displayed from (a) to (d). Dotted curves 
denote hypersurfaces of constant R. The arrows indicate a collapsing fluid 
motion, e < 0 (towards decreasing R). For an expanding fluid, 0> 0, the 
arrows would point downward (toward increasing R). Ife = 0 at T = To, 
the fluid bounces and the arrows would reverse at this surface l:r. See Sec. 
VIII. 
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supplementary regularity conditions by setting ® [the part 
of p and p not fixed by solving Eq. (15)] to be such that 
H> 0 and/or 101> 0 for all (t,r). This situation requires ® 
to vanish at a given surface 1:, so that fluid layers "bounce" 
(see Fig. 1), and so it is analogous to what happens in the 
FR W solutions when negative pressure is introduced 
through the "cosmological constant," thus ensuring that the 
only regularity condition H(t) > 0 holds for all t. However, 
in the latter solutions (3)8i' diverges as H -0, and there is no 
acceleration term aa;a which could diverge at H #- 0 indepen
dently of the specification of an equation of state. 

E. Domain of regularity 

The range of (t,r) values (r;;o.O) in which the necessary 
regularity conditions (44), (46), and (47) hold is a domain 
of regularity characteristic of each ChKQ solution with a 
"regular center" [though condition ( 47) is only valid for M
or W -type solutions] independently of the choice of equa
tion of state. If these conditions are phrased in terms of W 
defined by (26b), one has for M- and W-type solutions: 
W> 0 and Q( W) > 0, which are just the requirements fixing 
the range of Was integration variable in I(24a), Fig. I of 
Part I. Since the range of W, which directly depends on the 
roots of Q (i.e., which in tum are the same as the roots of a ), 
has been classified for ChKQ solutions in four basic types in 
Fig. 1 of Part I, these types are essentially the four types of 
domain of regularity of the solutions. As W = fh / R, the in
formation contained in the types of domain of regularity can 
be conveyed in terms of allowed values of R for comoving 
observers with r> 0 [R = 0 for r = 0 if conditions (45) 
hold]. Thus infinite values of the integration variable W can 
be identified with the boundary of the domain of regularity 
characterized by R - O. Similarly, the limits of integration of 
1(24a) given by W -A (A is a root of Q) and W -0 can be, 
respectively, identified with the boundaries of the domain of 
regularity given by 0-0 and R- 00. 

As a result of the invariant meaning of R discussed in 
Sec. II, the range of allowed values of this function is an 
important invariant characterization of each solution. This 
range of R is shown in Fig. 1 for the four types of domain of 
regularity (i)-(iv). Consider a typical fluid layer labeled by, 
say, r = r J > 0, if the solution is type (i) [Fig. 1 (a)], R is 
constrained to vary between 0 and f.,hl/A, where A is a root 
of Q. For solutions of type (ii) and (iv) [Figs. 1 (b) and 
l(d)], one has R >flhJ/A and R > 0, respectively, while in 
solutions of type (iii) [Fig. 1 (c)] fluid layers evolve be
tween two branches of Q = 0 (i.e., flhl/B <R <flhJA, 
where A and B are two consecutive roots of Q). Coordinate 
representations of the domain of regularity and of the boun
daries a = 0 and H = 0 for various solutions classified in 
Tables III and VI of Part I are provided in Table I. 

IX. COMPLETENESS OF CAUSAL CURVES 

As mentioned in the previous section, if conditions (45) 
hold, curvature scalars formed by contracting the Riemann 
tensor diverge at the coordinate values given by the follow-
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ing constraints: 

H(t,r) = 0 => (grr) 1/2 = 0, 

O(t,r)=O=> (_gtt)J/2=0, 

(48) 

(49) 

while curvature scalars are bounded but the metric coeffi
cients Hand R diverge at those coordinate values for which 

II(t,r) = 0, (50) 

where II follows from the generic form of H given by (43). 
The coordinate surfaces (48)-(50) will be referred to as 
"regularity boundaries" (or simply as "boundaries") as 
they limit the domain of regularity of M - and W -type solu
tions. However, further investigation connected with com
pleteness of causal curves is necessary in order to understand 
the invariant nature of these boundaries. This investigation 
will be carried on in this section and specifically will be ap
plied to Eqs. (48) and (49) in the following section. For 
solutions in which conditions (45) are violated, r = 0 marks 
an extra regularity boundary, this boundary plus that given 
by (50) will be studied in Part III. Since for certain equa
tions of state, ® could be such that Eqs. (48) and/or ( 49) do 
not hold (supplementary regularity conditions), it will be 
assumed in studying either one of these boundaries that an 
equation of state has been chosen so that comoving observers 
reach the corresponding boundary. 

Since curvature scalars diverge at the regularity boun
daries ( 48) and ( 49), it appears that these singular boundar
ies are coordinate representations of scalar curvature singu
larities. In order to verify this conjecture, the following 
criterion29 will be used. 

Let J( be the space-time manifold, and let r(s,{3): 
R -J( be a C 1 causal (timelike or null) congruence parame
trized by /3 and by a suitable affine parameter S along the 
curves. Suppose that either one of (48) or (49) is ap
proached along r. If the conditions (a) curvature scalars 
diverge and (b) the affine parameter S tends to a finite limit 
hold, then (48) and/or (49) are coordinate representations 
of a scalar curvature singularity. 

Condition (a) above obviously holds for ( 48) and (49), 
however (b) must still be verified, and for this purpose, it is 
convenient to identify r with causal congruences whose tan
gent vectors have a simple representation in the coordinates 
used in (1). The best candidates are the world lines of co
moving observers labeled by r = const and with ua as tan
gent vector, and radial null geodesics whose tangent vector 
k a satisfies in general the null geodesic equation 

dk
a 

+r~ kPku=fl(v)k a , 
dv pU 

(51a) 

where 

!!..-=k(~+kr~. 
dv at ar (51b) 

The function fl in (51 a) vanishes if the parameter v along 
the geodesics is an affine parameter. 

However, even for these simple causal curves the verifi
cation of the incompleteness condition (b) is not trivial. This 
is so because the world lines of comoving observers are not 
geodesics and the proper time 1" is not an affine parameter 
along these curves. Also, the components of k a might be 
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complicated functions if the null geodesics are affinely para
metrized. In order to deal with this situation, adequate affine 
parameters will be sought for timelike and null curves sepa
rately. 

A. Timellke curves 

Since integral curves of ua are not geodesics, the general
ized affine parameter30 (GAP) along ua can be used to verify 
condition (b). However, the GAP requires a parallely pro
pagated frame and so it is difficult to compute in the coordi
nates used in (1). In order to deal with this situation, and 
having in mind cosmological applications in general, it is 
desirable to be able to express GAP incompleteness of non
geodesic timelike curves in terms of invariant quantities of 
physical interest, such as proper time and four-acceleration. 
Such a GAP incompleteness criterion has not been given 
before in the literature and is offered in the following. 

Proposition (Clarke): Let y:(0,71 ] -JI be a C I timelike 
curve parametrized by its proper time 7, and let .J?/ ( 7) be the 
magnitude of the four-acceleration aa =. ua;p uP at proper 
time 7: 

(52a) 

If there exist constants 72 and I with 0<;72<;71 and 0 < 1<1, 
such that 

(52b) 

holds for all 72<;7<;71, then y is GAP incomplete. 
This proposition is rigorously proved in Appendix B for 

any nongeodesic timelike congruence. However, in order to 
apply it to M- and W-typesolutions, (52b) must be tested for 
the world lines of comoving observers for which .J?/ is given 
by (28), while T follows from ( 12) which reads explicitly: 

7(t,r) = ll. - --+ --+ -- dt. i ( 2/-lh €lh 2 LH2 )112 

, H H2 h 2 (53) 

This integral must be computed keeping r constant. Since 
(28) and the integrand in (53) are complicated functions, 
and all that is needed is to verify (52b) as comoving observ
ers approach ( 48) or ( 49), it will be sufficient to consider the 
leading terms in the expansion of 7 and .J?/ around coordi
nate values satisfying these constraints. For this purpose, H 
along the world line of a comoving observer labeled by (say) 
r = r l can be expanded around t = tl such that either one of 
( 48) or (49) holds. This expansion is at first order: 

H-;::::,HI+iIl(t-tl ) , (54a) 

in which 

iii = (01/3)HI [Od 1/2 (54b) 

has been computed from (30). The subindex 1 in Eqs. (54) 
indicates evaluation at (t I,r I)' 

B. Null geodesies 

The affine parameter along null geodesics {J is related to 
the parameter v in (51b) by the differential equation31 

d{} i - = exp n(v) dv 
dv v 

(55) 

in which the integral must be evaluated along a null geodesic 
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parametrized as (t(v),r(v»), where t and r are related by 

[
dt] ±H - =~. 
dr null 0 

(56) 

The conformal structure of the regUlarity boundaries (i.e., 
whether they are timelike, null, or spacelike surfaces) can be 
determined by a qualitative examination of Eq. (56) which, 
for r = const, provides the slopes of the light cones in the 
(t,r) coordinates as comoving observers approach the regu
larity boundaries. 

The parameter v must be suitably chosen in order to 
facilitate the evaluation of {J in (55). A convenient choice 
turns out to be that in which the components of a future 
directed null vector k a are 

k'= dt =_1_ 
dv 0 1/ 2 ' 

k'= dr =...tJ. 
dv H' 

(57a) 

(57b) 

where ± in (57b) indicates increasing/decreasing r values 
along the null curve. With this choice, k a satisfies Eq. (56) 
with n given by 

n(t,r) = 0/3 ± .J?/ /H, (58) 

where .J?/ is given by (28), and t = l(v), r = rev) obtained 
by integrating Eqs. (57) must be inserted in (58) so that the 
integral in (55) can be evaluated. As with the timelike case, 
it is sufficient to consider only leading terms in the expansion 
of n near (48) or (49) in order to verify the convergence of 
{J. For example, H along a null geodesic can be expanded in 
first order terms as 

(59a) 

where HI is given by (54b), H; =.H'(tl,rl ) can be calculat
ed from Eq. (25), and (t - II) and (r - r l ) are related at 
first order by 

(t-l l )-;::::,( ±HI /[Od l
/
2 )(r-rl ). (59b) 

In expansions such as (54a), (59a), and (59b), one must be 
careful to have the ± signs in the coefficients iii and H; 
correctly computed. In the following section, the complete
ness of time like and null curves will be studied for each regu
larity boundary (48) and (49). 

X. SINGULARITIES 

A. The finite-density singularity 

The boundary 0 = 0 might occur in solutions of types 
(i) or (ii). The coordinate values (t,r) corresponding to this 
boundary are finite in general, and correspond to finite val
ues of 0, H, and R. In order to verify the convergence of 7, 
the integral in (53) can be evaluated for r = r l by expanding 
Hand 0 around a value 1 = II with HI =.H(tl' r l ) such that 
o (t I' r I) = O. For a collapsing configuration (0 < 0, finite), 
these expansions are 

.. 2 
H-;::::,HI+;HI(t-t l ) , 

0 112
-;::::, (3/0 1 )(HIIH I )(1 - t l ) , 

with 

(60a) 

(60b) 

HI/HI = [01/3]2 [/-lhIH I - €lhi +Lh l-2Hi] , (60c) 
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FIG. 2. Null geodesics near the bound
ary O(t,r) = O. As 0-0 along the 
world lines of comoving observers (ver
tical dotted lines), the slopes of the light 
cones diverge: (dt Idr) null - ± 00, indi
cating that this boundary is spacelike. 

hence, at first order approximation, (53) is 
•• 2 

T-1"I;::::: [201/3]-I(H1IH1 )(t - t l ) , (61) 

indicating that 1" is finite as Q - O. The magnitude of the four
acceleration, given by (28), is at first order around t = tl: 

d;::::: -/lhi/(01/3)(tI-t). (62) 

From Eqs. (61) and (62), 1"-I-lt-tl l-
2 while 

d -It - til-I, thusif1"1 in (52b) is identified as 1"1 = 1"(tI)' 
it follows that the GAP incompleteness condition holds for 
Q=O. 

From Eq. (56), (dt Idr) null - ± 00 as Q-O, so that the 
slopes of the light cones along comoving observers become 
"vertical" in the (t,r) coordinates. Since the "vertical direc
tion" (r = const) in these coordinates corresponds to the 
timelike world lines of comoving observers and Q = 0 does 
not coincide with surfaces .I" then this singular boundary 
can be characterized as a spacelike singularity. This aspect is 
illustrated in Fig. 2. 

In order to verify the completeness of null geodesics, one 
must test the convergence of the integral in (55) as Q-O 
along these curves. Using the parametrization given by Eqs. 
(56), near Q = 0 one has approximately dr;:::::O, r;:::::r l and 
dV;:::::QI/2 dt, the integral in (55) becomes at first order 

Odv;::::: + I"h 2• _~+ __ I ___ - dt J ft' [ h E
2
h 2 LH2] 

_JI t H H2 hi ' 
(63) 

where H is given by (60a). Hence, the affine parameter {} 
defined by Eq. (55) is finite as Q-+O, and the coordinate 
values for which Q = 0 do represent a scalar curvature sin
gularity at which causal curves terminate. It is easily verified 

TABLE I. Domain of regularity and singUlar boundaries in M- and W-type solutions. This table provides the coordinate representation of the domain of 
regularity and singular boundaries for those M- and W-type solutions with In (T,r) I > O. This information for solutions presenting the boundary n = 0 is 
given in Table II of Part III. Constant parameters and functions h, u, and X for each solution correspond to the forms given in Tables III, VI, and VIII of 
Part I. 

Classification scheme Type Domain of regularity O(T.r) =0 H(T.r) = 0 

NMcV(r3)(X4,5) (iv) [T+X)2>0 T= ±X 

NMcV(r2)(XI,2) (ii) T>l'u/2 T= l'u12 
(iv) T> Il'lu/2 T= Il'lu/2 

NWy(r2) (X 1,2) (iv) T+X>lT/V~ T= -X+lT/V~ 
(ii) T + X> (2IVI~l>coth-'(v'3) T= (2/VI~I)coth-'(v'3) 

ChMcV(r4) (X4,5) (iv) T+X>O T= -X 

ChMcV(r3) (X4,5) (i) E/I'<T+X<V1E!ft T=V1(E/ft) -X T=E/ft-X 
(ii) T+X>V1E/1' T=V1(E!ft) -X 

ChWy(r3)(XI,2) (i) VI2/5(E!ft) < T + X < 2(E/ft) T= VI2I5(E!ft)-X T= 2(E/ft) - X 

ChMcV(r2,r2)(XI,2) (i) 0< T + ftu( y) <ftu( y) T=O T= -I'u(y) 
(ii) T>O T=O 
(iv) T> Iftlu( y) T= Il'lu( y) 

ChWy(r2,r2) (X 1,2) (i) - u-' < T < [u - M2E')![(~12E')u - I) T= [u - M2E')![ (M2E')u - I) T=u-' 

ChMcV(r2)(XI,2) (i) - [I' + V~E)U12< T < - Vft2 - ~E'u/2 T= - Vft2 - ~E'u/2 T= - [1'+V~E)u/2 
(ii) T> V 1'2 - ~E'u/2 T= Vft2 - ~E'u/2 

ChMcV(r2)(X3) (i) O<sin T + ucos T< [Va - 2fth)/aVI~1 sin T+ ucos T= [Va - 2fth)/aVI~1 sin T+ucos T= -fth/aVI~1 
a=1'2 + I~IE' 

ChWy(r2)(XI,2) (i) 2Vuo< IT+XI <2Vuo!3 T=2Vuo!3-X T=2Vuo-X 
!3=[8Ia-I)/[8Ia-4) a= I + (I + 1612187) ,/2 

ChWy(r2) (X 1,2) (i) 0< (I/V1)cos V < I + cos V V=cos-'[V1/(I-V1») V= IT/2 
0<V=V~/2[T+X)<lT 

ChWy(r2)Ic5+ (XI,2) (i) [a,+V,r, +4]u/2<T<y+u/2 T= y+u/2 T= [a, + V,r, +4]u/2 

y± =a,W± -a2A+ [(,r, _4)W2± 

+2A(4-a,a2)W± + (cr. _4)A 2]'/2 
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that the same results hold for neutral solutions (E = 0), pro
vided that Q = 0 occurs. 

The singularity marked by Q = 0 is essentially different 
from a PRW big bang, as it is not characterized by the van
ishing of proper volumes of local fluid elements (0,H, and 
R = jH are finite), also matter-energy and charge densities p 
and q remain finite, and so the dominant and strong energy 
conditions are violated, though not necessarily the weak en
ergy condition if p ..... + 00. This singularity, which can be 
associated with the "blowing up" of the terms d0ld1" and 
aa;a in the Raychaudhurri equation, occurs if the parameters 
E, It, fl., and L are chosen so that Q [and so, Q in I (24b ) ] has 
real positive roots [solutions of types (i) and (ii) in Table I]. 
It has no parallel in more familiar solutions such as PR W or 
Tolman-Bondi solutions. However, some Bianchi models 
examined by Collins and Ellis4 do exhibit similar singulari
ties, which these authors have denoted as "finite-density sin
gularities." This nomenclature will be adopted in this paper, 
and so unless stated otherwise, any mention of a finite-den
sity singularity (PD singularity) in the following sections 
and in Part III will be understood to refer to the singularity 
marked by Eq. (49), or of a similar kind (see Secs. VII and 
IX of Part III). 

B. An "asymptotically delayed" big bang 

The boundary H(t,r) = 0 marked by Eq. (48) seems to 
be the coordinate representation of a big-bang singularity 
present in FRW solutions. This is so because the Hubble 
scale factor and the proper radii of comoving shells of fluid 
(given by Hand R = jH) vanish, and matter-energy and 
charge densities, pressure and pressure gradient diverge (in 
general) as these coordinate values are approached. How
ever, such a resemblance must be reexamined closely. In 
FRW solutions, one has H = H(t), and the big bang is a 
spacelike singularity labeled by a (singular) l:, surface, say 
t=to,atwhichH(to) =R(to) =Oasj0(to)j-00 (seeFig. 
4). This situation will be referred to henceforth, throughout 
this paper and Part III, as the standard big bang. Thus, once 
the equation of state is set in such a way that (dominant or 
strong) energy conditions hold, following singularity theo
rems,30 a standard big bang develops in PR W solutions. As 
there are no "curvature" terms, such as d, and (3) til = k I H 2 

also diverges at t = to, there are no other singularities in 
these solutions. 

However, the kinematical restriction of zero shear re
quires the expansion 0 to be constant along the surfaces l:, 
orthogonal to ua

, that is, 0 = 0(t) in SSSF solutions. Thus 
ifH = H(t,r) , it is not possible (in general, see Secs. VII and 
IX of Part III for counterexamples) to have 0 ..... ± 00 coin
ciding with the boundary H(t,r) = O. It is even possible to 
choose an equation of state in such a way that 0 remains 
finite throughout this boundary, as indeed it happens in the 
Wyman solution (see Appendix A in this paper and Appen
dix A in Part III). The completeness of curves reaching the 
boundary H = 0 with 0 everywhere finite will be considered 
first, while in the case when 0 diverges along a value (to,ro) 
satisfying H(to,ro) = 0 will be discussed later. 

Besides having 0 finite, another important difference 
with a standard big bang is that H(t,r) = 0 is not spacelike. 
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FIG. 3. Null geodesics near the bound
ary H(t,r) =0. As H-O along the 
world lines of comoving observers (ver
tical dotted lines), the slopes of the light 
cones tend to zero: (dt /dr)nuJ, -0, indi
cating that this boundary is timelike. 

Prom Eq. (56), (dtldr)nuu ..... O as H ..... O, while for H>O, 
(dt Idr) null is either negative or positive. That is, the slopes 
of the light cones in a (t,r) coordinate diagram become hori
zontal (i.e., the cones "open up") as H - O. Since H = 0 does 
not coincide with a surface l:t, then H = 0 will be intersected 
by past-directed and future-directed null geodesics, and thus 
it is a timelike boundary. This situation is illustrated in Fig. 
3. 

In order to evaluate rin (53), the expansion (54a) ofH 
for fixed r = r) around the coordinate value t = t) corre
sponding to H = 0 is, at first-order approximation, 

(64) 

where 0) is finite and the charge density has been assumed to 
be positive (i.e., E>O). Near H = 0, the integral in (53) is 
approximately 

it, Eh) 3 it' dt 1"-1")::::; -dt::::; - --, 
t H 0) t t-t) 

(65) 

which clearly diverges logarithmically. For neutral solutions 
which are not conformally flat (E = 0, but It < 0), one ob
tains the same result: 1" diverges logarithmically as H vanish
es if0 is finite. Therefore, since the GAP length along non
geodesic timelike curves is longer than the proper time 
length, the congruence of world lines of comoving observers 
is complete at the regularity boundary (48). Also, timelike 
geodesic congruences reaching this boundary will be com
plete, since their affine parameter lengths are necessarily 
longer than proper time length 1" along nongeodesic curves. 

In order to test the completeness of null geodesics, con
sider a collapsing configuration (0 < 0). According to Eqs. 
(57), near H(t),r) = 0 one has dt::::;O, t::::;t) and 
dv::::; ± H dr. Hence, the integral in (55) becomes approxi
mately 

Indv::::;f"[0)H+E/h
3

] dr, 
Ju J 3 H t=t, 

(66a) 

in which 0) is finite and the ± signs in d have canceled 
with those of dr. From (58), H is approximately 

(66b) 

with ± indicating that H increases or decreases for increas
ing r. Since d ..... + 00 as H ..... 0, Eqs. (66) imply that the 
affine parameter along null geodesics, computed from (55), 
diverges as these curves reach H = 0 at coordinate values 
with finite 0. 

The fact that 1" and {} diverge as H ..... O at all coordinate 
values at which 0 is finite implies that H = 0 in these values 
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FIG. 4. Plot of HvspropertimeT. The curve (2) depictsH( T) -Oas T-To 
and 0 - - 00, corresponding to a standard big-bang collapse. The curve 
(I) indicates the behavior of H( T) corresponding to a finite-volume (FV) 
singularity, which is analogous to that of curve (2), except that 
H( To) = HI > O. The curve (3) illustrates the behavior of H( T) along the 
world line of a comoving observer heading towards the asymptotically de
layed (AD) big bang: H( T) -0 as T- 00 with finite 0. 

does not mark a standard FRW big-bang singularity, but 
rather space-time points in the infinite past or future of the 
comoving observers. Since the coordinate values satisfying 
H = 0 are finite, this surface simply denotes a sort of coordi
nate compactification of a singular timelike infinity. How
ever, even if technically speaking H = 0 is not a scalar curva
ture singularity (it does not satisfy the incompleteness 
criteria), curvature scalars diverge and the proper radii of 
fluid shells vanish as H -0. Therefore, apart from incom
pleteness of causal curves, all other features of a big-bang 
singularity are present in H = O. And so, it seems, the best 
characterization of H = 0 is that of coordinate values mark
ing a sort of "asymptotically delayed big bang" (AD big 
bang) which is reached asymptotically in the infinite past or 
future of the comoving observers (see Fig. 4). 

This strange phenomenon follows directly from the fact 
that ® is finite along H = O. From Eq. (7), the expansion is 
defined as ® = d (In H 3) / dT, and so for a small increment in 
proper time, Tf - 1";, along the world line of a comoving 
observer at r = ro, one has approximately (at first order) 

(67) 

where Hf=H(Tf ,ro) and H; =H(T;,ro)' Hence, the stan
dard big bang is characterized by the expansion ® diverging 
as the proper volume of fluid shells vanishes [HI = 0 in Eq. 
(67)] fora finite lapse 11"1 - 1";1--0. Butthecombination of 
finite ® with vanishing proper volume as H --+0 [HI = 0 in 
Eq. (67)] can only be reconciled from Eq. (67) if the lapse 
of 1" diverges. The finiteness of the coordinates denoting 
H = 0 merely obscures this situation. The behavior of H as a 
function of 1" near the standard and AD big bangs is illustrat
ed by Fig. 4. 

Another important fact is that, regardless of the choice 
of formal equation of state, the dominant and strong (but 
not necessarily the weak) energy conditions are violated as 
H -0 for O,r < roo This is so because the terms (3)~ and aQ;a' 

as given by Eqs. (16), (20), (21), and (29), do not diverge 
at the same rate, and so, as H --+ 0 along the world lines of 
comoving observers, ,pf --+ + 00 and the state variables p and 
p tend to the following asymptotic limits: 81Tp --+ 0 21 
3 + tJ(H- 3

) and 81TP--+ - 0 2/3 + tJ(H-5
), where 

tJ (H - n) means terms of order H - n. Since 0 is finite as 
H -0, these asymptotic limits suggest that I pi >p > O. For 
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neutral solutions which are not conformally flat (€ = 0, 
p.=/;O), the same situation arises, however, in this case, 
p-H -5/2 and p-H -4 as H -0. However, there might be 
particular solutions in which the ratio I pllp behaves differ
ently12 as H -0 (see Appendix C). 

c. "Localized" and "finite-volume" singularities 

As mentioned before, in most cases in which 
H = H(t,r) , the combination 101- 00 with H-O can only 
happen (if it happens) for a class of comoving observers 
labeled by r = ro as they reach the coordinate value t = to 
such thatH(ro,to) = O. A sufficient condition allowing for ® 
to diverge along r = ro is a choice of localized equation of 
state so that the dominant or strong energy conditions hold 
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FIG. 5. The boundary H(t,r) = 0 when 0 diverges at t = to' If0- - 00 as 
t-to, as shown in (a). comoving observers labeled with O<r<ro do not 
reach t = to. evolving towards the AD big bang in their infinite future. Co
moving observers labeled with r> ro reach the FV singularity att = to. while 
those observers labeled by r = ro collapse into the L singularity which ap
pears in (a) as a "point" with coordinates (to.ro)' The situation becomes 
clear in (b) using the coordinate representation (T,r). This figure shows the 
surfaces 1:, (t near to) bending towards the AD big bang as T_ 00. Observ
ers with r#ro. either hit the FV singularity or evolve towards their infinite 
future, while the "point" (to.ro) unravels into the "line" T> T(to). r = ro, 
which is the L singularity avoided by observers with r#ro. In (c) are dis
played null geodesics near the FV and L singularities. showing that the lat
ter are spacelike and null. respectively. Notice how the light cones become 
"vertical" as r-ro along T = const> T(10)' 
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at this l:r surface (see Sec. VII). With such a choice, as 
illustrated by Fig. 5 for a collapsing configuration [0 < 0, 
o (to) = - 00], the boundary H = 0 can be divided in three 
regions, depending on whether 0 is finite and/or H vanishes. 
From Fig. 5(a), comoving observers labeled by O<r<ro 
reach H = 0 at coordinate time values t < to with 0 negative 
and finite. Hence, these observers have complete world lines 
and H = 0 is an AD big bang in their infinite future ( r -+ 00 ). 

Comoving observers with r> r 0 do not reach H = 0, since 0 
diverges at t=to with HCto,r) >0 [and RCto,r) >0], and 
from the field equations (16) and (20),p andp also diverge. 
This situation, as shown in Fig. 4, corresponds to the theo
retical possibility in Eq. (67) of allowing 0 to diverge with 
HflHi > 0 and Irf - ril-+O as t-+to, identifying rf = rCto) 
and r i = rCt). However, for comoving observers at ro, 0 
associated with the ratio of Eq. (67) has the standard FRW 
behavior mentioned earlier: H/ Hi -+ 0 together with 
I r f - r i 1-+ O. The full picture for comoving observers la
beled by r>ro, as they head towards t = to in Fig. 5(a), is 
illustrated by Figs. 5(b) and 5(c). Completeness of causal 
curves at this l:t surface is discussed below. 

If 0 diverges at t = to for r> ro in Fig. 5(a), even if H 
and R are not zero, the state variables p and p (but not q, 
since H > 0) diverge as comoving observers reach this singu
lar l:t surface. From Eqs. (7) and (67) and Fig. 4, this be
havior of 0 near t = to requires that comoving observers 
reach t = to in a finite proper time lapse. This also follows 
from Eq. (53) using the coordinate choice of Eq. (33), so 
that r = f( - gtt ) 1/2 dT -+ 0 as 0 -+ 00. Since the magnitude 
of the four-acceleration &f is bounded (Q, H, and/or R do 
not vanish at t = to), then the incompleteness criterion given 
by (52b) is satisfied, and so the world lines of comoving 
observers terminate at t = to. For a collapsing configuration 
( the case of an expanding one is similar) in which 0 -+ - 00 

as t -+ to, the integral in (55) with n given by (58) converges, 
and so (future directed) null geodesics also terminate at this 
l:t surface, which marks then a scalar curvature singularity. 
Since the proper volume oflocal fluid elements ( - H 3) does 
not vanish, this singularity, as a sort of a collapse to a non
zero volume, will be referred to as a "finite-volume singular
ity" (FV singularity). 

Since both Hand Q arenonzeroatt = to, fromEq. (56), 
I (dt Idr) null I > 0 as comoving observers reach this singular 
l:t surface, and so the FV singularity is a spacelike boundary 
[see Figs. 5 (a) and 5 (c) ]. From the field equations of Secs. 
III and IV, and due to the fact that curvature terms, such as 
&f and (3)gp, remain finite as 0 diverges, the state variables 
approach the following limiting values: 

81Tp -+ 0 2/3 , 
_02 d 0 

81TP -+-- - 2 - - . 
3 dr 3 

These values, unlike those near the AD big bang or the FD 
singularity, strongly depend on the choice of equation of 
state (choice of0). Since (d Idr)(0/3) _d 2H Idr, from 
Fig. 4, this derivative is negative near the FV singularity, and 
so p + P > 0 at this limit. 

From Eq. (67) and Fig. 4, H vanishes in a finite proper 
time lapse for comoving observers along r = r o' This also 
follows from the fact that the strong or dominant energy 
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conditions hold at this surface l:r' and as can be shown from 
the Bianchi identities and the field equations restricted to 
r = ro, 0 near Ho = 0 must be constrained by 
(Ho) -3/2 < 0 < (Ho) -3, and thus 0 overtakes the term 
H 0-

1 in (65), and the proper time near Ho = 0 is con
strained by 

f' It - tol
l
/
2 dt>lr - rll> r" It - tol2 dt, (68) 

indicating that r converges as H -+0 for comoving observers 
along r = roo Since Eq. (68) implies that 
It - tol- 3

/
2< Ir - rol- I < It - tol-

3 if the strong energy con
dition holds along r 0' and since &f 0 - H 0- I -I t - to 1- I 

holds for whatever equation of state, the GAP incomplete
ness condition (62b) holds and the world lines of comoving 
observers labeled by ro are incomplete as Ho-+O. 

Since the proper radius of the two-sphere of symmetry 
corresponding to r 0 vanishes in r finite, a sort of "localized 
singularity" (L singularity) must be produced as the end 
product of the collapse of this two-sphere. However, as ob
servers with r=/=10 avoid this singularity, evolving towards 
the AD big bang in their infinite future or hitting the FV 
singularity, it is difficult to appreciate the properties of the L 
singularity in the (t,r) coordinates currently used. This situ
ation can be appreciated by comparing Fig. 5(a) with Figs. 
5(b) and 5(c). 

The L singularity is represented in the Ct,r) coordinates 
as a "point" with coordinates Cto,ro) such that Ho = 0 [see 
Fig. 5(a)]. Ifproper time rCt,r) defined by Eq. (53) is intro
duced as a new time coordinate, the "point" marked by 
Cto,ro) unravels in a (r,r) coordinate diagram into a "line" 
(r = ro, r> ro), where ro is the (finite) proper time value at 
which H 0 = 0 [see Fig. 5 (b) ]. Since this locus is marked by 
the value Cto,ro), it can be argued intuitively that it must 
correspond to a null surface which is the limit of timelike 
congruences of comoving observers labeled by values of r 
which are arbitrarily close to ro and spacelike surfaces l:t 
labeled by values of t arbitrarily close to to. This situation is 
shown in Fig. 5(b), however, it also follows by examining 
null geodesics near r = ro in (r,r) coordinates. The metric 
( 1) becomes in this representation: 

ds2= -dr+2Adrdr+ [A2-H2]dr 

+ R 2[d0 2 + sin2 0 dt;62] , 

where 

(69a) 

(69b) 

must be evaluated as a function of rand r. The null geodesic 
equation (56) becomes in these coordinates: 

[ dr] =A +H. 
dr null -

(70) 

Since H = 0 at ro, the behavior of null geodesics near ro de
pends exclusively on the behavior of the function A as ro is 
approached along a surface r = r I > r o. A tangent vector 
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a I an along such a surface is given by 

a 1 a A a -=--+--
an - QI/2 at H2 ar' 

(71a) 

so that the rate of change of A along a I an is 

aA 2(A2)' 
a;; = .rff +~, (71b) 

which diverges as H - O. Since H only vanishes along 7" I finite 
if r-ro, A diverges at r = roo Therefore, from Eq. (70), 
(d7"ldr)null - 00 and the slopes of the null cones become ver
tical coinciding with r = roo This situation is illustrated in 
Fig. 5 ( c) and will be further discussed in Sec. XI. 

For conformally flat solutions (see Sec. IX of Part III), 
the integral (57) has a finite limit as H vanishes for all co
moving observers. In this case, H = 0 does represent a singu
larity analogous to the FRW big bang. In Table I the coordi
nate representation of the boundaries studied in this section 
is offered for the M- and W-type solutions classified in Ta
bles III and VI of Part I. 

XI. GRAVITATIONAL COLLAPSE 

Charged Kustaanheim<rQvist solutions can be con
tinuously matched to the Reissner-Nordstr0m vacuum so
lution, whose metric is 

ds2 = - <'P dr 2 + <'P- I dX2 + x2(d(} 2 + sin2 () d¢/) , 

(72) 

with 

<'P= 1 - 2mlx + e21x2, 

or to Schwarzschild solution (e = 0) if the matching ChKQ 
solution is neutral. Darmois' matching conditions7.32 are 
usually applied to characterize invariantly such a matching, 
which for the case of ChKQ solutions, yields a hybrid space
time consisting of an interior fluid region [assuming that 
conditions (43) hold at r = 0] with a metric given by (1) 
and a vacuum "exterior" whose metric is (72). In other 
words, a bounded fluid sphere evolving in an asymptotically 
flat Reissner-Nordstr0m (or Schwarzschild) field. 

Since the matching interface is an arbitrary 1:, surface 
labeled with r = r 0> 0, it is useful to choose the time coordi
nate t in the fluid region as in (32) with ro marking the 
matching interface, i.e., the proper time of observers comov
ing with the surface of the sphere. However, other choices, 
such as (31) or (33), can also be used. In either case, it is 
well known that for spherically symmetric perfect fluid con
figurations Darmois' matching conditions imply7.17.18.33: 

[x(t')]'='o =R(t,ro) =Ro , 

p(t,ro) = Po = 0 , 

(73a) 

(73b) 

where subindex 0 indicates evaluation at r = roo Equation 
(73a) follows directly from the fact that both matching 
space-times are spherically symmetric; hence they share the 
geometric interpretation of R = (goo) 1/2 discussed in Sec. 
II. In fact, the metric coefficient R can be identified through
out the fluid region as a natural continuation of the curva
ture coordinate X appearing in (72). On the other hand, 
(73b) is a particular case of a localized equation of state of 
the form Po = Po (Po) discussed in Sec. VII. Thus, integrating 
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( 41) with Po = 0 yields Po proportional to R 0- 3, so that in 
agreement with Darmois' boundary conditions, Eq. (42b) 
becomes 

[E>RoI3f = (RO)2 

_ [1- 2m +-;..] + [1-kYo+f~ (h
y

) 
Ro R 0 h 0 

(74a) 

with 

e=Eo= ±E(foho)3, (74b) 

m = j1TPoR 6 + Jo , (74c) 

where (hylh)oishylh evaluatedatr = roo Equation (74a) is 
the equation of motion of the class of observers comoving 
with the matching interface, i.e., the "surface" of the fluid 
sphere. However, the time evolution of this interface, as de
tected by distant static observers in the Reissner-Nordstr0m 
(or Schwarzschild) exterior, is given by expressing Ro in 
terms of the rcoordinatein (72) evaluated at ro. The relation 
between the two time coordinates at the interface, which 
follows immediately from uaua = - 1, is given by 

to = ar (t,ro) 
at 

1 - kyo + f~ (hylh)o - (foho)2[Qo] 1/2 

1 - 2mlRo + e21R ~ 
(75) 

sothaUo(Ro) follows by integrating (droidRo) = toiRoob
tained from (75) and using (74a). 

For M- and W-type solutions, the boundary condition 
(73b) fully determines the field equations as the only t pa
rameter is found through the integration of (74a). Once 
(74a) is integrated, usually as a quadrature t = t(Ro), the 
motion of "internal" fluid layers with O<r<ro can be found 
from expressions like 1(30) relating H with Ho (or R with 
R o, see Appendix C). If the t parameter T(t) is used instead 
of R o, then if t(Ro) is known, t( T) and t(R) follow from the 
expressions relating H with T. (See the final paragraph of 
Appendix C). As mentioned in Sec. VII, the resulting local
ized type of formal equation of state can be expressed in the 
form (35) from (16b) and (74a) after eliminatingt in terms 
of H (and thus, N) and prescribing S(r). However, there is 
no indication that such equations of state will have any phys
ical meaning, other than being mathematically simple, and 
allowing one to use these fluid solutions as models of collaps
ing isolated spheres. Most papers dealing with ChKQ solu
tions found in the literature [category (b) in the Introduc
tion of Part I] study them within this approach. 
Gravitational collapse of solutions with L = L (t) and solu
tions which do not satisfy conditions (45) will be discussed 
in Part III. 

The relevant question concerning the gravitational col
lapse of bounded ChKQ spheres is whether or not a black 
hole develops. From the discussion in the previous sections, 
collapsing (E> < 0) bounded spheres corresponding to M
and W -type solutions can have either one of the following 
two evolutions. 
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FIG. 6. Collapsing sphere of type (ii). The sphere matches with Schwarz
schild or Riessner-Nordstrom space-times (vacuum region) at, = '0' The 
evolution of all fluid layers (vertical dotted lines) terminates at the FD sin
gularity. Notice that some surfaces 1:" such as t = to. avoid this singularity. 

( 1) Fluid layers reach the spacelike FD singularity giv
en by Q = 0 [Eq. (49)] atR > 0 (for r>O) with e negative 
but finite. This situation arises for solutions belonging to 
type (ii) in Table I. 

(2) Observers comoving along the "surface" layer 
r = ro, collapse into the null L singularity discussed in the 
last section. For this class of observers, e - - 00 and Ro - 0 
occur in finite proper time. Interior fluid layers (O";;r < r 0) 

evolve towards the AD big bang at R = 0 [Eq. (48)] in 
infinite proper time (an asymptotically delayed collapse) 
with e negative but finite. This situation arises in solutions 
belonging to type (iv) of Table I. 

(3) In some solutions of type (i), the fluid sphere 
evolves between the FD and the FV singularities. At the 
latter singularity, e - - 00, and the proper volume of the 
"surface" of the sphere vanishes (Ro-O) while interior lay
ers (O";;r < ro) terminate their evolution with R > O. 

Hence, solutions of type (ii) do not form black holes since 
the evolution of all fluid layers terminates at Q = 0 occur
ring at R > O. This becomes more evident if the constraint 
Q = 0 is expressed as R (t,r) = fh / A, where A is a positive 

1 = 10 I---;--...,....-~~ .... ~-!:::.--.. - .......... -.-.. - .. 
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FIG. 7. Collapsing sphere of type (i). As in Fig. 6. the sphere is matched to 
Riessner-Nordstrom or Schwarzschild space-time (vacuum region) at 
r = roo Fluid layers emerge from the FD singularity and collapse into the FV 
singularity at t = to' The surface of the sphere r = '0 collapses into a stan
dard big bang [curve (2) of Fig. 4]. However. for observers with r< roo R 
and H behave near t = to as curve (1) of Fig. 4. 
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root of Q (see Fig. 6). The existence of the FD singUlarity 
Q = 0 was remarked by Glass and Mashhoon6 and by Mash
hoon and PartovC in their study of collapsing spheres asso
ciated with the solutions NMcV(r2) (X 1,2) and 
ChMcV(r2) (X 1,2), respectively. However, their character
ization of the nonsingular fluid region as r> r s , where r is 
their radial coordinate [see Eq. (74) of Ref. 7], is mislead
ing. As shown in Fig. 6, there are surfaces ~t in which the 
fluid is perfectly regular for all the range of radial comoving 
coordinate O..;;r < r o' See Appendix C. . 

Solutions of types (i) and (iv), on the other hand, do 
form black holes since the localized equation of state (74b) 
implies that the boundary layer rodoes collapse (Ro-O) in a 
finite proper time ['T'-It - to13/2

, from Eq. (41)]. However, 
these black holes, which as far as I am aware have not been 
reported previously, are characterized by the pecUliarity 
that interior layers remain with finite proper volume 
(H> 0). Though, the case (3) above has little interest in the 
study of gravitational collapse because the collapsing sphere 
must emerge from the FD singUlarity [see Fig. (7)], and so 
it will not be discussed any further. Regarding the case (2), 
while observers in the vacuum exterior region close to the 
surface of the sphere would detect how this sphere vanishes 
into a singularity,just as in the case of the collapse associated 

, , 
I 

: 

(a) 

Vacuum Region 

---i--.. -.. -+-~ ~. aiDgalariry 

i , ----1---
! , 
! 

Auid~egion , 
; 

Vacuum Region 

(b) 

FIG. 8. Collapsing sphere of type (iv). The sphere matches to Schwarz
schild or Riessner-Nordstrom space-times (vacuum region) at, = roo The 
surface of the sphere, = '0 collapses into the L singularity shown in (a) as a 
point and in (b) as a line. in a smaller way as in Figs. Sea) and S(b). Dotted 
curves in (b) are the surfaces 1:,. which ''bend'' towards infinite values of T. 

Comoving observers in the interior avoid the L singularity. evolving 
towards the AD big bang in their infinite future. thus surviving the collapse 
of the surface r = '0' 
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with a standard big bang, however, observers comoving 
along internal layers avoid this null singularity (the L singu
larity) and only collapse asymptotically in the AD big bang 
in their infinite future [see Figs. 8 ( a) and 8 (b) ]. This situa
tion arises because Ro = 0 and R = 0 do not imply each oth
er [see Eq. (C4) of Appendix C], and also because Ro'- 0 in 
(74a) occurs for finite r if the range of Ro values for which 
IQol > 0 includesRo = 0 [i.e., types (i) and (iv) of Table I]. 

It is difficult to visualize a situation in which the surface 
of a sphere collapses while interior layers remain with finite 
proper volume. Such an evolution, which seems to contra
dict intuition, can be understood by comparing it to the evo
lution of a 2-D circular disc as seen from 3-D space. This is 
illustrated in Fig. 9, where an initially flat 2-D circular disc 
[Fig. 9(a)] is deformed in such a way that its rim is turned 
into a sort of very narrow "bottleneck" [almost a point with 
zero area and circumference, see Fig. 9 (d) ], while its interi
or circular layers remain quite bent but with finite nonzero 
area. A succession of 3-D spacelike slices in the interior of 
the sphere, as seen from space-time [see Fig. (10) ], is analo
gous to the succession of circular disks in this example, as the 
boundary layer collapses (Ro'-O) it turns itself into a 3-D 
"bottleneck" which "closes" as Ro = 0, forming a null sin
gularity in case (2) (the L singularity) and "pinching off " 
the interior of the sphere from the asymptotically flat region 
[see Fig. 10 ( d) ] . Once this has happened, the world lines of 
comoving observers evolve towards the AD big bang avoid
ing the null L singularity [see Fig. 8(b)]. In case (3), as the 
bottleneck in Fig. 1O(d) closes, the whole sphere (i.e., inter
nallayers) becomes singular (the FV singularity). 

The evolution of type (iv) fluid spheres is illustrated in 
the Penrose diagrams of Figs. 11, 12, 13(b), and 13(c). 
These diagrams are not rigorous (for an indication of how 
they could be made rigorous, see Sussman33 ), and as a result 
of the form of the analytical extension of Reissner-Nord
str~m space-time, it is interesting to examine (for charged 
spheres) whether the surface layer' = '0 in these spheres 
collapses into the left- or right-hand sides of the Reissner
Nordstr~m singularity [see Figs. 12, 13(b), and 13(c)]. 
This question has been studied by de Felice and Maeda,34 
and their methods could be applied to ChKQ solutions 

(a) (b) (e) (d) 

FIG. 9. "Boundary" and "interior" ofa disk. This figure is the 2-D analog of 
the situation described in Sec. IX, in which the surface layer of the sphere 
collapses while interior layers remain with nonzero volume. In (a), the 
"boundary" of the disk (thick circle) has a radius greater than any of the 
interior layers (dotted circles). As the disk is progressively deformed from 
(b) to (d), the boundary becomes a sort of bottleneck as some ofthe interior 
layers will have a greater radius than the boundary. The latter might even 
become a point if the deformation ends up closing the bottleneck. A similar 
situation (in three dimensions) occurs in the collapse of type (iv) spheres as 
seen from 4-D space-time. See Fig. 10. 
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(a) (b) (e) (d) 

FIG. 10. Spacelike slices near the L singularity. (a )-( d) show a sequence of 
spacelike hypersurfaces embedded in R4 (see Sec. II of Part III for a discus
sion on how these embeddings are defined) as the surface layer (r = ro) 

approaches the L singularity t - to. Such a sequence of spacelike slices, 
which could be generated by, say, spacelike geodesics is shown in Fig. II. 
These hypersurfaces, which experience a deformation analogous to the disk 
of Fig. 9, are not surfaces 1:, because the latter (for t near to) head towards 
the AD big bang, and so would not reach the center r = O. 

through a qualitative analysis ofEqs. (74a) and (75). 
Another important aspect concerning the evolution of 

fluid spheres in the Reissner-Nordstr~m or Schwarzschild 
backgrounds is the formation of trapped surfaces within 
these spheres. As the apparent horizon contains these sur
faces, it is necessary to find if such an horizon covers the FD 
singularity at Q = 0 in type (ii) solutions and the L or FV 
singularities for type (iv) solutions. The expression defining 
the apparent horizon for spherically symmetric solutions 
follows from demanding that R does not increase nor de
crease with respect to the affine parameter along null geode
SiCS/,1O·18.35 that is, from the condition (dR /d{}) = O. But 
since d / d{} = [exp f n dv] - 1 (d / dv), with d / dv given by 
(55b), this condition is for ChKQ solutions: 

[ 
0R]2 = [~]2 """'" 1 _ 2M+ E2 = 0 

3 R 'rT R R 2 ' (76a) 

'AD' bi& 
ban, 

FIG. II. Qualitative Penrose diagram of a neutral collapsing sphere of type 
(iv). The world lines of comoving observers (dotted curves) are complete, 
evolving towards the AD big bang in their infinite future. The surface of the 
sphere (r = ro) coliapses into the null L singularity which joins with the 
Schwarzschild spacelike singularity. A sequence of four spaceJike slices, 
whose embedding in R4 is shown in Fig. 10, are displayed as horizontal 
dotted curves marked (a) to (d). 
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r=O 

(a) 

"AD" 
Big bing 

with M and (0/3)2 given by (23) and (74a), respectively. 
For M- and W-type solutions, this constraint becomes 

fH 20/3 = ± [(1- ky + phy/h)H - (fh)2[AH2 

_ 2J.LhH + ch 2 + Lh -2H4] 1/2], (76b) 

which, as expected, reduces to R ~ - 2mRo + e2 = 0 at 
r = roo Since the AD big bang given by H = 0 in type (iv) 
solutions occurs in the infinite future of the fluid layers and 
the L big bang singUlarity cuts off the interior of the sphere 
from the external asymptotically flat region, it is unlikely 

~. 

Ca> 

~. 

(b) 

FIG. 12. Qualitative Penrose diagram of a 
charged collapsing sphere of type (iv). As in 
Fig. II, the world lines of comoving observ
ers (dotted curves) are complete, avoid the 
null L singularity, heading towards the AD 
big bang in their infinite future. In order to 
verify whether the surface layer collapses 
into the right- (a) or left- (b) hand side 
Riessner-NordstrOm singularity, the eriter
iom developed by de Felice and Maeda 
(Ref. 34) should be applied to Eqs. (74c) 
and (75). 

that information from H=O (O<r<ro) could ever reach 
observers in the latter region. As (76b) has no solution for 
the combination of values (H = 0, r>O) and (H>O, r = 0), 
the apparent horizon for type (iv) solutions reaches the cen
ter ofthe sphere at a value of t such that HU,O) = 0, such a 
coordinate value corresponds to a point of the AD big bang 
at infinite proper time distance. Hence, H(t,r) = 0 is wholly 
covered by the apparent horizon (see Fig. 14). The apparent 
horizon, AD big bang and the black hole formed by the col
lapse of a neutral sphere of type (iv) is shown in the Penrose 
diagrams of Fig. 14. 

,.0 L. 

FIG. 13. Qualitative Penrose diagrams of bouncing spheres. The qualitative diagrams of Figs. 11 and 12 assumed that fluid layers collapse from infinity. 
These figures describe possible bouncing time symmetric evolution patterns. In (a) [sphere of type (ii) 1, the fluid layers emerge from the FD singularity and 
bounce back into the latter in the future. In (b) and (c), a type (iv) sphere bounces baek into the AD big bang and L singularity. In order to find out whether 
the layers evolve as in (b) or (c), see Ref. 34. 
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(a) 

, , , , , , , , -- -t-----.--, , , , , , 
: 

t A.H. : , , · . Sehw. Sinplarity 
• __ 1.._L--_ .... , , · . ! 
! 

R=2m •• ' ........... 
, 
I 

FJiud Residn Schw. Resion 
I I , . · , , r- ro 

(b) 

". 

(c) 

FIG. 14. Apparent horizon ofa collapsing sphere of type (iv). Since Eq. (76b) is inconsistent with values (r = 0, H>O) and (r>O, H = 0), the apparent 
horizon [curve in (a) 1 must reach the coordinate value (r = 0, H = 0). However, as shown by (b), this coordinate value is in the infinite future of the 
comoving observers along the center (r = 0). (c) illustrates the apparent horizon in the qualitative Penrose diagram of the configuration. From this figure, it 
is clear that light rays from the L singularity of the AD big bang do not reach the Schwarzschild region outside the event horizon R = 2m. Similar diagrams 
can be constructed for a charged sphere matched to Riessner-Nordstrom space-time. 

For solutions of type (ii), the apparent horizon inter
sects the FD singularity 0 = 0 at least in one value (t,r) 
( with 0 < r < r 0) of the interior of the sphere before reaching 
the center at r = O. This (see Fig. 15) follows from the fact 
that (76b) has no solution for (r=O, H>O) and 0=0 
occurs at points with H> O. The coordinates of the intersec
tion are found by inserting 0 = 0 in (76b), leading to the 
constraint 

(77) 

which has always at least one solution. However, (77) can 
have more than one solution, which would mean that the 
apparent horizon intersects 0 = 0 more than once (see Fig. 
15), and so this singularity could be "naked" (see Fig. 16). 
Since the apparent horizon might have a complicated shape, 
a sufficient condition to prevent 0 = 0 from being naked 
follows from the fact that this singularity emerges into the 
boundary of the sphere at (Ro) (s) = fohol Ao, whereAo > 0 is 
a solution of 0 0 = O. Therefore, 0 = 0 will be censored by 
the outer event horizon of the Reissner-Nordstr0m exterior 
region (light rays from 0 = 0 will not reach distant observ
ers in this region) ifthe constant parameters of the solution 
are chosen so that 

foholAo<m + [m 2 
- e2

]1/2 (78) 

holds [see Fig. 16 (c) ]. If the sphere is neutral, the constant: 
m + (m2 - e2

)1/2 becomes 2m, marking the apparent and 
event horizons of the Schwarzschild exterior region [see Fig. 
16(a)]. Since the FD singularity 0 = 0 does not involve 
"shell-crossing" effects, nor "null dust," the possibility of 
having this singularity naked can be thought of as a new 
example13 in the study of naked singularities in spherically 
symmetric collapse. However, the strong and dominant en
ergy conditions are necessarily violated at 0 = 0, and so this 
case cannot be used as a counterexample of the weak cosmic 
censorship conjecture.36 

Finally, for charged M- and W-type solutions, the ratio 
of charge density to matter energy density at the surface of 
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the sphere can be related to the constant parameters of the 
solutions and to the ratio elm by the following expression: 

f~ [(d Idy) In ( fh) ]0 e 
qolpo = ± 1 -Joim m' (79) 

showing that in some cases elm> 1 might not imply qol 
Po> 1. Although only the cases e < m has been considered in 
this section, the cases e = m and e> m can also be examined 
having in mind the singularity structure of the fluid region; 
however, these cases will not be investigated in this paper. 
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FIG. 15. Apparent horizon in a collapsing sphere of type (ii). Since Eq. 
(77) has no solution for r = 0 and H> 0, the apparent horizon cannot reach 
the center of the sphere. Depending on whether this equation has one or two 
solutions, the form of this horizon could be as the curve 0.-02 or 0.-03, In 
the former case, the FD singularity would be naked, while it would be cen
sored in the latter. Surfaces near r = 0 are not trapped, though it seems 
unlikely that light rays from this region could escape to the vacuum 
(Schwarzschild or Riessner-Nordstrom) region. 
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~. 

(a) (b) 

i.. 

(c) (d) 

FIG. 16. Censorship of the FD singularity in type (ii) spheres. Depending 
on whether the parameters of the solution allow for RO(,) 
> m + [m2 - e]1/2 (or RO(,) > 2m) to hold, the FD singularity will be 
naked or censored. This situation is shown for neutral [(a) and (b)] and 
charged [(c) and (d)] solutions. The arrows in figures (b) and (d) repre
sent light rays emmited from the naked FD singUlarity reaching the future 
null infinity of the Schwarzschild and Riessner-Nordstrom regions. 

APPENDIX A: THE WYMAN SOLUTION 

As mentioned in the Introduction of Part I, besides 
FRW solutions, the Wyman solution37 is the only neutral 
SSSF solution which satisfies a barotropic equation of state 
(BES) of the form p = pep). Hence, there is an extensive 
literature on this solution11.12 and its charged version, 11.22 
and in particular, Collinsl2 has examined some aspeets of its 
global structure. By applying results obtained in Sees. VI 
and X, previous work on local aspects of this solution will be 
complemented and expanded in this Appendix, while its glo
bal aspects will be discussed in Appendix A in Part III. Only 
the neutral Wyman solution will be considered. 

The parameters characterizing the Wyman solution fol
low directly from imposing S' = 0 (the condition leading to 
a BES) into Eqs. (37). Choosing the time coordinate as in 
(33), this leads to the constraint 

l'lf3 = 41T(p + p)H 3 [h 'Ih - fh 2Q1/2] , (AI) 

which, from the field equations in Secs. III and IV, implies 
that for Eq. (AI) to hold one must choose k = 0 and 
a = b = 0, c>O, so that h in 1(23) becomes h = C-

1/2. In
serting these restrictions into (A 1), leads to 

d 0 2 

--+6L=0 
dT 18 
~ ~ = {[Lo-6LT]1/2, L ;1:0, 

const, L = 0, 
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Lo constant, 
(A2a) 
(A2b) 

which (save for constant factors and differences of notation) 
coincides with the values of these parameters found in the 
literature dealing with this solution. In fact, my expressions 
(H,Q,L,Lo) correspond (in the same order) to Collins' ex
pressions (U,Y, - 3A 14, - B). 

From Eqs. (A2), the Wyman solution is in fact a class of 
solutions characterized by the parameters (J-L,L,Lo), how
ever, in order to avoid confusion between W-type solutions 
and the class of Wyman solutions, the latter will be referred 
to as the Wyman solution. If L = 0, the Wyman solution 
comprises a particular case of an M-type solution [the solu
tion NMcV(r3) (X5) with k = 0 and 0 = const, see Table 
VI of Part I] discovered by Faulkes.38 In this particular case, 
from (7), the Hubble scale factor can be expressed in terms 
of the proper time of comoving observers as H - exp ( T). For 
L ;1:0, the possible forms of H for the Wyman solution have 
are given by Eqs. 1(37), where the signs of Land J-L deter
mine the type (i), (ii), or (iv) of domain of regularity of the 
solutions (see Sec. VII). In this case, the relation between T 

and H follows from (7) and (A2a) by eliminating 
T= T(H,r) from Eq. 1(36). 

From a thermodynamical point of view, the BES satis
fied by the Wyman solution is a formal equation of state, in 
the sense that it is obtained rather than imposed from phys
ical considerations on the fluid model (see Sec. VI). For 
such a BES, the four-acceleration can be expressed as the 
gradient of the thermodynamical potential In [ (p + p) IN], 
which can be identified with the logarithm of the specific 
enthalpy of the fluid.27.39 Another thermodynamical conse
quence of having a BES satisfied is that the temperature .'T 
can be defined by (40) in agreement with the nonstatic gen
eralization of Tolman's law, and so the heat flux vector in 
(38) can vanish without having to impose the rather strong 
restriction that the coefficient of thermal conductivity K van
ishes identically [option (39b) ] . In such conditions, there is 
heat exchange between neighboring comoving fluid ele
ments, but in such a way that the entropy production is can
celed. However, as commented by authors studying the Wy
man solution, the relation between p and p that follows from 
its BES is unphysical, and this situation is obviously related 
to the formal nature of such a BES. 

Depending on the parameters Land J-L, which determine 
whether a Wyman solution is of type (i), (ii), or (iv) of 
domain of regularity (see Table II for a comparison ofthese 
types to those of Fig. 2 of Collins' paper), a given solution 
may present the spacelike FD singUlarity at Q = 0 [Eq. 
(49)] or the AD big bang at H = 0 [Eq. (48)], or both 
regularity boundaries (see Sec. X). These features where 
recorded by Mashhoon and Partovi 11 and Collins,12 though 
Mashhoon and Partovi failed to noice that the proper time of 
comoving observers diverges as H -> 0 implying that H = 0 is 
not, technically speaking, the representation of a scalar cur
vature singularity (see Sec. X). The Wyman solution also 
presents the regularity boundary II = 0 which is related to 
its asymptotical structure, and so will be discussed in Part 
III, Appendix A. The (T,r) coordinate representation of the 
domain of regularity and of the boundaries (48)-(50) to
gether with a comparison of Fig. 2 in Collins' paper are of
fered in Table II. 
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TABLE II. Domain of regularity and boundaries of the Wyman solution. The form of H for each of the cases with L #0 is given by Eqs. I( 36). For the case 
with L = 0, see Table VI of Part I. The last column on the left-hand side provides a comparison between the classification of types (i), (ii), and (iv) with that 
of Collins' Fig. 2 (see Ref. 12). 

Type Domain of regularity Q(T,r) = 0 

(i) p,<0 L<O 0< T + r'/2 <cn-'(O) T= cn-I(O) - r'/2 

(ii) p,>0 L>O 0< T + r'/2 <cn- ' [ (\'3 - 1)/(v3 + I)) T= - r'/2 

(iv) p,<0 L>O 0< T + r'/2<cn- ' (0) 

p,<0 L=O 0< [T+ r'/2)2 

From the point of view of its singularity structure, the 
Wyman solution is qualitatively analogous to other ChKQ 
solutions having the same types of domain of regularity and 
e (1) qualitatively analogous to (A2). These solutions do 
not obey a BES and, depending on the values of their param
eters, may even satisfy extremely pathological equations of 
state. This situation occurs because, as mentioned earlier, 
the specific behavior of the regularity boundaries follows 
from the existence of curvature terms (3)~ and aQ;a product 
of the imposition of zero shear, which might diverge inde
pendently of the choice of a formal equation of state [i.e., 
choice of e ( 1) ]. In fact, other nonstatic ChKQ solutions 
not obeying a BES, such as the conformally flat subclass, are 
probably more physically acceptable than the Wyman solu
tion. (See Sec. IX of Part III.) 

APPENDIX B: PROOF OF THE CRITERION OF 
GENERALIZED AFFINE PARAMETER COMPLETENESS 

In Sec. IX, the proposition due to Clarke (private com
munication) leading to Eq. (52a) establishes a criterion for 
an accelerated timelike curve to be incomplete, in the sense 
of having finite generalized affine parameter (GAP) length, 
as defined on p. 259 of Hawking and Ellis.30 If the space-time 
manifold is inextendible, then such curves end at a singular
ity.29 The above-mentioned proposition is proved below. 

Let {e(i) (T)}, (i) = 0,1,2,3, be a Lorentz frame along 
Y( T) chosen to be parallely propagated as T varies, that is, 

D 
-e(i)(T) =0. aT (Bl) 

IfV( T) = VI( T)e(l) (T) is the tangent vector to rat T, then 
the GAP length from T2 to Tis 

rr[ 3 ]112 
;( T2,T) = Jr, I~O (VI)2 dT, (B2) 

which is defined up to a constant multiple, depending on the 
choice of e(I)' The curve is incomplete if ;( T2,T) remains 
bounded as T-+T2, and so its completeness does not depend 
on the choice of e(l) . A suitable choice is then 

e(O) (T2 ) = V(T2 ) , (B3) 

so that from Eqs. (S2a) and (Bl) one has 

a dVI 
a 

a = dT e(l) 

and 
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Classification in 
H(T,r) =0 n(T,r) = 0 Fig. 2 of Collins 

T= r'/2 2 

T= cn- ' [ (v3 - 1)/(v3 + 1)) - r'/2 1 and 4 

T= - r'12 T=cn-I(O) 3 
T= - r'12 3 

dV I dVJ 
[.Q/(T)]2 =", .. __ , 

'(1) dT dT 
(B4) 

where 1l1j is the Minkowski metric. 
Since T is proper time, it follows that 

3 

(VO)2=1+ L (VI)2, 
1=1 

(B5) 

so that it is possible to define a=cosh- I( Va), a > 0, and set 
nl = VI/sinh a, whence (B5) gives l: nl = 1. Then, Eq. 
(B4) becomes 

3 [ da da]2 + L nlcosha-+sinha-
1=1 dT dT 

>(~~r ' (B6) 

and from (B2), the GAP length is 

;( T2,T) = r [cosh2 a + sinh2 a p/2 dT 
Jr, 

< \12 i~ cosh a dr' 

<\12 L~ cosh(L: .Q/ ( T") dT" ) dT 

[from (B3) and (B6)], and so 

;(T2,T) < _ TI - T2[(TI - T)I-' + (TI - T)I + '] 

2 TI - T2 Tl - T2 

T1 - T2 
+ 1 _/2 . 

FromEq. (52b),asT + T1>; -+ (T1 - T2)/(1 _/2),and thus 
;( T2,T) is bounded on [T2,T1 ), proving GAP length incom
pleteness as required. 

APPENDIX C: A SIMPLE COLLAPSING SOLUTION 

It is very useful to use a simple example in order to 
illustrate various properties which are common to M- and 
W -type solutions in general. The simple subclass of solutions 
labeled as ChMc V (r2,r2) (X 2) in the classification scheme 
of Part I (see Tables III and VIII of Part I) will be used as 
such an example in this Appendix. This subclass is a particu
lar case of the class discovered by Vaidya and Shah40 (see 
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Appendix D of Part I), and also follows from 
ChMc V (r2) (X 2) by taking p2 = Il.e-. It has been discussed 
previously (see Table IV of Part I) by Banerjee, Chakra
vorty, and Duttachoudhuri41 and by Mashhoon and Par
tovF (their particular case, v = 0, r = 0, and 8 = 1) as mod
els of collapsing spheres. However, the former authors did 
not examine its singularity structure, while the latter did 
(see their Appendix D) in a nonrigorous manner, and thus 
some of their conclusions are wrong. 

ChMc V (r2,r2) (X 2) solutions are characterized by the 
following parameter values in Eqs. I( 21 b), I (21 c), I (23), 
and (25a): L = 0, a = 0, Il. = (pl€)2 = b 2 > O. If the solu
tions are regular at the center r = 0, conditions (45) must 
hold, and this requires one to set c> O. This specific combi
nation of parameters leads to 

Q = (€h IH - b)2 , 

h= [2by+c]-1/2, 

fR I I R = 1 - ky - €f2h 31 H = 1 - ky - E I R , 

(CIa) 

(Clb) 

(C1c) 

where E = ± €(fh)3, and I and yare defined by Eqs. 
I(16b) and 1(17). From Eqs. (C1), (14a), (16), (20), and 
(21), the state variables are 

41Tq = 3€h 5[C - ky(by + c) JlH3 , (C2a) 

8 0 2 1 
"3 1TP =9+ H2 

X [k- 2/3h3[p(lh)~_ (1-kY)€]] , 

81TP= 
3 

2€H(0/3) 0 k 
e-h - pH 3 - H2 ' 

(C2b) 

(C2c) 

from which one can identify the regularity boundaries H = 0 
(q,p diverge, p diverges if k = ± 1) and Q = 0 (only p di
verges), the latter given explicitly as H = (ple-)h. Since H 
is given in Table III of Part I as H = b - I [ T(t) + ph], the 
regularity boundaries H = 0 and Q = 0 can be expressed as 
T = - €h and T = 0, respectively. Hence, in agreement 
with Table I, if p > 0 the solutions can be of type (i) 
(0 <R <A); type (ii) (R >A) with A == (pie-) Ih; or type 
(iv) with R > OCr> O)if p < O. 

In order to use a ChMcV (r2,r2) (X2) solution as a mod
el of a sphere collapsing in a Reissner-Nordstr0m space
time, the time coordinate can be chosen as in Eqs. (32) and 
the matching condition (73b) leads to Eqs. (74), which for 
this particular subclass take the simple form 

(
0Ro)2 = (Ro)2 = 2[m - (1- kYo)e] _ k/~ , (C3) 

3 Ro 
with e and m given by (74b) and (74c). Since R can be 
expressed as a function of Ro [replacing T( t) as t parameter] 
and ras 

once Eq. (C3) is integrated, the time evolution of all "inter
nal" layers [R (t,r) for O<r < ro] can be found by inserting 
Ro(t) into (C4). In particular, taking the case m>e>O, 
c> 0, and k = 0, so that 1= r, y = r /2 and h = [(pi 
€)r + c] -1/2 , and thus 
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Ro(t) = H ~2(m - e) t)2/3 . (C5) 

Hence, for p > 0 [types (i) and (ii)], the FD singularity 
Q = 0 occurs at Ro = Ro(s) = (e-Ip)roho, which corre
sponds to the coordinate time value 

~t(S) = ~(roho)3/2/[2p3(m - e)] 1/2 , (C6) 

or, using T(t) as the t parameter instead of Ro, at T(t) = O. 
Since in this particular case this singularity coincides with a 
(singular) surface 1:" it is clear that it is spacelike, though 
this can be verified also through Eq. (56) and Fig. 2. Mash
hoon and PartovF erroneously concluded [see the para
graph following Eq. (90) in Sec. V of their paper] that this 
singularity is null, and that it occurs at a surface of constant 
comoving radial coordinate rMP = 0, where IMP is the radial 
coordinate defined by their Eq. (74). (Reference to quanti
ties defined by Mashhoon and Partovi are denoted with a 
subscript MP.) Also, in their Appendix C they failed to no
tice that the metric coefficient AMP [Eq. (Dl)] can vanish, 
and thus I pi ..... 00, for whatever choice of function UMP 

(equivalenttohin this paper) ifthetparameter IMP [equiv
alentto T(t)] defined by their equation (35) vanishes. Their 
commentaries on possible singularities if UMP diverges de
scribe a different situation concerning solutions in which 
conditions (45) do not hold. This situation will be discussed 
in Secs. V and VI of Part III. 

The proper time of comoving observers in the "interior" 
layers can be computed from Eqs. (53) and (CIa), (C4), 
and (C5), leading to 

(2a) I I 2Wr (t,r ) 

2 R 3/2 e- h h 112 =- 0 +-ro( - o)Ro 
3 P 

€ ( pR )112 
+ pl/2 [ro(h-ho)]u--

I 
e-(h_oh

o
) , (C7a) 

where a==m - e, and 

u-_I=={tan- I, if p>O, (C7b) 
tanh-I, if p <0. (C7c) 

Since &ff = €rh 31 H is finite at Ro(s) (the locus of Q = 0), 
and 1" from (C7) with p > 0 is also finite, the product 
( 1" - 1"1) &ff always converges and so, the GAP completeness 
criterion (52a) holds. Also it can be verified by a qualitative 
analysis of Eqs. (55) to (58), that the affine parameter of 
null geodesics approaching the 1:/ surface (C6) is finite. 

The condition (77) for the FD singularity Q = 0 to be 
censored can be given in terms of the ratio mle> 1 as 

--<--1+ - -1, €c m F'2 
pro e e2 

(C8) 

which will hold if the parameter €, p, c, and ro are conve
niently chosen. In particular, if Po = 0 ("gaseous sphere") 
(mle) = (pl€) (roho)2 and the condition (C8) always 
holds. If (C8) holds, the evolution of the sphere in the analy
tical extension of Reissner-Nordstr0m is qualitatively anal
ogous to that shown in Fig. 16 ( c ) . 

However, a "bad" combination of parameters, such as 
c = ro and pl€~ 1 when e-;::;m, could have condition (C8) 
violated leaving the singularity Q = 0 naked, and so one 
would have a situation qualitatively similar to that of Fig. 
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16(d). Though, from Eq. (C2c),p"'" - 00 as 0 ..... 0, and so 
energy conditions are necessarily violated near the FD sin
gularity. Hence if this singularity is naked it cannot be used 
as a counterexample of the weak cosmic censorship conjec
ture.35 If the case k = 1 were considered in (C3) instead of 
k = 0, then fo = sin ro, and the sphere as seen from the 
Reissner-Nordstr0m exterior would start at the finite-den
sity singularity at Ro(s) = (c1f-l)cos roho' bouncing at 
RO(max) = 2(m - cos roe)/sin2 ro and collapsing back into 
Ro(s)' This evolution is illustrated in Fig. 13(a). 

If f-l < 0, the ChMc V (r2,r2) (X 2) solutions are of type 
(iv), a situation overlooked by Mashhoon and Partovi7 (it 
corresponds to negative values of their parameer Ao). In this 
case h = [c - (1f-lIIE)r] -112 and so, in order to keep this 
function bounded for all r>O, it is necessary to choose, either 
E < 0, which implies from (2a) having a negatively charged 
sphere, or ro> [c1f-lIIE] 1/2 if E> O. The constraint 0= 0 im
plies Ro(s) < 0, and so it does not occur during the evolution 
of the fluid. On the other hand, the regularity boundary 
H = 0 does occur, however, R = 0 (r<ro) and Ro = 0 do 
not imply each other. Hence, H = 0 is marked by R ~ 
= (crollf-ll) (h - ho) corresponding to 

3 *_ I [crO(h h )]312 2:t - [2a]1/2 IPT - 0 , 
(C9) 

where a == m - e. From Eqs. (C2) one can see that if k = 0, 
p and q diverge as H ..... 0, while p remains finite and negative. 
This situation is rather exceptional, and does not occur in 
more general solutions. If k = - 1, then both p and p be
come infinite positive [f-l <0 in (C2b)], and since p_H- 2 

whilep-H -3, one hasp>p, and this case seems to provide 
the less unphysical situation in collapsing 
ChMcV(r2,r2) (X2) solutions. 

For r = ro, Eq. (C9) reduces to t = 0 (or Ro = 0), indi
cating that the "surface" of the sphere collapses in finite 
proper time. Observers in the Reissner-Nordstr0m exterior 
comoving near this surface. inside the internal horizon, 
would detect how the radius of the sphere vanishes. How
ever, from Eqs. (C7a) and (C7c), T diverges for comoving 
observers approaching (C9) if 0..; r < r 0' indicating that the 
world lines of these observers are GAP complete. Since d is 
finite, affine parameter completeness of null geodesics ap
proaching coordinate values given by (9) can also be readily 
proved from Eqs. (55)-(58). Hence, the "interior" layers 
continue their evolution collapsing in the AD big bang in 
their infinite future, as indicated by Figs. 8(b) and 12. As 
discussed in Sees. X and XI, the surface of the sphere pro
duces a null singularity (theL singularity), which is avoided 
by the internal fluid layers and joins to the timelike singular
ity of Reissner-Nordstr0m space-time as shown in Figs. 
8(b) and 12. If k = 1 in Eq. (C3), the two possible time 
symmetric evolutions depicted in Figs. 13 (b) or 13 (c) could 
occur. As mentioned in Sec. XI and in the Introduction (Sec. 
I), the collapsing picture occuring in solutions of type (iv) 
(whether k = 0 or ± 1) has not been discussed before, and 
seems to be the first example in which the collapse of a sphere 
could be "survived" by observers in its interior. 

A third possible evolution corresponds to a type (i) of 
domain of regularity (see Fig. 7). In this case, the evolution 
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of the sphere is constrained to 0 < t < t(S) , where t(s) is given 
by Eq. (C6); that is, between the spacelike FD singularity 
and the FV big-bang singularity which occurs at the ~t sur
face t = 0 where e diverges with Ro"'" 0 but R > 0 for 
0< r < ro. At the latter singularity, p and p diverge while q 
remains finite. If there is no matching with Reissner
Nordstr0m at r = ro, the fluid extends along O";r < 00, lead
ing to an unbounded configuration. If f-l < 0 and E < 0 [a ne
gatively charged type (iv) solution with h given by (Clb)], 
and a localized equation of state satisfying the strong energy 
condition is chosen at r = ro, one has a collapsing picture 
qualitatively similar to that described in Fig. 5. In particular, 
if p(t,ro) = 0, leading to Eq. (C3), p calculated from Eq. 
(C2c) would be negative for all r> r o. 

The ChMcV(r2,r2)(X2) solutions presented in this 
Appendix are probably the mathematically simplest ChKQ 
solutions. More complicated M- and W-type solutions of 
types (ii) or (iv) describing collapsing spheres, such as the 
cases ChMcV(r2) (X 1,2) discussed by Mashhoon and Par
tovi,7 contain the same FD spacelike singularity if type (ii), 

the null L singularity with the interior layers collapsing in 
the infinite future if type (iv) or, in some cases, the FV singu
larity if the solution is type (i). As far as the singUlarity 
structure associated to their gravitational collapse is con
cerned, these spheres behave qualitatively in an analogous 
manner to the simple case discussed here; however, the time 
evolution equation (C3) and other expressions, such as the 
integral (7), might require numerical integration even for 
relatively simple cases. 
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It is shown that in a type-D space-time that admits a two-index Killing spinor a differential 
operator can be constructed that maps a solution of the Maxwell equations into another 
solution. By considering as a background the Plebanski-Demianski metric, which includes all 
the vacuum type-D metrics, this operator is used to obtain all the components of the 
electromagnetic field and the vector potential. The separated functions appearing in the 
solutions are shown to obey identities of the Teukolsky-Starobinsky type and the separable 
solutions are shown to be eigensolutions of a certain differential operator with the 
"Starobinsky constant" as the eigenvalue. 

I. INTRODUCTION 

The study of the behavior of various kinds of fields on 
curved space-times has received considerable interest in re
cent years and there exist by now many results in this area. 
Especially important in this connection are the type-D 
space-times, which include the Kerr solution, because of 
their properties. In fact, most of the results obtained so far 
are concerned with type-D space-times partly because in 
these backgrounds some of the relevant equations can be 
solved by separation of variables. 

As a result of its intrinsic interest, the Kerr solution has 
been the subject of many of the studies in this area and the 
successful results achieved in this case have stimulated simi
lar investigations with other backgrounds, and the search for 
the reasons behind these successes. For example, Walker 
and Penrose 1 showed that the existence of Carter's "fourth 
constant," which is related to the separability of the Hamil
ton-Jacobi equation in the Kerr background, is associated 
with a two-index Killing spinor, whose existence follows 
from the Bianchi identities in all type-D vacuum space-times 
(see also Ref. 2). Similarly, Carter and McLenaghan3 found 
that the separability of the Dirac equation in the Kerr geom
etry, obtained by Chandrasekhar,4 is related to the fact that 
the skew-symmetric tensor corresponding to the two-index 
Killing spinor admitted by the Kerr metric is a Killing
Yano tensor. More specifically, from this Killing-Yano ten
sor a differential operator can be constructed, which com
mutes with the Dirac operator, and the separable solutions 
of the Dirac equation are eigensolutions of this operator. It 
has also been shown, in an explicit way, that the Dirac equa
tion admits separable solutions in a restricted class of the 
type-D vacuum metrics.s 

In the cases of the massless free fields with spins! and 1 
and of the gravitational perturbations, Teukolsky6 found 
that, in the Kerr geometry, certain components of the fields 
satisfy decoupled equations that admit separable solutions. 
This result was extended by Dudley and Finley 7 to the Ple
banski-Demianski8 metric, which includes all the type-D. 
solutions of the Einstein vacuum field equations. However, 
when the spin of the field is greater than !, these decoupled 
components do not constitute all the components of the 

field. In the case of the Kerr metric, by integrating the corre
sponding field equations, Chandrasekhar9

•
10 obtained the 

expressions for all the components of the fields, including 
those of the vector potential for the electromagnetic (i.e., the 
spin-l) field (see also Ref. 11). 

Kamran and McLenaghan 12 have shown that the spino! 
massless field equations are separable in a wide class of type
D backgrounds and that there is a differential operator, con
structed from the two-index Killing spinor that these back
grounds admit, which maps a solution of the spino! massless 
field equations into another solution, and the separable solu
tions are eigensolutions of this differential operator. The im
plications of the existence of a Killing spinor, in relation to 
the separability of the massless field equations, have been 
also investigated by Jeffryes l3 who obtained the form of the 
type-D metrics that admit such a spinor field, without im
posing explicit restrictions on the Ricci tensor. 

Another remarkable feature found in the study of the 
perturbations of the Kerr metric is the existence of the Teu
kolsky-Starobinsky identities (see, e.g., Ref. 14) that relate 
the separated functions corresponding to the components of 
the extreme helicities (see also Ref. 13). 

In this paper, following Ref. 15, we show explicitly that 
in a type-D background that admits a two-index Killing 
spinor one can construct a differential operator that maps a 
solution of the Maxwell equations into another solution and 
by taking the Plebanski-Demianski metric as background, 
this operator is used to construct the complete solutions to 
the Maxwell equations, including the corresponding vector 
potential, in terms of separated functions. We also find, in 
this general background, that these separated functions sat
isfy identities analogous to the Teukolsky-Starobinsky iden
tities, previously found in the case of the Kerr background. 
We show that the separable solutions of the Maxwell equa
tions are eigensolutions of a certain differential operator 
with the constant appearing in the Teukolsky-Starobinsky 
identities as an eigenvalue. 

In most of this paper we make use of the notation of 
Newman and Penrosel6 (see also Refs. 14 and 17). For the 
sake of completeness and in order to show its analogy with 
the spin-l case, the case of the spino! massless fields is pre
sented in the Appendix. 
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II. PRELIMINARIES 

A two-index Killing spinorl is a symmetric spinor field 
LAB that satisfies 

VA'(BLCD) =0, (1) 

where the round brackets denote symmetrization on the in
dices enclosed. If LAB is algebraically general (which is 
equivalent to LABL AB :f0) then it can be expressed in the 
form 

(2) 

where 0 A' LA form a spin-frame,!7 with 0 A LA = 1, and ifJ is a 
complex function. Substituting (2) into (1 ) one obtains, us
ing the standard Newman-Penrosel6 notation, 

K = (T = A = v = 0, (3a) 

P = D In ifJ, r = 0 In ifJ, 1T = -;5 In ifJ, /-L = - a In ifJ· 
(3b) 

The integrability conditions of Eqs. (3) imply that only '1'2 

may be different from zero; hence the space-time must be of 
type D or conformally flat. In the case of a vacuum type-D 
space-time, from the Bianchi identities one can easily see 
thatifJ= ('I'2)1/3 satisfiesEqs. (3b).IFromEq. (2) oneob
tains the expression 

ifJ-2 = -~LABLAB. (4) 

The (source-free) Maxwell equations expressed in 
terms of the electromagnetic spinor qJAB' VAC'qJAB = 0, 
amount to 

(;5 - 2a + 1T)qJo - (D - 2p )qJI - KqJ2 = 0, 

(a - 2r + /-L)qJo - (0 - 2r)qJI - (TqJ2 = 0, 

(;5 + 21T)qJI - (D + 2E - P )qJ2 - AqJo = 0, 

(a + 2/-L)qJI - (0 + 2{3 - r)qJ2 - VqJo = 0, 

(5) 

and the expression for the electromagnetic spinor in terms of 

the vector potential $ AA" qJ AB = V A '(A $~;, is given expli
citly by 

qJo = (D - E + € - .0)$01' - (0 - f3 - a + 17')$00' 

+ K$l1' - (T$IO" 

2cp1 = (D + E + € + P - ,0)$11' 

+ (;5 - a +P -1T - 7')$01' 

- (0 + f3 - a + r + 17')$10' 

- (a - r - r - /-L + ji)$oo', 

qJ2 = (;5 + a + P - 7')$11' - (a + r - r + ji)$IO' 

+ v$oo' - A$ol" 

(6) 

Whenever K, (T, '1'0' and '1'1 vanish, by making use of the 
commutation relation6 

Analogously, if A, v, '1'3' and '1'4 are equal to zero, one gets 
the following decoupled equation for qJ2: 

[ (a + r - r + 2/-L + ji)(D + 2E - p) 

- (8 + a +P + 21T- 7')(0 + 2{3 - r) ]qJ2 = O. (9) 

A relevant fact is that Eqs. (8) and (9) can be solved by 
separation of variables in the Kerr background6, 14 and, more 
generally, in the Plebanski-Demianski background.7 

III. GENERATION OF SOLUTIONS 

In the forthcoming we shall assume that the space-time 
admits a two-index Killing spinor of the form (2). As men
tioned above, all the type-D vacuum space-times admit such 
a spinor field. 

In Ref. 15 it was stated without proof that if qJ AB is a 
solution to Maxwell's equations then 

XR'S' =!VR(R,ifJ-2VSS')ifJ2LARLBSqJAB 

also satisfies Maxwell's equations, 

(10) 

VCR 'XR 'S' =0. (11) 

In fact, the following stronger claim can be made. The (com
plex) vector field 

(12) 

is the vector potential of a self-dual electromagnetic field, 
i,e., 

A' V A' (AX B) = 0, (13) 

from which Eq. (11) follows. [Actually, also in the case ofa 
self-dual or anti-self-dual Yang-Mills field, the (source
free) field equations are automatically satisfied (see, e.g., 
Ref. 17).] 

We shall prove (13) by a direct evaluation that will be 
useful later. The components X RS' defined in Eq. (12) are 
given explicitly by 

X oo' = - !ifJ- 2{D - 2p)qJI + (8 - 2a + 1T)qJo}, 

X 01' = - !ifJ-2{(0 - 2r)qJI + (a - 2r + /-L)qJo}, 
-2{ ~} (14) X IO' =!ifJ (D + 2E - P)qJ2 + (u + 21T)qJI , 

Xli' = !ifJ-2{(0 + 2f3 - r)qJ2 + (a + 2/-L)qJI} 

[cf. Eqs. (5)], where we have made use of Eqs. (2) and 
(3a). By using Maxwell's equations (5) and Eqs. (3), these 
expressions can be rewritten in many equivalent forms, e.g., 

-2 -XOO' = - ifJ (0 - 2a + 1T)qJo, 

X 01 ' = -ifJ-2(a- 2r+/-L)qJo, (15) 

X IO' = ifJ- 2(D + 2E - P )qJ2 = (D + 2E + P )(ifJ-2qJ2) , 

Xli' = ifJ- 2(0 + 2f3 - r)qJ2 = (0 + 2f3 + r) (ifJ- 2qJ2)' 

(D + (p - l)E + € + qp - ,oHo + pf3 + qr) Then, for instance, 

= (0 + (p - 1)f3 - a + qr + 1T)(D + pE + qp), (7) vA'oxf = (D - E +€ -,o)XOI , - (0 - f3 -a + 1T)Xoo, 

where p and q are constants, from Eqs. (5) a decoupled 
equation for qJocan be derived, namely, 

[(D - E + € - 2p -.0) (a - 2r + /-L) 

- (0-f3- a-2r+1T)(8-2a+1T)](j?0=0. (8) 
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[cf. the first equation in (6)], which, using Eqs. (3b) and 
(15), amounts to 

- ifJ-2(D - E + € - 2p -.0) (a - 2r + /-L)(j?o 

+ ifJ- 2(0 - f3 - a - 2r + 17') (;5 - 2a + 1T)(j?0, 
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which is zero according to the decoupled equation (8). In an 

analogous way one finds that the equation V A '1 X t' = 0 is 
equivalent to the decoupled equation (9) and that the equa-

tion V A '(oX t; = 0 is also satisfied as a consequence of the 
Maxwell equations (5). 

Thus XR'S' = V C(R,Xf) satisfies Maxwell's equations 
(11) and, moreover, due to (13), XR'S' = VC(R' [X f) 
+ X f) ], whereXAB , ( = X BA ' ) is the Hermitian conjugate 
of XAB" The combination XAB ' + XAB , is a real vector po
tential that also generates the field XR 'S" The fact that the 
field X R 'S' given in Eq. (10) by means of a ditferential opera
tor applied to a solution of the Maxwell equations is also a 
solution of Maxwell's equations can be expressed by saying 
that the ditferential operator in Eq. (10) commutes with the 
Maxwell operator modulo the Maxwell operator itself. The 
ditferential operator in (10) is analogous to that considered 
by Kamran and McLenaghan 12 in the case of the spino! 
massless fields (see also the Appendix). 

The components X R 'S' can be written in various equiva
lent ways by using Eqs. (3), (5), (7), and (14). For instance 
[cf. (6)], 

Xo= (D+€-E-p)XIO, - (8 a-lJ +1T)Xoo, 

= t/J-2{(D + € - E - 3p) (D + 2€ - P)f/J2 

+ (8 - a -lJ + 31T)(D- 2p)f/JI} 

=t/J-2(D+€-E-3p)[(D +2€-P)f/J2 

+ (8 + 211')f/J1] 

= 2t/J-2(D + € - E - 3p)(D + 2€ - P)f/J2' (16) 

and, eliminating f/J2 and f/JI in favor of f/Jo, 

Xo = <p- 2{(D + £ - E - 3p)(8 + 211')f/JI 

+ (8 - a -lJ + 31T)(8 - 2a + 1T)f/Jo} 

= 2t/J-2(8 - a -lJ + 31T) (8 - 2a + 1T)f/Jo' (17) 

This implies, in particular, the identity 

(D + € - E - 3p) (D + 2£ - P )f/J2 

= (8 a -lJ + 311')(8 - 2a + 1T)f/Jo, (18) 

from which the Teukolsky-Starobinsky identities can be ob
tained. [The validity of this relation can be proven directly 
from the Maxwell equations and Eqs. (3a) and (7) once one 
considers the appropriate operators, which arise naturally in 
the present context.] 

In a similar way one gets 

X2 = 2t/J-2(1:J. - Y + r + 3,u)(1:J. - 2y + ,u)f/Jo 

= 2t/J -2(8 + P + ii - 37) (8 + 2/3 - 7)f/J2 

and 

XI = t/J-2[ (D + € + E - 3p + p) (8 + 2/3 - 7) 

+ (8+!3-ii-37-1i)(D +2£-P)]f/J2 

= t/J-2[ (1:J. - Y - r + 3,u - ji)(8 - 2a + 1T) 

(19) 

+ (8 - a + lJ + 311' + r)(1:J. - 2y +,u) ]f/Jo' (20) 

[Equations (19) and (20) provide additional relations simi
lar to (18).J 
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In the following section these general results will be ap
plied to the specific case of the type-D solutions of the Ein
stein field equations given in the form found by Plebaiiski 
and Demiaiiski. 

IV. SOLUTION OF MAXWELL'S EQUATIONS IN THE 
PLEBANSKI-DEMIANSKI BACKGROUND 

The Plebaiiski-Demiaiiski metric is given by 

g = (1 _ pq) -2{~ (du _ p2 dU)2 p2 + q2 dq2 
p2 + q2 fZ2 

_ ~(du + q2 dU)2 _p2 + q2 dp2}, (21) 
p2+q2 9 

where p,q,u,u are real coordinates and 9 and fZ2 are func
tions of p and q, respectively. In the notation of Ref. 8 (see 
also Ref. 7), 

9 = - (A /6 + gZ - y) + 2np €p2 + 2mp3 

- (A /6 + e2 + y)p4, 
(22) 

fZ2 = - (A /6 - e2 - y) - 2mq + £q2 2nq3 

- (,1,/6 _gZ + y)q4. 

The parameters m, n, e, g, and A correspond to mass, NUT 
parameter, electric and magnetic charge, and cosmological 
constant, respectively, and the parameters € and yare relat
ed to the angular momentum per unit mass, a, and the accel
eration parameter b by 

1 (a
2 

- b 2 )(1 ,1,3 (al + b 2»)112, 
€ = - -;;b a2 + b 2 

y= (a2+b2)-I_~. 
6 

These parameters should not be confused with the spin coef
ficients; actually, the explicit expressions (22) will not be 
required in what follows. Whene = 0 = g, the metric (21) is 
a solution of the Einstein vacuum field equations. 

The tangent vectors 

D=aq + (lIfZ2)(av -q
2au), 

1:J. = !t/J¢fZ2( - aq + (1IfZ2 )(av - q2 au»)' 

(
9)1/2_( i ) 8="2 t/J ap +g;-(av +p2au) , 

(23) 

where 

t/J= (1 - pq)/(q + ip), (24) 

form a null tetrad such that D and 1:J. are double principal null 
directions of the conformal curvature. The spin coefficients 
are given by 

K = 0' =,1, = v = 0, € =D In(9 1/4/0- pq»), 

!3=8In(9 1/4/(1_pq»), p=Dlnt/J, 

7 = 8 In <p, 1T = - 8 In <ft, ,u = - 1:J. In <p, 
a = - 8In(9 1/4fZ2I12/(q + ip»), 

y= 1:J.ln(91/4fZ21/2/(q+q,»). 
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Comparison with Eqs. (3) shows that the metric (21) ad- therefore 
mits a two-index Killing spinor of the form (2) with tP given qJ2 = (1 _ pq)tP2ei(kU + Iv) R_I (q)S_1 (p), (33) 
by (24). 

Contrary to some statements in the literature, in order 
to solve Eqs. (8) and (9) by separation of variables, it is not 
necessary to use a specific tetrad provided it satisfies Eqs. 
(3a). The relation between any two such tetrads corre
sponds to a rescaling of 0A and LA (the spin frame), which 
only rescales qJo and qJ2 (see, e.g., Ref. 18). The tetrad (23) is 
different from those used in Ref. 7; the present choice is such 
that D takes a relatively simple form and a = 1T - p. The 
representation of the spin coefficients in the form (25) does 
not depend on the tetrad chosen here and is very useful in the 
forthcoming computations. 

A. The separated functions 

Assuming that the components of the fields have a de
pendence on the ignorable coordinates u and v of the form 
ei(ku + Iv), the tetrad vectors (23) can be replaced according 
to 

D~ f» 0' D. ~ - !tP¢!Z2 f»b' 

8 .... (1/.j2)¢2'b, "8 .... (1/.j2)tP2' 0' 
(26) 

where 

f»" =aq + (i/ f) )(/- kq2) + (n/ f) )aq !Z2 = !Z2 - n f» 0!Z2 n, 

f»!=aq - (i/f)(/-kq2) + (n/f)aq !Z2 

= f) -nf»6f)n, 

2' n =[&(ap + (1/ fll) (I + kp2) + (n/2fll lap fll) (27) 

= !!JI - n/2 2' 0!!JI n/2, 

2'!=[&(ap - (1/fll)(/+kp2) + (n/2fll)apfll) 

= fll - n12 2'6 fll n12. 

Notice that these operators depend parametrically on the 
separation constants k and I, and that 

f» n (k,/) = f» n ( - k, - I) 

= f»~ (k,/) = f»! ( - k, -/), (28) 

2' n (k,/) = 2'~ ( - k, -I). 

In what follows f» n will denote f» n (k,l) and so on. 
Then, using Eqs. (25) and (26), the decoupled equation 

( 8) takes the form 

[ f» of»b!Z2 + 2ikq + 2'b 2' 1 + 2kp ](qJo/ (1 - pq») = 0, 
(29) 

hence 

qJo = (l - pq)ei(ku + Iv) R + 1 (q)S + I (p), (30) 

with 

(!Z2 f» of»b + 2ikq)!Z2 R + I (q) = A 1!Z2 R+ I (q), 

(2'62'1 +2kp)S+I(p) = -A1S+1(p), (31) 

andAI is a separation constant. Similarly, from Eq. (9) one 
gets 

[!Z2 f»bf» 0 - Ukq + 2'02'1 - 2kp] 

X(tP- 2qJ2/(1- pq») = 0; (32) 

974 J. Math. Phys .• Vol. 29. No.4. April 1988 

with 

(!Z2 f»bf» 0 - 2ikq)R_I (q) = A2R_I (q), 

(2'02'1 -2kp)S_I(p) = -A2S_ I(p), 
(34) 

where A2 is a separation constant. 
The components 1'0 and 1'2 of the self-dual part of the 

electromagnetic field satisfy the complex conjugates of Eqs. 
(8) and (9), respectively. Therefore 1'0 and 1'2 could be ex
pressed by the complex conjugates of Eqs. (30) and (33). 
However, in order to have a dependence of the form 
ei(ku + IV), the complex conjugation must be accompanied by 
the substitution of (k,/) by ( - k, -I). Thus 

(35) 

and 

X2 = (l - pq)¢2ei(ku+lv)R_ 1 (q)S_1 (p), (36) 

~here, using Eqs. (28), (29), and (32), the functions R ± I' 

S ± I must satisfy 

(!Z2f»of»b + 2ikq)!Z2R+ I(q) =A 3!Z2R+ I(q), 
t - - (37) (2'02'1 - 2kp)S+I(p) = -A3S+ 1(P), 

and 
t . - -(!Z2 f» of» 0 - 21kq)R_I (q) = A4R_I (q), 

t - - (38) (2'02'1 +2kp)S_I(p) = -A4S_ I(p), 

with A3 and A4 being separation constants. 
By comparing Eqs. (37) and (38) with (31) and (34) 

~e see that we can take R ± I = R ± I' S + I = S _ I' 
S -I = S + I' and that the separation constants are related by 

(39) 

Furthermore, since R _ I and f) R + 1 satisfy complex-conju
gate equations, it follows that A is real, 

(40) 

[This fact can also be obtained independently from Eq. 
(47), below.] 

B. The Teukolsky-Starobinsky Identltites 

From Eqs. (3b), (16), (25), and (26) we have 

Xo = 2(D + E - E' - p) (D + 2E + p)(tP- 2qJ2) 

= 2(1 - pq)f» of» 0(tP- 2qJ2/ (1 - pq») (41) 

and, at the same time, from Eqs. (17), (25), and (26), 

Xo= (1-pq)2'o2'l(qJo/(l-pq»)· (42) 

Analogously, from Eqs. (19), (25), and (26), 

X2=~(1-pq)¢2!Z2f»bf»b(!Z2[qJO/(1-pq)]) (43) 

= 2(8 + (J + ii - r) (8 + 2{J + r) (tP- 2qJ2) 

= (1- pq)¢22'b2'1(cp-2qJ2/(l- pq»). (44) 

Substituting now the separable solutions (30) and (33) 
intoEqs. (41)-(44) and comparing with (35) and (36) one 
finds that, by normalizing appropriately, the separated func
tions satisfy the relations 

G. F. Torres del Castillo 974 



                                                                                                                                    

f)Of)oR_l(q) = BR+1(q), 

.!f o.!f IS+I (p) = BS_ I (P), 

£72~lJiJb£72R+I(q) =BR_1(q), 

.!fb.!ftS_l(P) = BS+1(p), 

(45) 

where B is a real constant [taking into account that £72 R + 1 

and R_l satisfy complex-conjugate equations and that Xo 
and X 2 must satisfy the complex conjugate of ( 18) ]. 

In what follows we shall assume that the separated func
tions are normalized in such a way that Eqs. (45) hold. Then 
the components of the electromagnetic field, with the correct 
relative normalization, are given by 

tpo = (1 - pq)ei(ku + Iv) R+I (q)S+l (P), 

tp2 = !(1 - pq)t/JV<ku + /v)R_ I (q)S_1 (p). 
(46) 

The value of the constant B can be obtained by combin
ing the first and the third equations in (45), which gives 
£72~b~b£72~o~oR I =B 2R_ I· Then, by commuting 
the differential operators and using Eq. (34), one obtains 

B2=A2+4kl. (47) 

Following Ref. 14, B can be called the Starobinsky constant 
and the relations (45) will be called the Teukolsky-Staro
binsky identities. 

C. The complete solution and the vector potential 

UsingEqs. (3b), (25), (26), (45), and (46), from Eqs. 
(20) a straightforward computation gives 

XI = (B /Ji)~V(kU+ Iv) 

X [g+l(q).!fIS_1 -if+l(p)~oR-d, (48) 

where 

g+l(q) == (lIB)(q~oR_l - R_ I ), 

1+I(p) ==(lIB) (p.!fIS_1 -[&1S_I) 

and, also, 

XI = - (B /.j2)~2ei(kU+ Iv) 

X [g_1 (q).!f IS+I - if-I (P)~b (£72R+ I )], 

where 

g_l(q)==(lIB)(q~b(£72R+I) - £72R+ I), 

I-I (p) == (lIB)(p.!f IS+I - [&1S+I)' 

(49) 

(50) 

(51) 

[In the Kerr limit the functions! ± I differ by a factor ( - a) 
from the expressions defined by Chandrasekhar9

•
14 (see be

low).] The remaining components X A' B' (with the correct 
relative normalization) are obtained by substituting (46) 
into Eqs. (42) and (43). Using the Teukolsky-Starobinsky 
identities (45), this gives 

Xo=B(I-pq)ei(ku+IV)R+ IS_ I, 

X2 =!E(1 - pq)~2ei(ku+ IV)R_IS+ I. 
(52) 

Therefore, the component tpl' missing in (46), must be given 
by the following two equivalent expressions: 
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tpl = (1/.j2)t/J2ei(ku + Iv) 

X [g+l(q).!fIS+1 + if-I (p)~oR-tl 
= _ (1I.j2)t/J2ei(ku + Iv) 

X [g-l(q).!fIS_l + if+I(P)~b (R+ I )]. (53) 

From Eqs. (15), using (25), (26), (46), (49), and 
(51), one immediately obtains the following expressions for 
the components of the complex vector potential XAB" which 
corresponds to the field X A 'B ' : 

x. , = - (1/ '2)ei (ku + Iv) [iBI' R '+ qR 0> S ] 
00 1J~ :I-I +1 +I..z 1 +1 , 

X01' = !~ei(ku+/v)[ Bg_1S+ I + ipS+I~b (R+ I )], 

X = l.J..ei(ku + Iv) [Bg S + inS /ill D ] 
10' 'lOP +1 -I 'Y _1.:v~'_1 , 

(54) 

XII' = (1/2.j2)t/J~ei(ku +/v) [iBI+IR_1 + qR-I.!fts_d. 

The (complex) potential given by 

<1>00' = (1I.j2)ei(ku+IV)[if+IR+ 1 -B- 1qR+ 1.!fts_d, 

<I> - l::i:ei(ku + Iv) [g S 'B -I S /ill D ] 
01' - 'lOP +1 +1 -I P +1.:v~'_I' (55) 

<1>10' = !t/Jei(ku+ Iv) [g_IS_1 - iB -lpS_I~b (£72R+ 1)], 

<1>11' = - (1I2.j2)t/J¢ei(ku+lv) 

X [if_1R_ 1 - B -lqR_ I.!fIS+t1 

generates the field tp AB' Since, by analogy with (13), <I> AB' 

satisfies V A (A' <I>~ ') = 0, the vector potential (55) plus its 
Hermitian conjugate is a real vector potential that also gen
erates the field tp AB' Any other real vector potential with this 
property differs (locally) from this real potential by a gauge 
transformation. (The vector potential found in the case of 
the Kerr metric in Refs. 9 and 14 is not real and no explicit 
procedure is given to get a real vector potential.) 

D. The Kerr limit 

As indicated in Refs. 7 and 8, the Kerr metric can be 
exhibited as a limiting case of the Plebanski-Demianski met
ric by making the substitutions 

q ..... r, p ..... - a cos 0, u- - t + atp, v ...... tp la, 

f!jJ ..... a2 sin2 0, £72 ..... r2 - 2Mr + a2, 1 - pq ..... l, 

thus 

t/J ..... (r-iacosO)-I, aq ..... a" 

ap ..... (asinO)-lae , au ..... -at' 

av -a alP + a2 at, k ..... - w, l ..... a(m + aw). 

Therefore the Starobinsky constant is given in this case by 

B2 = A 2 - 4ll,z(a2 + am/w). 

(Compare with Ref. 14.) 

E. Characterization of the separable solutions 

Form the derivation presented above it follows that if 
one considers a pair of fields tp AB and ;p A 'B' that satisfies the 
(source-free) Maxwell equations (though these fields need 
not be related to one another), then the pair of fields X AB and 
XA 'B" given by 
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[
XAB ] = %[ rpAB ] 

XA'B' ifA'B' 

[V
R '~-2VS' ~2-L -L - C'D'] =J..- (A 'I' B)'I' R'C' S'D'rp 

2 VR j.-2VS j.2L L CD ' (A ''I' B') 'I' RC SDrp 
(56) 

is also a solution of the Maxwell equations; and the separable 
solutions in the Plebanski-Demianski background, with a 
dependence in the variables u and v of the form ei(ku + Iv), can 
be normalized in such a way that they satisfy the eigenvalue 
equation 

(57) 

where B is the Starobinsky constant (47). [Compare with 
the Appendix.] [The two equations contained in (56) are 
redundant as one is the complex conjugate of the other; how
ever, by using the field rp AB only, an eigenvalue equation 
similar to (57) would require a fourth-order differential op
erator or the use of complex conjugation that would modify 
the dependence in the variables u and v. This pairing arises 
more naturally in the case of spino! massless fields using Dir
ac's notation.] 

v. CONCLUDING REMARKS 

In the case of (conformally) flat space-time, Eq. (1) is 
known as the twistor equation (see, e.g., Ref. 19) and the 
operations given by Eqs. (56) and (A5) correspond to the 
spin-raising and spin-lowering operations induced by twis
tors (cf., also, Ref. 20). Since in a type-D space-time the one
index Killing spinors are not allowed, these shifts of the spin 
of the fields must be of at least one unit. However, for a 
solution rp AB of Maxwell's equations, the combination 
LABrp AB, which would satisfy the conformally invariant 
spin-O massless field equation in (conformally) flat space
time, does not satisfy this equation in a type-D background. 

Using Eqs. (3) one finds that rpo = 0 = rp2' rpl = cfJ2 is a 
solution of the Maxwell equations (5), which is not of the 
form given by Eqs. (46) and (53). Nevertheless, this solu
tion, together with that given by ifo = 0 = if2' ifl = ~2, satis
fies Eq. (57) with B = O. This particular solution plays a 
relevant role because the electromagnetic field ofthe type-D 
solutions of the Einstein-Maxwell equations such that the 
principal null directions of the electromagnetic field coin
cide with those of the conformal curvature (such as the 
Kerr-Newman solution) has this form. 

The results presented here are not applicable to the case 
of the solutions of the Einstein-Maxwell equations since the 
background electromagnetic field couples the electromag
netic and the gravitational perturbations. At least in the case 
of the perturbations of the Reissner-Nordstrom solution, 
which can be analyzed by separation of variables, there exist 
relations similar to the Teukolsky-Starobinsky identities 
that relate four radial functions21 (the angular functions cor
respond to the spin-weighted spherical harmonics that also 
satisfy similar relations). 
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APPENDIX: THE SOLUTION OF THE SPIN-} MASSLESS 
FIELD EQUATIONS 

Using the notation and the null tetrad of Sec. IV one 
easily finds that the spin-~ massless field equations 
VAB '1JA = 0, which amount to 

(D + € - p)1J, - (;5 - a + 1T)1Jo = 0, 

(~ + /3 - r)1J1 - (d - Y + j.t)1Jo = 0 
(AI) 

in the Plebanski-Demianski background, admit the separa
ble solution 

1Jo= - (1-pq)ei(ku+/v)R+ 1I2 (q)S+I/2(p), 

1J1 = (lIv1z)(l-pq)cfJei(ku+IU)R_ I/2(q)S_I/2(p), (A2) 

with 

fiJoR -1/2 = CR + 112' .5t' I/2S + 1/2 = - CS -1/2 

;!21/2fiJ"6;!21/2R + 112 = CR -112' .5t'i12S -1/2 = CS + 1/2' 

(A3) 

where C is a real separation constant (the fact that C is real 
can be derived as in Sec. IV, using that R _ 1/2 and 
;!21/2R + 112 satisfy complex-conjugate equations). These 
equations are the analog of the Teukolsky-Starobinsky iden
tities (45) and the first of Eqs. (A 1) is, in this sense, analo
gous to Eq. (18). The separable solutions of the equations 
V BA 'r,A' = 0 are given by 

r,o' = (l-pq)ei(ku+IV)R+ 1I2 S_ I /2, 

r,I' = (1Iv1z)( 1 - pq)~ei(ku + Iv) R _ 112S + 1/2' 
(A4) 

By combining Eqs, (A3) one obtains a decoupled second
order equation for each separated function with C 2 appear
ing as eigenvalue. Hence, in this case, a combination like 
( 47) does not arise. 

One can verify, in general, that the spinor fields tA and 
SA' defined by 

[ tA] =%[:A ]=_1 [~-IVr~LB'C'r,C~] (A5) 
SA' 1JA' viz -cfJ- V A,(cfJL BC1J) 

satisfy the spino! massless field equations provided 1JA and 
r,A' are solutions of the spin-~ massless field equations and 
LAB is a two-index Killing spinor. ls Then, with 1JA and r,A' 
given by (A2) and (A4), Eq. (A3) is equivalent to the 
eigenvalue equation 

(A6) 

[The opposite signs appearing in the definition of % (A5) 
are essential. Using Dirac's y matrices these signs can be 
taken into account by means ofys (cf. Refs. 3 and 12).] 
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A sequence of homogeneous, isotropic, and compact solutions to the empty space hypergravity 
equations [D. Finkelstein, S. R. Finkelstein, and C. Holm, Phys. Rev. Lett. 59, 1265 (1987); 
S. R. Finkelstein, Ph.D. thesis, Georgia Institute of Technology, 1987 (unpublished)] is 
studied. These solutions are hyperspin manifolds constructed from unitary groups 
UN: = U (N,C) and describe static compact Einstein universes of the Kaluza-Klein type with 
Finslerian geometry. By taking the universal covering group ofU Nan N 2-dimensional 
manifold with topology R X SU N is obtained, where the Abelian group R is the time axis and 
SUN provides a compact homogeneous spatial part. To describe the Finslerian geometry of 
these manifolds the Cartan-Penrose exterior calculus is extended from spinors to hyperspinors 
and the Maurer-Cartan equations are applied to obtain the hyperspin structure of UN' 
Hyperspin geometry seems to be a consistent alternative to the usual Riemannian geometry for 
spaces with internal dimensions, which deserves further study. 

I. INTRODUCTION 

In 1986 Finkelstein! proposed unifying two seemingly 
contradictory principles, the hyperspace (i.e., Kaluza-Klein 
models) and the spinor principle, into what he called hyper
spin. The apparent contradiction rested upon the fact that 
the underlying spinor space was built from two-component 
spinors, 2 leading to a time-space of dimension 22 = 4, where
as the hyperspace principle makes us believe that the world 
has dimension d> 4. The solution was to enlarge the number 
of components of the spinors to N (hence, hyperspinors) , 
which leads to causal time spaces of dimension n = N 2. The 
transformation group of the hyperspinors is taken to be 
SLN: = SL(N,C) and not the (pseudo-) orthogonal groups 
of ordinary spinors. The manifolds with a hyperspin struc
ture are denoted by B N and called Bergmann manifolds after 
Bergmann3 who first took the spin manifold (the case 
N = 2) as fundamental and showed that general relativity 
emerges from it. The geometry of Bergmann manifolds is in 
general Finslerian and coincides only for N = 2 with Rie
mannian geometry. The dimensionality ofB N is restricted to 
be a square of an integer, four being the first interesting 
manifold after the case of pure time (N = 1). The first two 
components (in a suitable frame) of a general hyperspinor 
are supposed to give rise to the (external) four-dimensional 
time-space we live in, whereas the other components are free 
to build internal spaces, from which gauge groups could 
arise. 

In this paper we study a series of hyperspin manifolds 
based on the unitary groups UN: = D(N,C), which describe 
static, homogeneous, isotropic, and compact Kaluza-Klein 
cosmologies. The reason for studying a group manifold is its 
great symmetry, which makes calculations easier, and also 
gives rise to unitary symmetry groups acting on the internal 
dimensions. In the course of this work it also turned out that 
the unitary groups are solutions to the hypergravity field 
equations.4 

The paper is organized as follows. In Sec. II we recapitu
late the elementary ingredients for the hyperspin theory. 

In Sec. III we determine the hyperspin structure ofU N' 

We do so by performing calculations on the complexified 
UN' which is GLN: = GL(N,C). We introduce the idea ofa 
complexified spin structure. As a simple example we treat U2 

in detail. At the end of this section we prove that UN satisfies 
the hypergravitational field equations. 

The sometimes cumbersome calculations lead us to gen
eralize Cartan's calculus of differential forms to hyperspin
ors in Sec. IV. We invent a method that allows us to read off 
the hyperspin structure of suitable Lie groups from the 
Mauer-Cartan equations. 

In Sec. V we conclude the work with a summary and 
discussion of the results. 

II. THE HYPERSPIN CONCEPT 

The notation we use is designed to provide as much in
formation as possible with a minimum of "index gymnas
tics." We use capital Greek letters to denote spinor indices, 
~, n, ... = 1, ... ,N. A dot over a spinor index means that it 
belongs to an antispinor and transforms according to the 
complex conjugate representation, where i and ~ are treat
ed as independent variables. Lowercase Greek letters denote 
the time-space manifold and run from 1, ... ,N 2

• 

We also introduce collective indices for SUbscripts and 
superscripts. To cut down on the number of indices we write 
(~): = ~!'''''~N as standing for N spinor indices. The kind 
of parentheses used indicates the symmetry: [~] for N anti
symmetrized indices, {~} for symmetrized ones, and (~) 
meaning that there is no special symmetry. The number of 
primes on a collective index gives the number of omitted 
indices. The collective tensor product for a tensor O'(a,~,i) 
is defined by 

IIO'(a,~,i): = O'(al>~!,i!), ... ,O'(aN'~N,iN)' 
The comma and semicolon before an index mean the ordi
nary and covariant derivative, respectively. We also make 
use of the Einstein summation convention throughout. 

A. Hyperspace geometry 

Hyperspinors vr are defined on a complex linear space 
Cl: and transform according to the defining representation of 
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SLN • Antispinors 1[f belong to the complex conjugate space 
Cl: and transform under the complex conjugate representa
tion. Let ReT be the real linear subspace of Cl: ® Cl: whose 
elements are Hermitian and called sesquispinors. Due to 
Hermiticity the dimensionality of ReT is N 2

• A Bergmann 
manifold B N is defined as a differentiable manifold that is 
locally a ReT and possesses a differentiable spin map u( u) at 
each point u ofBN. 

Each point u carries a spin vector if'l:l: (u) that is a 
sufficiently differentiable local isomorphism from ReT to 
dBN(u), which denotes the tangent space ofBN at u. For 
N = 2 u is also known as the soldering form or the Infeld
van der Waerden symbol. The inverse map U is called the 
spin form and has the index structure U a l:l: ( U ). It obeys the 
inverse relations 
--Ll - 00 ~o ~o d --Ll - l:l: ~a 2 
U l:l: U a = U l: U l: an U l:l: up = Up. ( .1) 

The spin vector is the basic dynamical variable in the 
theory. In B2 it is the square root of Einstein's metric tensor 
g, whereas for N> 2 the extra dimensions it gives rise to 
could account for gauge fields of the other known forces. In 
flat space u is globally defined and can be taken to be the 
identity map. In the overcomplete non-Hermitian basis 
Eo ® Eo for the tangent space this spin vector may then be 
written as 8° l: 8° l:' This means that the action of u on a 
sesquispinor h l:l: is 

u: h l:l:t---+lj\ 8°l:h l:l: = h 00. 

The result h 00 is a Hermitian matrix, which is regarded as a 
tangent vector. The use of an overcomplete basis should not 
confuse the reader and will be used throughout this work, as 
it greatly simplifies the formulas. The spin form defines also 
the chronometric density p via 

p = det(uaP) = K det(UO°l:l:), 

where a is the sesquispinor index and fJ is the time-space 
index of an Hermitian basis Ep 00. The constant K on the 
right-hand side can be used to normalize the Hermitian 
bases Ea,Ep. Thisp is the density used to construct invariant 
actions. 

The action of the covariant derivative D on tensors is 
defined in the usual fashion and induces the vector connec
tion. The spin connection is defined by the following action 
of D on spinors: 

Da(~ +?) = aa(~ +?) + ra l:l:'~' + fail:'?" 
(2.2) 

The extension to cospinors and spinors of arbitrary valence 
(polyspinors) can be paralleled exactly to the treatment of 
Ref. 2 and was outlined already in Ref. 5. 

Here, Du is called the torque tensor and Du = 0 is called 
torque-freeness. This is an important assumption, because it 
enables us to express the vector connection C uniquely in 
terms of r, u and derivatives of~: 

JJ a JJ JJ r l:' rH l:' JJ D a (T l:l: = a (T l:l: - cr l:l:' a l: - al: (T l:'l: 

+ C P ayUY l:l: = 0 

~ C Pay = - Tp( (a a all) . U y) 

+ Tp(aP· r a 'Uy ) + Tp(uy ' rHa ·all), 
(2.3 ) 
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where Tp stands for the trace operation over the spinor in
dices. We will make the assumption of torque-freeness 
throughout. 

As another requirement we demand that D annihilates 
the Levi-Civita E spinor, which has the index structure E!l:) 
and is completely defined by E12 ... N = 1. This will make the 
spin connection traceless in the spinor indices: 

The chronometric norm of a tangent vector du is defined 
as 

IIdull: = g{a} du{a} 

. _ 1 E E' IIu(l:)(l:) du(a) 
'-(N_I)!!l:]!};) (a) 

= N det(ua dua
). (2.4) 

This equation serves also to define the N-index totally sym
metric chronometric form g{a}' and its dual is defined ac
cording to 

g{a}. _ 1 E[l:]E[i] IIu(a) . 
. - (N - 1)! (l:)(l:) 

in order to preserve the usual inverse relation 
{a'}p _ ,,8 

g g{a'}y - (J y' 

The Nth root of the norm defines the proper time 

drr= IIduli. 

(2.5) 

(2.6) 

(2.7) 

Future vectors are defined to be the u image of positive defi
nite sesquispinors, thus defining a causal structure of all BN. 
The lack of a quadratic metric for N> 2 makes B N a Finsler 
space. Generalized metrics with N indices have been consid
ered before,6 but to our knowledge nobody ever used the 
determinantal form. For a recent comprehensive work on 
Finsler spaces see Ref. 7. 

The departure from Riemannian geometry leads to sev
eral new features. For example, now the natural orthogona
lity relation (not found in earlier works on Finsler spaces) is 
a relation between N vectors rather than two vectors. The 
raising and lowering of indices with g is modified as well. The 
"dual" D to a (co)vector u is now aN - 1 index covector 
(vector) and of order N - 1 in u: 

(u
D

) {a'} : = uPgp{a'} • 

In Riemannian geometry there exists a unique vector 
connection C, the Levi-Civita connection, defined by the ab
sence of torsion and the metricity condition Dagpy = 0, 
which leads to the familiar Christoffel formula C YaP 

= !gy6(g6a.p + g6p.a - gatJ.6)' 

Surprisingly, the same two requirements provide the hy
perspin geometry as well with a unique vector connection8 

C. The metricity condition 

(2.8) , 
can no longer be solved by cyclic permutation. The hyper
Christoffel C greatly resembles the Levi-Civita connection 
with 2 replaced by N: 

C YaP = (11 N)gy,t{6'} 

X (aagfJA.{6·} + a pga,t{6'} - aA,gaP{6'})' (2.9) 
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The verification of the above formula is by direct substitu
tion in (2.8). 

Torque-freeness (and therefore metricity) and torsion
freeness determine a unique spin connection r. This is easy 
to see, because (2.9) gives us a unique vector connection C 
and solving (2.3) for r determines thus the spin connection 
uniquely, 

r a l: l:' = (lIN)(C c5 apo'\:l:,U6l:i - (aaUP 1;i)o'1 il:')' 
(2.10) 

A lengthy calculation involving the hyper Christoffel for
mula (2.9) and the definition of the chronometric (2.4) 
gives r entirely in terms of 0' and its derivative au: 

r a l: 1;' = ( - liN) [ (a a up ) .0'1 ] l: l:' 

- [15l:1;./N2(N-1)2]Tp[Nif·a6ua 

- N(N - 2)if·aau6 - if'ua ·o'1·aljUp 

- o'1'ua ·if·a6up ] - [lIN(N - 1)2] 

X [(86up) ·o'1·ua·if + ua .0'1' (a6up )·if 

- N(a6ua )·if - Tp(o'1·a6up )ua 'if]l:1;" 
(2.11) 

In this notation matrix multiplication is used to suppress the 
spinor indices. 

B. Hypergravity 

Treating the spin vector 0' as a dynamical variable will 
lead to a field theory called hypergravity.1 In Ref. 4 a one
parameter family of actions is discussed, which reproduces 
in the case N = 2 Einstein's theory of gravity. The spin vec
tor does not appear explicitly in any invariant action, but 
only through the chronometric g. 

The most natural action scalar is obtained by covariant
ly differentiating the Ricci tensor N - 2 times and contract
ing the result with g, 

R · - R ,.,aP{y"} . - ap;(y") [5 • 

Note that for N = 2 R is the usual curvature scalar. A vari
ation of this action leads to the following equations of mo
tion: 

Rap - (lIN)l5a pR = Tap, (2.12) 

where Rap is the mixed Ricci tensor defined by 

R a . - ,.,ay{6"}R p' - [5 P(y;lj"P 

Tap is the conserved energy-momentum tensor defined by 

Tap: = - (lINp)~i:d 6(pL ')/l5o'1i d, 
and L ' is the Lagrangian of the matter fields present. The 
formal similarity to Einstein's equations is very remarkable, 
indeed. 

III. THE HYPERSPIN STRUCTURE OF UN 

In this section we will build a,toy model for a Kaluza
Klein time-space based on the SLN tangent space group us
ing the hyperspin construction. One reason to consider the 
unitary groups U (N,C) = :U N as group manifolds is the fact 
that the dimension works out right. UN has N 2 real dimen
sions, exactly what we need for a manifold built from N
component hyperspinors. Another reason is that a group 
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manifold has a great deal of symmetry, which allows analyt
ic computations. 

A. Construction 

The unitary groups describe homogeneous, isotropic, 
compact spaces. The group structure of UN is 
(U 1 X SUN )/ZN , where ZN denotes the cyclic group of or
der N. The U 1 part is the natural candidate for the time axis, 
and to avoid the cyclicity in the time direction we look spe
cifically at the universal covering group of UN' denoted by 
Cov UN' which is the unique simply connected covering 
group of UN' Cov UN is topologically RXSUN. Because R 
commutes with the spatial part SUN' the dynamics is that of 
a static universe. We call our UN manifolds Einstein uni
verses, because they are generalizations of the special case 
N = 2, which gives the static Einstein universe RXS 3

• 

A third reason for studying UN is that they are cosmolo
gical solutions to the hypergravitational field equations 
(2.12), although the equations were obtained well after this 
study of UN started. The details of this aspect are treated at 
the end of this section. 

One disadvantage ofU N is the fact that all space dimen
sions are treated on the same footing, so that the internal 
dimensions are of the order of the external ones in size. A 
dimensional reduction is necessary to give the model an ac
tual physical meaning. 

To define the unitary group we will use an embedding of 
UN in Cl: l:', ~,~' = 1, ... ,N, which is the complex linear space 
of N X N matrices. As a convenient basis in Cl: l:' we use the 
matrix units E 1:'1:' which are N X N matrices with a one in 
row ~ and column~' and 0 otherwise. We write the general 
element ZECl: l:' as Z = r L' E l:'l: and the unitary element 
UEU N as u = u"i.L , E l:'L' We provide C"i.l:' with a fixed Her
mitian, positive definite metric JLERO', where RO' denotes the 
dual space to RO'. The metric has the index structure Pil: and 
corresponds to a global future timelike vector field, obtained 
through the spin map . 

We use the metric to define unitary operators UEU N via 
the constraint equation 

u~u =p. 

The tangent vectors du at u therefore obey the constraints 
dUH JLU = - UHJL duo (3.1) 
To specify the spin structure we have to give the spin 

map 0'( u,du), which is a local isomorphism from the space 
of sesquispinors RO' to the vector space of tangent vectors. 
We make the spin map satisfy two requirements: 

(1) it has to be Hermitian in its spinor indices, i.e., 
0'( u,du) = uB; 

(2) it has to be left invariant. 
( 1 ) follows from the definition of a spin map, while (2) will 
result in a homogeneous time space. Right invariance would 
also accomplish this purpose. 

We start by defining not 0' but the spin form U: = 0'-1, 
which is the inverse of the spin map: dUN (u) --+ RO'. The spin 
form maps each tangent vector du (u) at a point u into a 
sesquispinor dt/JE.RO'. 

From (3.1) we see that left multiplication of du by uHp, 
denoted by 1 (uHp), produces an anti-Hermitian matrix. To 
obtain the correct index structure we need to raise the lower 
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indices, which can be done by right multiplication with it, 
denoted by r ({t), and an additional left multiplier of {to The 
expression {tuHfJ simplifies further to u- I, which we denote 
by U. Therefore we take the definition of u to be 

u(u): = - il ({tuHfJ) r ({t) = - il (u) r ({t). (3.2) 

The spin vector is obtained by inverting this relation, 

u(u): = U(U)-I = il (u) r (fJ). (3.3) 

The spin map is left invariant, i.e., a group transformation of 
left multiplication by UoEV, 1 uo:u~u' = UoU' leaves the spin 
map unchanged: 

u(u') ·du' = - i(uou) -I(UO du){t = u(u) ·du. 

The spin map is an operator on matrices, and whenever 
it is necessary we will use the complex matrix elements as 
redundant coordinates, which means we use the matrix units 
as the basis for the tangent space. Let ea l: l:' (u) be a basis for 
d V N (u), i.e., a set of anti-Hermitian N X N matrices and let 
tfK!' 0 be the dual basis defined by 

tfK!'oeaoo' =d1a · 

The matrix unit coordinates of a tangent vector v(u) are 
simply given by the matrix elements of ea , 

vaea l: l:' (u) = vl: l:" 

The vl:l:,{tl:'i = :vl:i are then anti-Hermitian in the sense 
vl:i = ijil:. The spin map written out in matrix unit coordi
nates looks like 

ep 0'3i l: (u) = :~O'il: = iU°l:fJio', 
"!B~ l:i() '!..tl' l:i '~l: -o'i e-up u =:u 0 = - IU ofJ . 

(3.4) 

When it is clear from the context we will use the convention 
that the index P stands for a pair of indices 0,0' = 1, ... ,N, 
without inserting the matrix ep 00' explicitly. As manifold 
indices they are in capital Greek letters. The position of the 
primed index shows if it is a covariant or contravariant in
dex. For the following we will work completely with left 
invariant quantities, but for completeness we include also 
the definition for the right invariant spin map, 

u(u) = - ir ({tuH) and u(u) = i r (fJu) 

and in index notation 

Jl '£0 ( ) and '!..tl'n l:i = _ I'£l: n (,luH){}'i. U {}'il: = lu l: fJU i{}' (T - " U .. r-

The physics of the geometry is of course independent of our 
decision to work with left invariant quantities instead of 
right invariant ones. 

To specify the geometry of V N completely, we have to 
calculate the spin connection form r, which fixes the covar
iant derivative D of spinors. We assume r to be torque-free 
and torsion-free, so that r is uniquely determined by the spin 
map through (2.11). r then induces a unique vector connec
tion C and covariant derivative on vectors. 

The spin connection form is a Lie algebra valued covec
tor, mapping d V N into d S N' the Lie algebra of the struc
tural group9 SN: = SL(N,C). To determine r we demand 
the following requirements. . 

( 1) r p l: l:' has to be traceless in its spinor indices, Le., 
rpl:l: = O. 
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(2) r has to be left invariant in order to obtain a homo
geneous space. 

(3) r has to be anti-Hermitian in the sense that 
rpl:l:' = - ({trpHfJ)l:l:" This follows from the require
ment that the connection form of a scalar is zero: 

D(fi,fJr/J) = a(fi,fJr/J) 

~ (ri'ifJi'l: + fJil:,rl:'l: )fi,i~ = 0 

~r = - {trHfJ. • 
Here r has to be a traceless anti-Hermitian spin operator on 
d S N' By our previous construction u is a Hermitian spin 
matrix. The metric fJ relates such spin matrices to spin oper
ators. We therefore make the assumption that r on V N is 
given by 

r = ik(UfJ - (lIN)lTp(ufJ»), (3.5) 

where k is for the moment an arbitrary real constant which 
we will fix later. In index notation this implies 

tfK!'{} r p l: l:' (u) = :r{}'{} l: l:' 

= k (ul: {} 8°'l:' - ( liN) 8l: l:' uO' {} ). 

The spin connection obviously satisfies requirements (1) 
and (2). To prove requirement (3) we apply r to a tangent 
vector du, 

{r p l:l:' 'dUP}H = k{(u du)l: l:' - (lIN)8l:l:' Tp(u dU)}H 

- k{ (fJu du {t h' i 
- (lIN)8i ,iTp(u du)} 

• 
In order to simplify the calculations, we introduce the 

idea of a complexified "spin structure." Following the pre
vious notation we analytically continue UEV N tozEGLN. Let 
ea(u) beabasisfordVN(u). Then 

{uaea IUaER} = dVN(u) 

and 

{~ea I~EC} = d GLN (z). 

Letrp(u): VN-+R bea test function on VN'~C"(U). There 
exists an extension ;P(z): Cl: l:' -+ C that is unique and analyt
ic in a neighborhood ofVN • Then the real derivative 

~rp(u) = d;P(z) Iv. 
dua d~ 

We call the structure obtained by analytic extending the spin 
map off the unitary group a "complex spin structure." We 
simply replace u and u in (3.2) and (3.3) by z and z, respec
tively. We then have 

u(z)IV=u(u). 

The complex spin map is no longer Hermitian but still left 
invariant. 

We also will make use ofthe ordinary derivative opera
tor tfK!' {} a p: = a {}' {} : = a I a z {} {}' which is a derivation with 
respect to the basis of matrix units. Sometimes we also write 
az to indicate that we differentiate with respect to ZECl: l:' . 
Simple examples of using this operator on matrices are 
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aO:or~, = /jo'~,/j~o, 
0' ':.l: ':.l: 0' - , -, :0' 

a oz-~, = -z-v(a oZVv')Zv~, = -zvo'z--~,. 

The last identity is obtained by applying ao'o to Z·z and 
using the Leibniz rule. 

When we perform a differentiation we have to be careful 
when we go from one basis to the other, especially when we 
deal with a moving basis. As an example we treat the ordi
nary differentiation of a vector v, 

aarJ3 = ea 00' (z)ao'oeP~:~ (z)v~~, 

= ea 00' (z)~'~ (z)ao'ov~~, 

+ v~~,ea 00' (z)ao'o~'~ (z). 

The second term arises from the moving basis, as is familiar 
for nonholonomic systems, i.e., ifthe tangent vectors do not 
commute. To calculate this term we make use ofthe fact that 
the group acts freely and transitively on itself. Let A be the 
basis at the identity (id), i.e., ep (id) =:A.p and eP(id) 
= 1 p. The basis at any other point z is then simply obtained 

by left translation of the group, 

epoo'(z) = (Z'Ap)oo" and ef1O'o(z) = (A,P·z)o'o. 

(3.6) 

The second term reduces now to 

v~~,ea 00' (z)ao'oeP~'~ (z) = v~~,ea 00' (z)eP~'o (z)zn'~ 

= -Tr(v·eP·ea·z). 

The vector connection C YaP is uniquely defined by the 
spin connection, if we demand that the spin map is torque
free (2.3). We will first show that the ordinary derivative of 
a is zero, 

'T' (" (a "-.l1») I:>. ."no' A (a I:>.'"n )~'~:t ~p U).· aCT = ea I:>.'~ oe). A' I:>.U o'i~ CT A 

+ ea I:>.I:>.,e,t 00' (al:>.'l:>.eP°'o) 

= Tr(eP'ea ,z·e).) - Tr(eP'ea ,z·e).) 

=0, 

where we used the definition of a (3.4). Because we can 
solve for a)IJ i~ by transvecting with fFA, we showed that 
a a fJI1 is zero. This result is true everywhere in the group, and 
it also implies that the ordinary derivative of g is zero every
where. This does of course not mean that the space is flat. 
Our coordinate system is such that the metric is everywhere 
constant, a condition that is familiar from Cartan's "repere 
mobile." Because all the ordinary derivatives of g are zero, 
the hyper Christoffel formula (2.9) tells us that the symmet
ric part of C is zero. We therefore expect to find an antisym
metric expression for C. 

Using definition (3.4) of the analytically extended spin 
connection and (2.3) we obtain 

A 0 1:>.' A' 0 -aI:>.' -yA' ACp C 0' I:>. A:=ep o,e I:>.e A ay 

kJ! Ar ~' ~ -A'i 
= Z--~'f-Lio' a ~Z-Af-L 

,_~ -A'iJ! Ar~' -ri 
- K,Z-Af-L Z ~f-Li'o' f-L:t~, a r f-L 

= k(/jO I:>. /jA'O,zt.'A - /jO A /j1:>.'o'zA'I:>.)' 

This expression can be brought into a nicer form by rewrit
ing it with the help of (3.6). We find 
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cP
ay (z) = k Tr(A, P [Aa,Ay]) = kd'lay. 

The d'I ay are the structure constants of the group defined by 
[ Aa,Ay] = d'I ayAp. From the assumed form of r it is there
fore not possible to determine the value of the constant k. 
The exact value of k is fixed, however, if we demand that the 
vector connection is also torsion-free, which we wanted to 
happen in the first place. The torsion tensor lO TP ay in an 
anholonomic frame is defined as 

Ap ._Ap Ap JJ_ 
T ay(z). - C ay - C ya - (.- ay - (2k - l)d'lay ' 

It is immediate that the torsion vanishes if and only if k = !. 
The unique torsion-free vector connection is therefore given 
by 

Ap _ JJ 
C ay - !(.~ ay' (3.7) 

This expression is familiar in the differential geometry of Lie 
groups. It is exactly the connection obtained by using the left 
invariant Mauer-Cartan forms of the group, and is also 
called Cartan's (O)-connection. 11 We will introduce the 
Cartan calculus in Sec. IV, but continue for completeness 
with our calculations. 

We note also one identity: The left invariant vector con
nection in the hyperspin geometry and the Levi-Civita con
nection on the unitary troup coincide for all N. For N = 2 
this was expected because the spin structure gives rise to a 
Riemannian geometry. At first it is surprising that it holds 
also true for the Finsler geometries arising from the higher 
values of N, since left invariance does not uniquely deter
mine the connection. However, the torsion-free condition is 
the same for both the hyperspin and the Riemannian geome
tries, and thus fixes the connection. 

For completeness we show here also the spin connection 
r which we can write from (3.5) as 

ra~~' =!(Aa~~' - (l/N)/j~~, Tr(Aa»)' (3.8) 

We see that r has values only in d SUN' because the imagi
nary identity matrix as the U 1 generator gives a zero connec
tion, whereas the SUN generators are already traceless. 

The next thing to do is to compute the left invariant 
curvature. We leave for the moment the constant k undeter
mined, to obtain greater generality. The definition of the 
curvature tensor in a nonholonomic frame is 

(3.9) 

The last step involves the Jacobi identity of the structure 
constants, 

ca).pc\lJ + ca)'lJ~py + ca,ty~lJP = O. (3.10) 

We see that the curvature tensor reduces to a simple form. It 
manifestly has all the standard symmetries of a curvature 
tensor in the absence of a Riemann metric, i.e., is antisymme
tric in rand /j, and satisfies the differential (second) Bianchi 
identity. 

It also satisfies the cyclic first Bianchi identity for all 
values of k, which again is a direct consequence of the Jacobi 
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identity. This is somewhat surprising, because the existence 
of this symmetry is normally only proven in the absence of 
torsion, but we have to keep in mind that we used a special 
torsion arising from a left invariant spin connection. 

For k = 1 or k = 0 we observe that the curvature tensor 
vanishes identically as though the curvature contributions of 
the metric and the torsion exactly cancel and we call the 
corresponding connections "flat." The vector connections 
give rise to torsion of equal magnitude but opposite sign. 
They correspond to Cartan's ( + ) and ( - ) connections 
on arbitrary simple and semisimple groups. II It is interesting 
to note that torsion can arise even with zero spin connection 
(k = 0). 

The Ricci tensor is found by contracting the curvature 
tensor 

RYaYI1 =RatJ =k(k-l)cY"'aC"r/J· (3.11) 

The Ricci tensor is symmetric for all values of k. This expres
sion is proportional to the Killing metric of the group, 10 

which is bi-invariant and negative definite, because we are 
dealing with a semisimple group (i.e., SUN)' 

We have now determined the geometry ofU N complete
ly. We note that the time dimension does not contribute to 
the curvature, because all structure constants involving the 
unit matrix are zero. This was to be expected, because the 
manifold is static. 

Looking at hypergravity we can state the following 
Lemma. 

Lemma: The unitary groups form a one-parameter fam
ily of solutions for the hypergravity equations (2.12). For 
N> 2 they obey the empty space equations. 

Proot This is a simple consequence of the fact that the 
Ricci tensor is covariantly constant. 

DyRal1 = ayRatJ - C'" yaR"'11 - C'" r/JRa ... = O. 

The vanishing of the two connection terms follows because 
the Ricci tensor is proportional to the Killing metric of the 
group and the trace of the structure constants of UN is zero. 
Rand R a 11 are zero because they involve covariant deriva
tives of Ricci, and (2.12) is trivially satisfied in the absence 
of matter. • 

Here, U2 is a solution only in the presence of matter and 
with the inclusion of a cosmological term A, which is linked 
to the radius p of the universe and the mean matter density. 
This was Einstein's result l2 which led him to introduce the 
infamous A term. 

B. Application: The geometry of U2 as example 

In order to make our calculations more explicit we ap
ply our formulas to Cov U2, which is the time space RXS 3

• 

In this case our hyperspinors are the ordinary S~ Weyl 
spinors and the geometry they give rise to is Riemannian. 
Only for this case can we form the completely contracted 
Riemann curvature scalar R because it requires the existence 
of a quadratic metric. For the following we assume zero tor
sion (k = !) and without loss of generality we specialize the 
metric p to be the unit matrix, so that l)~i = {t~i. As a con
venient basis for d U2 (id) we choose the anti-Hermitian ma
trices 
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Due to our choice the dual basis 1 a has the same matrix 
representation, only i is replaced by - i. The Aa obey the 
commutation relation 

[Aj,Aj] =/i~ijAk' withi,j,k= 1 •... ,3, 

where ~ ij is the three-dimensional Levi-Civita symbol with 
~12 = 1. From (3.4) and (3.6) we have 

o"i~ (u) = iPin1 an~ =:,1 ai~' 

The cometric g«I1 is defined by 

g«I1 = c-n~0o" ~i oil no 

= (l)~il)no _ l)~Ol)Oi)( -1 ai~ll1on) 

= Tr(l a·1 11 ) - Tr(l a)tr(l l1 ). 

This leads todiag (g«I1) = (1, - 1, - 1, - 1) = diag(gatJ). 
The curvature tensor according to (3.9) is 

R al1yt; =: R ~k/ = !~jm€mk/ = !(l)jkl)jj - l)j/l)jk)' 

where we used the convention a,p,r,l) = 0, ... ,3 and 
i,j,k,l = 1, ... ,3. The equality has to be understood to mean 
that whenever an index is zero the whole expression is zero. 
The Ricci tensor is obtained by an approprite contraction 

R{3{;: = RjI = l)jI' 
The curvature scalar is then obtained by contracting the 
Ricci tensor with the cometric, 

R = gI16R{3{; = - l)j/l) j/ = 3. 

The curvature scalar is a kind of averaged curvature. Be
cause the time dimension does not contribute to the curva
ture the result shows that each spatial dimension contributes 
- 1 on the average to the curvature. 

IV. EXTERIOR CALCULUS WITH HYPERSPINORS 

Cartan's calculus of differential forms compactifies the 
tensorial calculus of pseudo-Riemannian manifolds and 
renders symmetries more obvious. In this section we genera
lize the formalism to include Bergmann manifolds as well. 
The notation of this section is as follows: small Greek letters 
stand for the manifold index,p = 1, ... ,N 2

• TheindexAA isa 
pair of spinor n-ad indices (n = N2), where A = 1, ... ,N. 
Small Latin indices stand for the vector n-ad indices. AA can 
also be used as a composite vector index and vice versa and 
we will switch freely between both notations. 

The basis one forms are 0"": = 0"" p dxl' together with 
their duals (Ta: = (Tapap' They obey as usual the inverse rela
tions 

up ad\ = l)ab 

and 

Up a(Tva = l)vp. 

Next we introduce the exterior derivative, which is defined 
as 

d: = ap Adxl' 
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and acts by exterior multiplication. The chronometric is de
fined as 

gaP"'Y = 7Jab"'niY'a"'i'r"y, 

where 7Jab"'n is the constant frame chronometric and has 
determinantal form, 

7Jab"'n = [lI(N - l)!]EAB'··NEAB···,y· 

The inverse chronometric is defined as 
7Jab"' n = [lI(N _ 1 )!]~B"'N~B"',y 

and obeys 
7J

sb
"'

n
7Jb'''nt = {;St. 

Cartan's structure equations in the vector notation are not 
altered. They are 

diY' + w a
b I\cI' = r a = !rabecl' I\cr, ( 4.1a) 

( 4.1b) 

Here r a is the torsion two-form and R a b is the curvature 
two-form. They are related in the usual way to the torsion 
and curvature tensor. The wa 

b are called "affine spin connec
tion" in the usual literature. This name is now misleading, 
because it has nothing to do with the spin substructure we 
assume here, and is therefore replaced by "vector connection 
one-forms." Taking the exterior derivative of (4.1a) gives a 
consistency condition 

dr a + w a
b 1\ r b = R ab I\cI', 

while differentiating (4.1 b) gives the Bianchi identities 

dRab + wac I\R c
b -Racl\wc

b =0. 

Imposing two conditions on the structure equation will lead 
to a uniquely defined vector connection,8 analogous to the 
Levi-Civita connection for Riemannian manifolds. These 
two conditions are the following. 

(1) Metricity: Dgap ... '1 = o. 
This is equivalent to wa 

a = O. ( 4.2) 

Proof: d7Jab"'n = 0 = d(o"aaPb ... q'1n )gaP"''1 = 7Jb"'ns 

X wa + ... + 7Jab"'sWn' Transvecting with 7Jab"' n gives the 
desired result. • 

(2) Zero torsion: r a = o. 
This means according to (4.1), 

diY'= -wabl\cI'= -Wacbcrl\cI', 

where wa cb are the coefficients of the connetion one-form in 
the n-ad basis. Assuming a complete basis of one-forms, the 
last equation can be rewritten in terms of the expansion coef
ficients Carbc) which are antisymmetric in band c, 

diY' = !ca bccl' 1\ cr. (4.3) 

For the following lemma it will be useful to define the con
traction tensor h ,cs'd as 

(4.4) 

Lemma: The unique metric and torsion-free hyper
Christoffel connection is determined by 

Wab =!(c'ab -c" achscs'b -cs'behscs'a)' 

Proof: From (4.3) it is found that 

(4.5) 

(4.6) 

An easy calculation shows that (4.5) satisfies (4.6) and 

984 J. Math. Phys., Vol. 29, No.4, April 1988 

( 4.2). Because the solution is necessarily unique, this proves 
the lemma. • 

We also note that for N = 2, h is a product of two Rie
mannian metrics, h sc s' b = 7Jsc7J s' b' and (4.5) reduces to the 
standard expression of Riemannian geometry 

Wcab = !(Ccab - Cbac - c abe ), 

where Ccab : = 7Jse c'ab' 

As in the Riemannian case the wa be are related to the 
manifold Christoffel symbols CY,wl vial3 

w a
be = -iY'yifc(apqYb+cY,wlo'\). 

We now extend the Cartan calculus to include SLN hy
perspinors as well. We call it the hyper-Cartan-Penrose cal
culus, because to our knowledge Penrose was the first to give 
a detailed exposition of this subject for N = 2, although a 
remark of Nester in Ref. 14 shows that Trautmann was well 
aware of the methods, too. 

We will rewrite the structure equations with explicit 
spinor indices. The basis one forms are ijAA = :U p AA dxl' to
gether with their duals q AA = if AA a p' They obey, of course, 

U AAq p . _ fjA fjA. 
P BB- B B 

and 
p.-AA_f:U 

q AAqy -u Y' 

Indeed, the up AA are nothing but the components of the spin 
form, as the notational similarity already suggests. Cartan's 
n-ad has acquired a real physical meaning, because the n-ad 
is q, which is the basic variable in the hyperspin theory. 

For simplicity we set the torsion to be zero for the fol
lowing. The structure equations become now 

and 

dijAA = ~A BB 1\ jjBB = ( - ~ BfjA B - iijA BfjA B) 1\ jjBB 

(4.7) 

R AABB = d~ABB + ~ACC I\WCC
BB 

_RA d. +R-A.£A 
- BU B BU B' 

where R A B and ~ B are the spin curvature two-form and the 
spin-connection one-form, respectively. They take values in 
d SLN , the Lie algebra of the structural group and are there
fore traceless. The relation to the vector quantities is as fol
lows: 

N 'R A _RAA N ... .A .. .AA 
B - AB' W B = W AB' 

The contraction tensor h (4.4) can be written out explicitly 
with spinor indices due to the special algebraic structure of 
71. We find 
h SSCC .. 

ITBB 

= [lI(N - 1)2](fjSTfjCB fj·\·fjcB + fjSBfjC TfjSBfjCt 
- fjs Tfjc B fjs B fjc t - fjs B fjc TfjS tfjc B ) . 

The unique torsion-free hyperspin connection of (4.5) in 
spinor coordinates has the form 

~5AABB = !~5AABB + [1I2(N - 1)2](~CAABCfjSB 
cs £s CC £S £5 

+ C AABCu B - C AACCu BU B 

.-sc £5 cs £S 
+ C· BBACu A + C BBACU A 

cc £S £s £8 ) 
- C BBCCU A U A U A . (4.8) 
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The spin connection coefficients r are the expansion coeffi
cients of the spin connection one-form, i.e., 

rMBcaM = wBc · (4.9) 

Putting this into (4.7) gives 

daM = (rccABUSA + f ccAB(jAB) I\ucc• (4.10) 

The r's are again uniquely defined by (4.10), and by using 
(4.8) and (4.9) one can express them in terms of the expan
sion coefficients ~MBB' 

r AA
s
B = (1/2N)~MSB - [1I2N(N _1)2] 

X {(N - 1 )cTT MiT~S B + CTTABiT~SA 
- NcSTAATB - cSTABTA - CTTTBAT~SA}' 

(4.11) 

Because the manifold we look upon is a group manifold 
it is possible to use the Mauer-Cartan equations lO for invar
iant differential forms to compute the vector connection and 
vector curvature in the torsion-free case. By combining this 
method with the hyper Penrose-Cartan calculus we have a 
powerful tool to determine even the spin structure out of the 
knowledge of the structure constants of UN alone. 

Let el, ... ,eN be a basis of dUN' CTj the corresponding left 
invariant vector fields on UN' and cI, ... ,&N the left invariant 
one-forms determined by d(uj ) = ~~. Then 

diT = - !C~kUj 1\ uk, 
where C~k are the structural constants given by 

[ejOej ] = c\jek. 

This means that the coefficients of the connection one-form 
are given by 

iIi 
W jk = '1cik' 

which is exactly the connection C obtained in (3.7). The 
curvature two-form ROb is readily obtained using the Cartan 
calculus and applying the Jacobi identity, 

R 0 1 0k 

bjs = '1C bkC is' 
The Ricci tensor is obtained by contracting over the a 

andjindex, 
_ i k 

Rob -lc ok C ib' 

These are exactly the results obtained in Sec. III [( 3.8) and 
(3.10) ]. The generators ofU N can be obtained in a standard 
way by employing Weyl's matrix units E/ B = ~A I~I'B' They 
satisfy the commutation relations 

k k I' K J' J' K I' 
[Ei,E}] =c ijEk' C ij=~ J~ I~ K' -~ I~ J~ K" 

(4.12) 

The matrix units are also the generators of GLN. The N 2 

generators of UN can be arbitrarily labeled by 

ell' = iE11' , 1=1', 

eil' = i(EJI' + EI'J)' I>I', 

eil' =EJI' -El'jO I<I', 

where the indices on ell' no longer transform simply under 
SLN. To apply the exterior calculus ofhyperspinors we have 
to replace each vector index by a pair of spinor indices on the 
structure constants, which we accomplish by using matrix 
unit coordinates and applying the spin metric J.L. In the nota
tion of ( 4.12) we define 

cc -C'C c A' B' 
C AABB: =J.L J.LAA'J.LBB'C C' A B' 
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We observe that c i ij = 0 for UN' This results in a great sim
plification of (4.8), which becomes 

cc 1 CC 
W AABB = 2C MBB' 

and (4.11), which tum into 

r,cB = aMtr AA cB = (1I2N)ccSAASB(jAAt . 

This is exactly the same expression as (3.8), which was ob
tained in a more pedestrian way. 

As in the case of Riemannian geometry we see that the 
exterior calculus, extended to our Finsler geometry, is not 
only formally elegant but can also be used efficiently for cal
culations. 

v. CONCLUSIONS 

We have shown that the unitary groups UN possess a 
global hyperspin structure in addition to their Riemannian 
structure induced by the Killing metric, turning them into 
Bergmann manifolds of dimension N 2

• The spin map on UN 
is proportional to the left (or right) invariant differential 
form on the group. The resulting Bergmann manifolds are 
static, homogeneous, isotropic, and compact spaces of con
stant curvature. They also tum out to be solutions to the 
hypergravity field equations. 

We have generalized the Cartan-Penrose exterior cal
culus from spinors to hyperspinors. This has enabled us to 
deduce the hyperspin structure from the Maurer-Cartan 
equations, which simplify the calculations greatly. The 
hyper Cartan-Penrose method with its conceptual simpli
city is an important tool, not only for group manifolds, but 
for the study of Bergmann manifolds in general. 

One of the main open problems of using UN or any other 
Bergmann manifold in physics is to find a good dimensional 
reduction procedure to separate internal from external 
space. In particular, a BN cannot be written as a product of 
two Bergmann manifolds, due to the different behavior of 
spin and vector dimensions. This problem is closely connect
ed to the problem of introducing two different length scales 
on the manifold. We suggest deforming some of the genera
tors of UN which generate the internal space by multiplying 
them by a constant scale factor and holding the undeformed 
spin map fixed. This will result in a change of the chronome
tric. The method of group contractions also could be helpful 
in this context. 

The dimensional constraints on Bergmann manifolds 
could be relaxed by allowing CT to be a singular map,15 such 
that not all Hermitian matrices correspond to a time space 
vector. A similar idea of dimensional reduction was already 
considered by Einstein and Mayerl6 in their theory of semi
vectors. 

Another possibility is that a strong suitable torsion in 
the internal dimensions could be responsible for dimensional 
reduction. The idea is that a torsion constrains motions onto 
a four-dimensional hypersurface. It would require very high 
energies to go off the shell and thus creating for us the illu
sion that we live in a four-dimensional world. The idea that 
torsion is responsible for the dimensional reduction has to 
our knowledge not yet been explored in the literature. 

The UN model, though not yet physical, might have 
some implications for earlier, more symmetric phases of the 
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universe. A study of the energy spectrum of the simplest 
wave equation on UN' which is the neutrino equation, will be 
presented in a forthcoming paper. 17 
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This paper on the relativistic Boltzmann equation deals with the derivation of moment 
equations for a simple gas. It is shown that for a neutrino gas and for a hard-sphere model in 
the ultrarelativistic case. the moment equations at each order contain only a finite number of 
moments of the distribution function. 

I. INTRODUCTION 

It is clear that in relativistic fluid dynamics. equilibrium 
distributions have a very limited applicability. In general it is 
necessary to solve the Boltzmann equation. Fortunately. in 
most problems in astrophysics and cosmology we are only 
interested in small deviations from equilibrium. In this case a 
complete knowledge of the distribution function is unneces
sary. but one thinks that it is sufficient to know the first few 
moments of I (x.p) in order to have a clear description of 
phenomena. Of course. this requires the derivation of trans
port equations for these quantities and it is reasonable that 
they must be related in some sense to the Boltzmann equa
tion. A well-known method developed in this direction is due 
to Grad. I in the nonrelativistic case. Relativistic generaliza
tions have been given by Chemikov.2 MarIe.3 Kranys.4 An
derson.5 Israel and Stewart.6 and many others. The method 
consists of trying to find a solution of the relativistic Boltz
mann equation as an expansion in a series. Such an expan
sion leads to an infinite set of coupled equations for all mo
ments. 

It is the aim ofthis paper to show that. for some species 
of particles. the moment equations contain at each order a 
finite number of moments of the distribution function. We 
believe that this fact can be relevant for the kinetic founda
tions of relativistic irreversible thermodynamics. which has 
a close analogy with the moment equations. 

The plan of the paper is as follows. In Sec. II we intro
duce the relativistic Boltzmann equation and the moment 
equations. and we describe briefly the relativistic version of 
the Grad method. In Sec. III we derive explicitly the mo
ment equations for a neutrino gas and for the hard-sphere 
model in the ultrarelativistic limit. In Sec. IV we discuss the 
connection of our equations with the Grad method and the 
theory of extended thermodynamics. 

II. THE RELATIVISTIC BOLTZMANN EQUATION 

We consider a simple relativistic gas in Minkowski 
space described by the relativistic Boltzmann equation 

pa aal= ~ f (/·f.1 -III) W(P'PIIP·.p·dOJIOJ.OJ. p 

(1) 

where. as usual. we use the abbreviations J,11.f. .f.1 for 
I (x.p),f (X,PI),f (x.p. ),f(X,P.I ). x = xa = (ct,xI,x2,x3) 
being the space-time coordinates of a particle (c stands for 
the speed oflight and t is the time coordinate) and P = pa its 

four-momentum. We indicate the volume element with OJ. 
i.e .• OJ = dpl dr dp3/pO and W is the transition rate. Greek 
indices run from 0 to 3. and the signature of space-time is 
taken such that~ = diag( - 1.1.1.1). Here 

W(P,PIIP.P.I) = US~(4)(p + PI - p. - P.I)' (2) 

with a differential cross section u depending only on s. where 

(3) 

pa:=pa+pf. (4) 

and ~(4) is the four-dimensional Dirac delta function. which 
describes the energy-momentum conservation law during 
the collisions. 

From Eq. (1) one can obtain a moment equation rela
tive to a given polynomial g = g(pa) by integration. i.e .• 

aa f paglOJ= ~ f III (g. -g)WOJ4• (5) 

where OJ4 = OJOJIOJ.OJ. I . 
The Grad method is based on this equation. Let 

I(x.p) = cI>(x.p)[ 1 + l,6(x.p) 1. (6) 

where cI>(x.p) is a local Juttner function. Since one requires 
that the five parameters of the function cI> correspond to the 
hydrodynamic four-velocity U a• to the particle density n. 
and to the temperature T, then the deviation l,6 must verify 
the following conditions: 

f cl>tPPPOJ = 0 (p = 0.1.2.3). 

f cl>l,6(paUa )2OJ = O. 

(7) 

(8) 

The crucial point of the method is to assume that l,6 can be 
expanded as 

(9) 

where X,xI'XI'".... are functions of x. T 

= paUa/KB T. KB being the Boltzmann constant. Also. 
one assumes that l,6 is small with respect to cI>. such that it is 
possible to use the linear equation 

aa f paglOJ = ~ f cl>cI>l (1 + l,6 + tPI )(g. - g) WOJ4 

( 10) 

instead of Eq. (5). 
In the 14-moment approximation one assumes that the 

particle four-flow N a and the energy-momentum tensor TaP 

are the only independent thermodynamical variables. Since 
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the conservation laws give five equations, it is necessary to 
derive the other nine equations. In the first approximation 
one assumes that tP is given by Eq. (9) (omitting the terms 
not explicitly written) and, moreover, that X is quadratic in 
T,X" is linearin T, andX"v depends only onx. By taking into 
account Eqs. (7) and (8) it is possible to obtain tP as a func
tion of Na, TafJ, and pa (for example, see de Groot et aU). 
One finds that X is proportional to the viscous pressure, XI' 
to the heat flow, and X"v to the traceless viscous pressure 
tensor. Therefore, by introducing the explicit expansion of 
f = <1>(1 + tP) into Eq. (10) for g = pppY (P,y = 0,1,2,3), 
one can obtain the nine additional equations. We remark 
that there exist procedures other than this one, but all are 
based on the expansion (9). 

III. MOMENT EQUATIONS FOR NEUTRINO AND HARD· 
SPHERE GASES 

Since 0' depends only on s, it is possible to perform the 
integration easily over P':t and partially over p':. This gives 

aa f pagfw = f fftsO'8 (s + 2PaP': )g.wwtw. 

-1T f fftO'~? - 4sm2(?gwtw, (11) 

where m indicates the particle rest mass. 
Successive integrations, which do not destroy the simple 

form of Eq. (11), can be obtained easily by specifying the 
function g. Linear and constant functions give conservation 
laws, which do not contain contributions of the collisional 
operator. Quadratic functions can be obtained by choosing 

g = papp (a,,8 = 0,1,2,3). 

In this case it is easy to prove that Eq. (11) becomes 

aaSafJY = (1T/3)c f fftO'R {2(m2c2 - 2p1tpp, )P'!pY 

+ 2(pltp" - 2m2c2)pppY 

+ [(pltp,,)2 _ m4c4 ]gPY}WWl' (12) 

where we have introduced the following definitions: 

saPy: = c f fpapppYw, (13) 

R: = ~1 - 4m2c2/s. (14) 

We remark that, until now, we have not put forward any 
hypothesis about the functionf except the usual conditions 
on the integrability of the distribution function. 

Now we consider two different species of particles. The 
first is a neutrino gas. We have 

O'=!(G/1Tdf)2S , (15) 

where G is the weak interaction constant and Ii is the Planck 
constant. Since in this case one can take m = 0, we have 
R = 1, and the integral on the right-hand side of Eq. (12) 
can be separated with respect to the integration because the 
integrand is ffl multiplied by a polynomial of pa and pf. 
Therefore it is easy to see that Eq. (12) becomes 
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aasaPy= (1T/3)c(G/1Tdf)2( -S,v.vS,v.vgPY 

+ 4S,v.pS~ - 2T,v.Q~), 

where 

Q afJy8: = c f fpapppYp8w. 

(16) 

(17) 

The second example is the hard-sphere model. In this 
case 0' is a constant and the following inequalities hold: 

(18) 

ByapproximatingR = 1 inEq. (12) (which corresponds to 
the ultrarelativistic limit), we obtain the equation 

aaSafJY = (1T/3)(O'/c) 

X {2m2c2NPNY - 4pJPTY + 2NI-'SPY p, p, 

- 4m2c2ATPY + [T,v.T,v. - m4c4A 2]gPY}, 
(19) 

where 

A: = c f fw. (20) 

Notice that (i) if/is a local Jiittner function, then the right
hand side of Eq. (19) vanishes identically; (ii) it is easy to 
obtain, by using inequalities (18), an exact upper bound for 
the error introduced by the approximation R = 1; and (iii) 
Eq. (12) and Eq. (19) are equivalent when m = 0. 

Introducing the reciprocal effective temperature 
z = mc2/KB T, it is reasonable to think that in the ultrarela
tivistic case (i.e., when z is small enough), the approximate 
equation (19) is a good approximation. In any case, one can 
verify this in a given specific problem by using (ii). 

Since Eq. ( 19) contains a few terms, such as m22 N PN r, 
of the same order of error, we delete these terms for consis
tency. After this reduction we obtain 

aaSafJr = (1T/3)(O'/c) 

X { - 4Ti'PT~ + 2Nl-'s~r + TiMT IJAgPr}. (21) 

Now the right-hand side of the above equation vanishes 
identically if f is a local ultrarelativistic Juttner junction, 
that is, if we use the ultrarelativistic approximation for 
TafJ and saPr. 

These results for a neutrino gas, as for the hard-sphere 
model, do not depend on the specific order of the equation, 
i.e., the third-order moment equation, but they hold in gen
eral. To prove this, we examine Eq. (11 ) . Since 
~S2 - 4sm2c2 = sR, in the case R == 1, the second integral on 
the right-hand side of Eq. (11) is separable. We show also 
that the first integral is separable in the case R == 1. In fact, if 

(22) 

with nEN, and ka an arbitrary constant vector, then it is 
possible to prove that 
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f 8 (s + 2PaP':) (pi! kfJ rw• 

= (J.-)n 1T"R [rJ _1_( n ) 
2 h=o2h+12h 

X(paka)n-2h[skaka+ (paka)2]hR2h, (23) 

where [nI2] is the largest integer not exceeding n12. When 
R = 1 the right side ofEq. (23) reduces to a polynomial, and 
therefore the first integral is also separable. We have chosen 
g of the kind (22) because it is a scalar, and this simplifies the 
calculation of integral (23). Moreover, we prove in the Ap
pendix that any polynomial can be obtained by linear combi
nation of polynomials of the kind (22). 

IV. CONCLUSIONS 

In this paper we have presented explicit simple forms of 
the moment equations. It is apparent that since they never 
give a closed system, it is still necessary to use some approxi
mation procedure in order to obtain a consistent closed sys
tem. We limit our discussion to the case where N a and TaP 
are the only independent variables. If we use the Grad meth
od described in Sec. II and linearize the right-hand side of 
Eq. (16), then we recover the known equations for a neu
trino gas in the 14-moment approximation. Whereas if we 
use the approximate distribution function [Eqs. (6) and 
(9) ], then, as one can easily imagine, Eq. (16) before linear
ization gives, together with the conservation laws, a different 
closed set of nonlinear equations. However, the applicability 
of this new set of equations is still limited by the hypothesis 
(9). 

A different approach is offered by extended thermody
namics,s which provides an algorithm for determining the 
higher moments in terms of Na and TaP. We note that now 
we have the advantage of knowing the explicit expression of 
the dissipative terms, which in general is not completely de
termined by extended thermodynamics.8 

We believe that more general applications of the finite 
forms of moment equations are feasible when one assumes 
special forms, with adjustable parameters, of the distribution 
function in order to describe particular phenomena as, for 
example, in the case of the Mott-Smith method9 for the study 
of the structure of shock waves. 

Of course, we can repeat analogous considerations in 
the case of the hard-sphere model in the ultrarelativistic lim
it. These topics are currently under investigation. 
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APPENDIX 

We consider the set of all monomials in P real variables 
XI,x2"",xp' with unit coefficients and degree n, which is the 
set 

B " - {Xi _i •• ·xk • (,' J' k)eNP P - 1 .... ·2 p' , , ... , 

and i + j + ... + k = n}. (Al) 

It is well-known that B; have d elements, with 

d=[(n+p-l)(n+p-2)·"p]ln!. (A2) 

We order B; and we denote with bh (1 <h <d) a generic 
element of B ;. Let V; be the linear real spaces generated by 
B; (including the zero element), with the usual operations 
between the polynomials. It is evident that B; is a basis for 
V; and d is its dimension. Letting (c,x): = ~!.= I cmxm' 
where c = (C I,C2, ... ,cp )ERP

, we prove the following. 
Theorem 1: There exist c(l),c(2), ... c(d)eRP such that 

ah: = (C(h),X)" (h = 1,2, ... ,d) (A3) 

are linearly independent; that is, the set (ah ) is a basis for 
V;. By using Leibniz's formula, we have 

< 
n' .. k 

c,x)n = L . (C IX I )'(C:zX2)J··· (c x ) 
11J1" 'k! P P 

d n' = L . (C I )i(C2)J .. '(cp)kbh 
h= I 11J1"'k! 

d n' 
= L . bh (c)bh , 

h=111J1"·k! 

where we have indicated with bh (c) the function from RP to 
R associated to bh and evaluated at the point c. 

To prove the theorem, it is sufficient to show that the 
determinant 

bl (co» b
2
(c(l) b

d 
(c(l) 

b
d 

(C(2» 

is nonsingular. One obtains this easily by reductio ad absur

dum and using the Laplace theorem to evaluate the determi
nant. 
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A system of N identical bosons is studied, each having mass m, which interact in R3 via 
attractive central pair potentials and obey nonrelativistic quantum mechanics. A lower energy 
bound is found by the equivalent two-body method. An upper energy bound established 
previously on the basis of field theory is now derived by variational methods within 
conventional quantum mechanics. In the case ofthe linear potential Vij = rlri - rj 1 the 
bounds imply that the ground-state energy is given by g> = C(N) (N - 1)(/z2lm)1/3(rN I 
2)213, where 2.3381 < C(N) < 2.34352. The energy is therefore determined in this case with 
error < 0.116% for all N>2. Similar results are given for other power-law potentials. 

I. INTRODUCTION 

We consider a system of N identical bosons which inter
act in R3 via attractive central pair potentials and obey non
relativistic quantum mechanics. The Hamiltonian for the N
particle system (with the kinetic energy of the center of mass 
removed) is given explicitly by 

I N 1 (N )2 N (r .. ) 
H=- L P~--- L Pi + L rf ...!L, (1.1) 

2m i=1 2Nm i=1 ij=1 a 

where m is the mass of a particle, rij = Iri - rj 1 is a pair 
distance,f( r) is the potential shape, a is a length parameter, 
and r is the coupling parameter. 

The present paper is a continuation of the work on com
plementary energy bounds presented in Ref. 1. We make a 
minor change by setting up the problem in R3 rather than in 
R, but we still use the equivalent two-body model both to 
formulate the problem and also to provide an energy lower 
bound. The main new result is a derivation (shown in Sec. 
III) of a general variational upper bound that is identical to 
the bound derived from field theory and used in Ref. I. The 

I 

11$ 11$ 11$ * * 
11..]2 - 11..]2 0 0 * 

B= 11../6 11../6 - 2/../6 0 * 
* * * * * 
* * * * * 

1I~N(N -1) 1I~N(N - I) * * * 

as a special case, satisfy two important identities, namely, 
N N 

L r~= LP~ (2.1 ) 
i=1 i=1 

and 
N N 

L Iri - rj 12 = N L p~ . (2.2) 
ij=1 i=2 
i<j 

The column vectors II and P of the new and old momenta 

* 
* 
* 
* 
* 
* 

mathematical uncertainties about this upper bound are 
therefore removed completely. As an illustration, we study 
the linear potential VCr) = rlrl in Sec. IV and provide a 
simple formula which determines the N-particle energy with 
an error ofless than 0.116% for all N> 2. In Sec. V we consid
er more general power-law potentials, with shapes given by 
fer) = sgn(v)r". 

II. THE EQUIVALENT TWO-PARTICLE MODEL 

We present here a very brief summary of the formula
tion given in more detail in Refs. I and 2 and the literature 
quoted therein. It is important to be very careful about rela
tive coordinates and also about the limit N ..... 00 • 

We suppose that new coordinates are defined by 
P = B R, where P = [Pi] and R = [ri ] are column vectors 
of the new and old coordinates, PI = (11$)1:;'= I r i is the 

center-of-mass coordinate, P2 = (l/..]2)(r l - r2 ) is a pair 
distance, and B is a real N XN orthogonal matrix. Such or
thogonal coordinates, which include the generalized Jacobi 
coordinates given by 

11$ 

0 

0 

* 
* 

I-N I~N(N -I) 

are related by II = [B -I] T P = B P. Meanwhile, the trans
lation-invariant Hamiltonian (1.1) can be rewritten in the 
symmetrical form 

H ~ { 1 2 'I'(rij)} =.~ -2l1.T (Pi -Pj) +r" - . 
IJ=I Hm a 

(2.3) 

i<i 

If we now compute expectations with respect to boson func
tions, we find from Eq. (2.3) that (H) = (K), where the 
reduced two-body Hamiltonian K is given by 
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K= (N -l)(~ m + ~ rf("~2 )). (2.4) 

If'll represents a translation-invariant boson wave func
tion then the lowest energy ~ of the N-particle system is 
given by the minimum Rayleigh quotient 

~ = inf [ ('II,JY'II)/ ('II, 'II)] . (2.5) 
1/1 

It is now convenient to define the dimensionless energy and 
coupling parameters E and v by 

E = m~a2/[fil(N - 1)], v = mra2N /2fil. (2.6) 

Equation (2.5) may then be further simplified and written in 
the form 

(2.7) 

where the Hamiltonian H is defined in terms of the dimen

sionless variable r = (rt - r 2 )/a = ,,2p2/a and the Lapla
cian !l. with respect to r by 

D= -!l.+vf(r), (2.8) 

and 'II is a translation-invariant N-boson wave function. We 
call the function F N (v) a trajectory function and the graph 
(v,F N (v»), v> 0, an energy trajectory for the N-boson prob
lem. Since the permutation-symmetry constraint increases 
monotonically with N it is clear that, for each fixed v, the 
value of FN(v) increases monotonically with N, that is, 
FN(v»FM(v), N>M; consequently we have 

F2 (v) <FN (v)<F", (v) (2.9) 

provided the limit N -+ 00 exists. Keeping v constant means, 
of course, that the original coupling parameter r must tend 
to zero as N increases. Boson systems with attractive pair 
potentials and a fixed coupling parameter collapse in the 
sense that If / N increases without bound as N increases. 

We now look at variational estimates of the energy. Ifwe 
could find a translation-invariant boson function with the 
single-product form 

'II (P2,p3, ... ,pN ) = ,p(P2)g(P3,· .. ,pN), (2.10) 

then, by substituting in the rhs ofEq. (2.7), we see that an 
upper bound to F N (v) is given by the Rayleigh quotient 

F",(v) = (,p,D,p)/(,p,,p) . (2.11) 

Expression (2.11 ) is exactly what we would use if we were to 
estimate variationally the bottom of the spectrum of H, a 
one-particle (or reduced two-particle) Hamiltonian. The 
catch in this is that (2.10) is a strong constraint for boson 
functions and it has in fact been proved3 that the single
product form is achieved if and only if'll is a Gaussian func
tion. However, in this case N disappears from the calculation 
and the result provides an upper trajectory bound valid for 
all N: After minimization with respect to scale, we call this 
Fg (v). We can now summarize the results by writing 

(2.12) 

where Fg (v) is given by using ,per) = e - ar in (2.11) and 
minimizing the resulting expression with respect to a. The 
corresponding energy bounds are recovered from the var-
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ious trajectory functions by using the following general 
expression: 

If = (fil/ma2)(N - l)F(mra2N /2fil). (2.13 ) 

The inequalities (2.12) are important because they reduce 
the N-body energy problem, approximately, to a study of the 
single-particle operator H. It is now clear that the inequal
ities in (2.12) all collapse into equalities if and only if the 
potential has the harmonic oscillator shape fer) = r; the 
common energy value in this case is E = 3vt/2. In general, 
one has a family of nonintersecting trajectories labeled by N 
and bounded below by F2 (v) and above by F", (v). An illus
tration of the family of trajectories for the exactly soluble 
delta potential (in one dimension) may be found in Ref. 1. 

For a pure power-law potential shapef(r) given by 

I(r) = sgn(v)r", v> - 1, (2.14) 

simple scaling arguments show that the corresponding ener
gy trajectories have the form 

(2.15 ) 

Therefore, for each fixed power v, the corresponding energy 
trajectories are all scaled images of anyone of them, say, 
N=2. 

III. A VARIATIONAL UPPER ENERGY BOUND 

We now establish the following variational upper bound 
toFN(v): 

FN(v)<F.p (v) = J.. r (V~(S»)2 d 3s 
8 JR' ~(s) 

+ v f f ~(s)/(ls - s'j)~(S')d3Sd3S', 
R· 

(3.1) 

where the density function ~(s) satisfies the normalization 
condition 

r ~(s) d 3s = 1. 
JR' 

Our main purpose in this section is to derive (3.1) from 
quantum mechanics and also to explain why it is that trans
lation-invariant Gaussian wave functions used in the Ray
leigh quotient ('II, H'II) / ('II, 'II) and Gaussian densities used 
in (3.1) lead to precisely the same upper trajectory bound 
Fg (v). 

We find an upper estimate to the bottom of the spectrum 
of H by using a single-product boson wave function of the 
form 

~(rt, r 2, .. ·,rN ) = x(rt )x(r2 )" 'x(rN ), (3.2) 

where SR,x2 (r) d 3r = 1. By using the symmetrical form 
(2.3) of the Hamiltonian H of relative motion and the per
mutation symmetry of~, we find 

(~,H~) = (N - 1) f f x(r)x(r') 
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We now introduce the density function t/J(s) defined by 

a-3t/J(r/a) = xZ(r). (3.4) 

Consequently, 

r x Z(r)d 3r= r t/J(s)d 3s=1, s=r/a. (3.5) 
JR3 JR3 

We let 'if! represent the bottom of the spectrum of Hand 
recall from (2.6) the definitions FN(v) = m'if!az/ 
[fr (N - 1)] and v = mraz N /2fzz and note that the Lapla
cian V; has the scale transformation V; = a-zV;. We then 
drop the subscript s on the gradient V s and note that 
Vt/J = 2xVx and also that, after integration, the cross terms 
in (3.3) involving Vr·Vr, all vanish. Having made these ob
servations we may, with the aid of Stokes' theorem applied to 
the kinetic-energy term, transform (3.3) into the following 
form: 

m'if!aZ 
F (v) --::--

N -fr(N-1) 

0;;; m(<I>, H<I»a2 

fr(N-1) 

= ~ r (Vt/J(s) )z d 3s 
8 JH' t/J(s) 

+ v f f t/J(s)f( Is - s'l )t/J(s')d 3s d 3S', 

H' 

(3.6) 

which establishes the bound (3.1). Equation (3.6) is a cur
ious result because, for a given fixed v, the bound does not 
depend on N. Hence the result is also an upper bound to the 
limiting trajectory F 00 (v) and can therefore only be close to 
the exact answer for finite N in cases where the trajectory 
functions F N do not vary strongly with the particle number 
N. Similar upper bounds in which the center-of-mass energy 
has not been removed have been discussed by many authors: 
A recent exposition may be found in Ref. 4. 

Now we tum to the special case of Gaussian functions. 
Let us suppose that x(r) = C(a)e-a"z and (x,x) = 1, 
where a is a positive constant. Then, in terms of our orthogo
nal relative coordinates, we have by (2.1), 

<I>(r l , r2,···,rN ) = <I>(PI,PZ,···,pN) 

Hence, apart from the additional factor x (p 1 ), <I> has the 
special form (2.10) and consequently maz(<I>, H<I»/ 
(N -1)fr = (x, "x), exactly as in (2.11). All the factors 
x2 (p i ) for i i= 2 integrate to unity and the result is the expec
tation of the one-body operator III with respect to a Gaussian 
function. The Gaussian is the only translation-invariant N
boson wave function with which it is comfortable to work 
and it leads to the same energy bound as (3.1 ) when a Gaus
sian density is used. The bound (3.1) is therefore superior 
because one can easily explore different densities t/J and pos
sibly improve on the special common Gaussian result. In the 
case of the harmonic oscillator with shapef(r) = r and a 
Gaussian density, the bound (3.1), when minimized with 
respect to scale, yields the well-known exact energy (trajec
tory) E = 3v l

/
Z ofthis particular N-boson system. 
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IV. THE LINEAR POTENTIAL 

We now consider the linear potential shape given simply 
by 

f(r) = r. (4.1 ) 

The general formula (2.15) for the energy trajectories of 
pure power-law potentials tells us that the energy trajector
ies for the linear potential (4.1) have the form 

FN(v) =FN(1)V2/3. (4.2) 

Meanwhile, from (2.12) and (3.1), we have the bounds 

Fz(1)O;;;FN(1)o;;;Ft,6(1). (4.3) 

The lower bound F2 ( 1) is the bottom of the spectrum of the 
one-particle operator (2.8), which for the linear potential is 
given explicitly by 

H = - A + r. ( 4.4 ) 

This well-known problem has ground-state energy given by 
the negative of the first zero of the Airy function. We trun
cate the decimal approximation of this zero so as to preserve 
the lower bound and therefore we find 

Fz(1) >2.338107. (4.5) 

The upper bound (3.1) requires a trial density t/J. We 
first look at a one-parameter family of central densities on R3 
given by 

t/J(s) = (41Tb 3/) -I w(s/b), s = lsi, (4.6) 

where the shape w (t) will be chosen later and the normaliza
tion integral 1 is given by 

1 = 100 

w(t) t Z dt. (4.7) 

Ifwe now substitute (4.6) in (3.1), set vf(r) = r, and mini
mize the result with respect to the scale variable b we obtain 
the following formulas for the upper energy bound Ft,6 ( 1 ) 
and the optimal scale b: 

EO;;;Ft,6(1)=[3KVz/81 5 ]1/3, b=[3IK/8V]1/3, (4.8) 

where the kinetic and potential energy integrals K and V are 
given by 

(w'(t)f t Z dt 
w(t) 

V= 100 100 

w(s)w(t) [st4+3~tZ]dsdt. 

(4.9) 

(4.10) 

For the potential energy, the integrals over the angles were 
first performed and then the remaining integrals were 
worked into the form (4.10) so as to avoid any integration 
over the absolute-value function. 

We now choose the density shape w (t) to be in a one
parameter family which includes the Gaussian q = 2 as a 
special case. Thus we set 

w(t) =e- t
., q>O. (4.11) 

Consequently, the normalization and kinetic-energy inte
grals (4.7) and (4.9) become 

I(q) = r(3/q)/q, K(q) = (1 + q)r(1 + l/q). (4.12) 
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For each q the potential energy integral (4.10) may now be 
performed numerically by Gaussian integration and the 
scale-optimized energy E (q) can be calculated from (4.8). 
In Fig. 1 we exhibit a graph of E(q) which has a minimum 
for q about 1.887. Thus we have 

F N (1) <E(1.887) <2.343 5154. (4.13) 

We have truncated the approximation in (4.13) so as to pre
serve the upper bound. In the case of the Gaussian density 
(or, equivalently, the Gaussian wave function) we can per
form the upper-bound computation analytically to find the 
weaker result 

E(2) = (81121T)1/3<2.34478. 

Graphs of the radial densities defined by 

l/J(t) = [b 3I]- l t 2e-(tIW 

(4.14) 

( 4.15) 

and normalized over [0,00) are shown in Fig. 2 for 
q = 1.887 and 2. 

With the notation C(N) for F N ( 1), we can summarize 
our results for the linear potential by writing, from (2.13) 
and (4.2), 

'C = C(N)(N - l)(frlm)I/3(yN 12)2/3, 

2.3381 < C(N) < 2.34352. (4.16) 

We have set a = 1 since the linear potential allows only one 
distinct parameter. The simple formula (4.16) determines 
the N-boson energy with an error of less than 0.116% for all 
N~2. 

v. POWER-LAW POTENTIALS 

It is now straightforward to generalize the results ob
tained in Sec. IV to more general power-law potentials 
whose shapes are given by 

!(r) = sgn(v)rV, v~ - 1. (5.1) 

We shall consider this general problem as far as finding the 
basic upper and lower bounds by the equivalent two-body 

(\') 
(\') 

(\J 

1.5 

L 

q 2.5 

FIG. 1. The variational upper energy bound for the linear potential is first 
optimized with respect to the scale parameter b and the result E(q) is then 
minimized with respect to the power parameter q. The graph shows E(q) 
and also the constant lower energy bound L = 2.3381. 
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o 

o t 3 

FIG. 2. Theoptimalradiai density t,6 from the family (4.15), withq = 1.887 
and the Gaussian density G, with q = 2. 

method and the use of a Gaussian trial function, and leave 
the final phase, the sharpening of the bounds by the method 
of Sec. IV, as a task to be carried out in answer to the needs of 
a specific application. As we shall see, even the bounds we 
obtain immediately are already very accurate. 

From (2.12), (2.13), and (2.15) we see that the energy 
of the N-boson problem with the potential Vij 
= y! (Ir; - rj I) is given by 

g> = C(v)(N)(N _ l)(frlm)VI(v+2)(yN 12)2/(v+2), 

(5.2) 

where 

F~V) (1 )..;;C (v)(N) ";;F~V)( 1) (5.3) 

and FiV)( 1) andF~V)( 1) are, respectively, the bottom of the 
spectrum of the one-body operator 

1HI= -a + sgn(v)rV (5.4) 

and the minimum of the expectation value (.,p, 1HI.,p> with 
respect to the scale of a normalized Gaussian trial function 
.,p. We have found the lower bounds by direct numerical inte
gration. The Gaussian upper bounds can be shown to be 
given by the general formula 

F(v)(1) = 3(v + 2) 
g 4v 

X [ 
IvI2(v+4)/2r(3 + v)/2) ]21(V+2) 

(5.5) 
31T1/2 

We present our results for some powers v in the range 
0.1..;; v..;; 1.0 in Table I. We adopt the same style as we did for 
the linear potential, namely, we present lower and upper 
bounds to C(N) and also an upper bound to the percentage 
error incurred if the mean of the bounds is used to estimate 
the energy of the N-boson problem; all decimals have been 
truncated in the appropriate directions to preserve the 
bounds. Thus, for these many-body problems, the energy is 
determined for all N~2 by formula (5.2), with the error 
always less than 0.23%. The Gaussian trial function gives 
the worst results for this collection of potentials when v is 
about !. By using the method of Sec. IV, the upper bounds 
can all be sharpened. 
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TABLE I. Lower and upper bounds to the coefficient C(N) in the general 
formula (5.2) for the energy of the N-boson problem with pure power-law 
potentials. 

v F~V)( 1 ) <:;C(N)<:;FiV) (1) % error 

0.1 1.2356 1.2382 0.1 
0.2 1.4130 1.4176 0.17 
0.3 1.5677 1.5741 0.2 
0.4 1.7067 1.7143 0.22 
0.5 1.8333 1.8416 0.23 
0.6 1.9497 1.9582 0.22 
0.7 2.0572 2.0657 0.21 
0.8 2.1572 2.1653 0.19 
0.9 2.2505 2.2581 0.17 
1.0 2.3381 2.3448 0.15 

VI. CONCLUSION 

The energy upper bound (3.1), which can also be under
stood in terms of a field-theoretic analysis of the many-body 
problem, the so-called collective field theory,l was derived 
here by a simple variational argument based on single-prod
uct wave functions. This general approach to an upper 

994 J. Math. Phys., Vol. 29, No.4, April 1988 

bound is, of course, as old as wave mechanics itself. We are 
pleased to find that it is possible to work directly with the 
translation-invariant Hamiltonian: Contributions from the 
kinetic energy of the center of mass do not have to be ac
counted for specially or estimated in the large-N limit. It is 
interesting that the upper bound with a Gaussian density ¢ is 
the same as that given by the Rayleigh quotient (qt, lfIV)/ 
(qt, qt), in which qt is a Jastrow translation-invariant Gaus
sian wave function. The upper bound (3.1) has the advan
tage that one can explore other shapes of density and possi
bly improve the energy estimate, as we have been able to do 
here for the linear potential. 
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Renewal theory is used to analyze linear particle transport without scattering in a random 
mixture of two immiscible fluids, with the statistics described by arbitrary (non-Markovian) 
fluid chord length distributions. One conclusion (for unimodal distributions) that is drawn is 
that the mean and variance of the chord length distributions through each fluid is sufficient 
knowledge of the statistics to give a reasonably accurate description of the ensemble averaged 
intensity. Expressions for effective cross sections and an effective source to be used in the usual 
deterministic transport equation are also obtained. The use of these effective quantities allows 
statistical information to be introduced very simply into a standard transport equation. An 
analysis is given which shows how the transport description, including scattering, in a 
Markovian mixture can be modified to yield an approximate description of transport in a non
Markovian mixture. Numerical results are given to assess the accuracy of this model, as well as 
the simpler model involving the effective cross sections and source. 

I. INTRODUCTION 

A subject of recent interest has been the problem of de
scribing particle transport in a statistical medium consisting 
of two randomly mixed immiscible fluids. 1-4 The first paper 
in this series of four by Levermore et a/. 1 considered the very 
simple linear kinetic (transport) equation along a ray de
scribed by the distance x given by 

d",(x) + O"(x)",(x) =s(x). (1) 
dx 

Here ",(x) is the distribution function for the particle den
sity, or intensity; O"(x) is the collision (absorption) cross 
section; and s(x) is the external source strength. The quanti
ties 0" and s in Eq. (I) were treated as random variables, each 
one taking one of two values at any point x. These two val
ues, independent of position, are the values associated with 
each fluid component of the mixture. That is, as a particle 
traverses the mixture along the path x, it sees alternating 
packets of the two fluids, which we label by i = 0,1, and each 
fluid has a definite, spatially independent, value of 0" and s, 
labeled 0"; and s;. The transition from one fluid to the other 
was assumed to be a homogeneous Markov process. This 
implies that the chord length along x of fluid i follows a 
Poisson distribution; i.e., the chord length of each fluid is 
exponentially distributed. Using a projection operator tech
nique, the method of smoothing as described by Keller-7 

and Frisch,8 an exact solution was obtained for \{I (x), the 
ensemble averaged value of the intensity, corresponding to 
Eq. (1). 

The problem described above was revisited by Vander
haegen,2 in which many of the results given by Levermore et 
af.1 were reproduced. The new contributions of this paper 
were two. First, it was shown that this problem could be 
addressed by the use of a Chapman-Kolmogorov, or master, 
equation for the joint probability density.8-10 Second, by 

considering the isotropic diffusion limit of the transport 
equation given by Eq. (1), it was shown that the concept of 
an effective cross section O".w arises naturally. That is, in this 
diffusion limit, the stochastic problem can be replaced with a 
standard deterministic problem, involving a single effective 
cross section made up of 0"0,0"" and the two mean chord 
lengths of the fluid components, ..1.0 and AI. It is worth not
ing, however, that this deterministic diffusion description 
was obtained under the restrictive assumption that the ratio 
s/O" is not stochastic, i.e., so/O"o = SJO"I. 

It is clear that these two papers described above treated 
a very simple situation as described by Eq. (I). In particular, 
Eq. (I) is time independent and, more significantly, neglects 
the scattering of particles. Furthermore, both of these papers 
assumed homogeneous Markov statistics and additionally 
assumed that 0"0 and 0"1 are spatially independent. Lever
more3 recognized that the treatment ofVanderhaegen could 
be extended by a master equation approach to analyze the 
general linear kinetic equation, including time dependence, 
scattering, and spatially dependent cross sections and 
sources. Levermore was also able to analyze inhomogeneous 
(spatially dependent) statistics, but it must be emphasized 
that this work was still restricted to Markovian statistics. 
The transport equation treated by Levermore3 is, with the 
assumption of isotropic scattering, 

~ a", + n.v", + ut/J = CO"S e + s, 
c at 41T 

(2) 

where 

e = ~ f dn ",. 
C )4". 

(3) 

Here t denotes time; c is the particle speed; (l/c)a /at 
+ n·v = d /dx is the advection operator with n denoting 
the particle flight direction and x parametrizing the space
time ray; and O"s is the scattering cross section. 
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The quantities a, as' and S in Eq. (2), and hence .p and e, 
are random variables associated with the two-fluid random 
mixture. Under the assumption of inhomogeneous Markov 
statistics, Levermore3 used the master equation formalism to 
obtai~ a description for '11, the ensemble average of.p, as the 
solution of the two coupled equations 

(4) 

Equation (4) is known to be rigorously correct in the 
case of time independent transport in general geometry with 
no scattering. In this instance, Eq. (4) reduces to an infinite 
uncoupled set of ordinary differential equations, for which 
the master equation approach is well understood. lo In the 
more general time-dependent multidimensional case includ
ing scattering, this transport description must at this time be 
considered a phenomenological model. This model, while 
not rigorously derived, is a reasonable model since it reduces 
to the proper result in all known limits, and is robust away 
from these limits. A much more detailed discussion of Eq. 
( 4) in this regard will be given shortly in a forthcoming 
article. 3 The new results given in this paper use Eq. (4) only 
in the time-independent, purely absorbing (no scattering) 
context. As just noted, in this limit Eq. (4) is well founded. 
Our only reason for including Eq. (4) here in full generality 
(multidimensional time-dependent transport with scatter
ing) is to make this introduction a complete summary of 
work done to date. The quantity '11 in Eq. (4) is the ensem
ble-averaged intensity corresponding to Eq. (2), and X is an 
auxiliary function describing a cross correlation between the 
random variables .p and a. Corresponding to '11 and X are the 
angular integral quantities 

E=~f dO '11; 7]=~f dOX. (5) 
C J4fT C J4fT 

The other quantities in Eq. (4) are given in terms of the fluid 
properties (a;, as;, s;) and the Markov statistical properties 
(p;, Ac) as 

S=PoSO+PISI; T= (POPI)I/2(SO-SI)' (6) 

~ = poao + Pial; 2 = Plao + poal + A c- I, (7) 

~s =poasO +Plasl ; 2s =PlasO +POasl , (8) 

V= (POPI)I/2(ao -al ); Vs = (POPI)1/2(asO -asl )' 

(9) 

The s~ati~tical q~a~tity Pi (r,t) is the probability of finding 
matenal I at pOSItion r and time t. The second statistical 
quantity Ac (r,t,O) is a correlation length for the inhomo
geneous Markov statistics. Its definition follows by consider
ing Pij (x,y), the conditional probability of finding material i 
at position x along a ray, given that materialj is at position y 
along the same ray. For inhomogeneous Markov statistics 
this conditional probability can be written3 

' 

996 

Pij(x,y) =Pi(X) + (_1)i+ j [q(x,y)/pj(y)]e- r
(X,y), 

( 10) 
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where 

q(x,y) = [PO(X)PI (x)PO(Y)PI (y)] 1/2, (11 ) 

and 

(12) 

The function Ac (x) in Eq. (12) is an arbitrary (subject to 
minimal constraints) function, whose functional depen
dence in any given instance depends upon the details of the 
statistics. In view of the way Ac appears in Eq. (10), it is 
logically identified as a correlation length. For homogeneous 
Markov statistics, one has l

,3 

P; =A;!(Ao+A I ); l/Ac = l/Ao+ l/A), (13) 

where, as defined earlier, A; is the mean chord length in ma
terial i associated with the exponential distribution of chord 
lengths. 
. For ~arkov statistics, Eq. (4) gives a complete descrip

tion for hnear transport through a two-fluid mixture, with 
the underlying kinetic equation given by Eq. (2). The re
maining generalization required is the removal of the restric
tion of Markov statistics. This generalization was suggested 
by Vanderhaegen,4 under the simplifying assumptions of no 
scattering, homogeneous statistics, a spatially constant cross 
section a p and the ratio s/a not stochastic, i.e., so/ao 
= sl/a). Vanderhaegen assumed that the chord length for 

each fluid in the two fluid mixture, along any ray x, is de
scribed by an arbitrary chord length distribution, with this 
distribution independent of position along the ray. Homo
geneous Markov statistics is a special case of this corre
sponding to an exponential chord length distribution for 
eac~ fluid. It was shown that the transport problem using 
arbitrary chord length distributions could be formulated ex
actly using renewal theory.u More precisely, the situation 
treated by Vanderhaegen is generally called an alternating 
renewal process,)) and we shall refer to it simply as renewal 
statistics. The resulting integral equations are of the convo
lution type, and easily solved by Laplace transformation. By 
again considering the diffusion limit, Vanderhaegen showed 
that one can obtain a simple deterministic description in
vo~ving an effective cross section aelf based upon ao, a\, and 
a Simple integral quantity involving the chord length distri
bution. This generalized his earlier use of diffusion theory to 
obtain a elf for a Markov (exponential distribution) process. 2 

In the present paper, we will show that the renewal anal
ysis of Vanderhaegen can be generalized to include inhomo
geneous statistics, spatially varying cross sections, and gen
eral sources, not restricted by solao = s)/a\. We use this 
generalized analysis to investigate several specific areas. We 
first asked the question as to how important are the details of 
the statistics, i.e., the chord length distributions, on the 
transport description. By considering various distributions 
that are unimodal with the same mean, we found that the 
mean alone is not sufficient statistical information to charac
terize the chord length distribution; the solution for '11 de
pends significantly upon which distribution is used. We then 
asked if knowing the mean and the variance was a sufficient 
characterization of the chord length distribution. Here we 
find that for the distributions investigated, the solution for '11 
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is relatively insensitive to which distribution is used, pro
vided that the mean and the variance of the distributions are 
the same. 

By solving the general renewal equations in the special 
case of spatially homogeneous statistics and fluid properties 
0'; and S; independent of position, we are able to obtain ex
pressions for an effective cross section O'elf' and an effective 
source Self' which can be used in a deterministic transport 
equation of the usual form. Simple expressions for these ef
fective quantities are given for general renewal statistics, i.e., 
for an arbitrary chord length distribution. The expression 
for O'elf agrees with that given by Vanderhaegen4 from his 
diffusion limit argument. In the special case of Markov sta
tistics, our results for O'elf and Self agree with those obtained 
from a certain asymptotic limit ofEq. (4), as given by Lever
more. 3 We give numerical results to assess the accuracy of 
using a standard transport equation involving O'elf as an ap
proximate treatment of transport through a random medi
um. 

We also show that the Markov equations given by Eq. 
(4) can be used to describe non-Markov renewal statistics in 
a well defined approximate way by replacing Ae in Eq. (7) 
with an effective correlation length, which we denote by Aelf . 
Specifically, these equations treat non-Markov statistics in 
the sense that they yield the proper expressions for O'elf and 
Self when analyzed asymptotically following Levermore,3 or 
are solved in the spatially homogeneous case as alluded to in 
the preceding paragraph. Thus the Markov equations given 
by Eq. (4), with Ae taken as Aelf' can be considered as a 
reasonable approximate description of transport in a non
Markovian (renewal) two-fluid mixture, including scatter
ing. The accuracy ofthis approximation is assessed by com
paring the solution ofEq. (4), withAe replacedbYAelf' to the 
exact solution based upon the renewal equations for various 
non-Markov statistics. We find that Eq. (4) does a reasona
ble job in reproducing the exact results. 

The details of the investigations we have just outlined 
are given in the next two sections of this paper. Section II is 
devoted to the renewal analysis, and Sec. III gives various 
numerical results. Section IV gives a few concluding re
marks, including what we feel are additional needed areas of 
investigation in this continuing study of linear transport 
through a statistical mixture of immiscible fluids. 

II. RENEWAL ANALYSIS 

The equation we analyze is the simple one given by Eq. 
(1) on the interval O..;;x < 00. We imagine the entire line 
- 00 < x < 00 populated statistically with alternating seg

ments of two materials labeled 0 and 1. The point x = 0 is 
chosen at random on this infinite line. We assign a stochastic 
boundary condition to Eq. (1) of the form 

rP(O = {rPo if x = 0 is in material 0, 
) rPl if x = 0 is in material 1. 

(14) 

We define p; (x) as the probability of finding material i at 
position x. We also define two conditional probabilities, 
namely, 

Q; (y,x) = Prob{[y,x] is in ilx is in i 

and x + dx is not}, (15) 
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and 

R; (y,x) = Prob{[y,x] is in ilx is in i}. (16) 

From these definitions, we see that Q; (y,x) is the probability 
that the entire interval [y,x] is in material i given that x is the 
right boundary of material i. By contrast, R; (y,x) is the 
probability that the entire interval [y,x] is in material i, giv
en that x is anywhere in material i. These probabilities de
scribe in general inhomogeneous (spatially dependent) sta
tistics. If the statistics are homogeneous, then p; is 
independent of x, and the two conditional probabilities de
fined by Eqs. (15) and (16) depend only upon the single 
displacement argument, x - y. 

Associated with each material, we assign a cross section 
0'; (x) and an external source s; (x) which, as indicated, are 
in general position dependent. We let ¢; [y,x;b] denote the 
solution of Eq. (1) at x given that the solution is b at y, and 
given that the entire interval [y,x] consists of material i. This 
is a nonstochastic solution which is easily found from Eq. 
(1) to be 

¢; [y,x;b ] = be - T,(y.X) + LX dx' S; (x')e - T,(X·.X), (17) 

where 

T; (y,x) = LX dt 0'; (t). (18) 

Given this definition of ¢; [y,x;b] , we can write the general 
renewal equation 

~o(x) = ¢o[O,x;rPo] Qo(O,x) 

+ LX dyQo(y,x)¢o[y,X;~l (y)], (19) 

where ~; (x) is the expected value of the random variable 
rP(x), given that x is the right-hand end point of material i. 
[The SUbscript yon the differential dyQo means that this 
differential only acts on the y variable of Qo (y,x).] The first 
term on the right-hand side ofEq. ( 19) is the contribution to 
~o (x) if the interval [O,x] is entirely made up of material 0, 
and the integral term accounts for the possibility that this is 
not so. A second equation complementary to Eq. (19) fol
lows by interchanging the indices 0 and 1. 

Equation (19) and that obtained by interchanging the 
indices represent two equations for the two unknowns 
~o (x) and ~I (x). These can, in principle, be solved once 
the statistics, as reflected in the functions Q; (y,x ), have been 
specified. However, knowing the ~; (x) is not sufficient 
since this function is only defined at the right-hand end point 
of material i. What is required is an analogous function de
fined for any point x. This function, which we denote by 
\}I; (x), follows from the auxiliary renewal equation 

\}Io(x) = ¢dO,x;rPo]Ro(O,x) 

+ iXdyRo(Y,x)¢o[y,x;~I(Y)]' (20) 

Here \}I; (x) is the expected value of the random variable 
rP(x), given that x is (anywhere) in material i. The corre
sponding equation for \}II (x) is found from Eq. (20) by in
terchanging the two indices. As with Eq. (19), the first term 
on the right-hand side ofEq. (20) accounts for the possibil-
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ity that the interval [O,x] is composed entirely of material 0, 
and the integral term accounts for the possibility of one or 
more material boundaries in [O,x]. Once the 4> j (x) are ob
tained from Eq. (19) and its complement, these solutions 
can be inserted into Eq. (20) and its complement, and these 
can then in principle be simply evaluated for the 'I' j (x). The 
expected value of the random variable tf;(x), which we de
note by 'I'(x), is then found by weighting the 'l'j (x) by the 
probability that point x is in material i, namely, 

'I'(x) =Po'l'o(x) +Pl'l'l(X). (21) 

Equations (19) and (20) and their complementary equa
tions found by interchanging the indices 0 and 1 then repre
sent our generalization of the renewal equations given by 
V anderhaegen 4 to include inhomogeneous statistics and spa
tially dependent cross sections O' j (x) and external sources 
Sj(x). 

The special case of homogeneous statistics is described 
entirely by the chord length distribution function /; (z), 
such that/; (z) dz is the probability that material i has a chord 
length between z and z + dz. This distribution function is 
independent of position x on the line - 00 < x < 00. That is, 
the length of any segment of material i on this infinite line is 
chosen from the same distribution/; (z). If we define 

Qj (z) = L'" dz' /; (z'), (22) 

then Qj (z) is interpreted as the probability of a given seg
ment of material i exceeding a length z. The average chord 
length in material i, which we denote by A.i> is given by 

A. j = f" dzzJ:(z) = f" dzQj(z). 

If we define 

Rj(z) =~ fco dz' Qj(z'), 
A. j L 

(23) 

(24) 

it is easily argued that R j (z) is the probability that the right
hand boundary of a segment of material i is a distance greater 
thanzfrom an arbitrary (random) point in the segment. For 
homogeneous statistics, the conditional probabilities defined 
for general inhomogeneous statistics by Eqs. (15) and (16) 
are given in terms of the single variable quantities defined by 
Eqs. (22)-(24) as 

Qj(y,x) =Qj(x-y), 

R j (y,x) = R j (x - y). 

(25) 

(26) 

Additionally, for homogeneous statistics the probability pj 

of finding material i at any point on the line - 00 < x < 00 is 
given by 

pj=A.J(A.O+A. l ). (27) 

Homogeneous Markov statistics as treated earlier l cor
respond to a simple exponential distribution, i.e., 

A.j/;(x) = Qj(x) =Rj(x) =e- x
/).,. (28) 

A periodic medium, in which case each segment of material i 
has the same length A. j corresponds to /; (x) = 15 (x - A. j ) , 

and hence 

(29) 
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(30) 

A family of chord length distributions we will consider in 
our numerical calculations reported in the next section is the 
two-parameter gamma distribution given by 

/;(x) = [mj(mjx/A.;)(m,-l)/A.;r(m j )] 

Xexp( -mjx/A. j ), (31) 

where r(z) is the gamma function. Here A.; is the mean of 
the distribution as given by Eq. (23), and the parameter mj 

is related to variance according to Vj = A. 71m; The special 
cases mj = 1 and mj = 00 correspond to Markov (exponen
tial) and periodic statistics, as given by Eqs. (28) and (29), 
(30), respectively. Three other simple chord length distribu
tions we will use in the next section are the "block," defined 
by 

{
(2A.

j
)-I, 

/;(x)= 0, 

the "tent," defined by 

{
X/A.~' x <A.j 

/;(x)= (2A.;-x)/A.~, A. j <x<2A. j , 

0, x>2A. j , 

and the "ramp," defined by 

{
8X/(9A. ~), 

/;(x) = 0, 
x < (3/2)A. j , 

x> (3/2)A.;. 

(32) 

(33) 

(34) 

If we specialize the general renewal equations given by 
Eqs. ( 19) and (20) to the case of homogeneous statistics, we 
find, after interchanging orders of integration in the double 
integral that arises from explicit use of Eq. (17) and subse
quently performing the inner integration, 

4>o(x) = tPoe-uoXQo(x) 

+ J:dyQo(X - y)e- uo(x-y>4>l(Y) 

+ f dye-Uo(X-y)so(y)Qo(x-y), (35) 

'l'o(x) = tPoe-UoXRo(x) 

+ iXdyRo(x - y)e- Uo(X-YJ4>I(Y) 

+ LX dye-Uo(X-YJso(y)Ro(x-y), (36) 

with two complementary equations obtained by interchang
ing the indices in Eqs. (35) and (36). In writing Eqs. (35) 
and (36) we have allowed the external source So (x) to be 
spatially dependent, but have taken the cross section 0'0 to be 
constant, independent of x. In this case Eqs. (35) and (36) 
and their complements are easily solved by Laplace transfor
mation since the integral terms are of the convolution form. 
In the more general case of a spatially dependent cross sec
tion, the exponential terms in these two equations would be 
replaced by the corresponding exponentials involving the 
optical depths, i.e., 

e - Uo(X - y) -> e - ro(Y,x) , (37) 

with 1"j (y,x) given by Eq. (18). 
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As noted above, the general solution ofEqs. (35) and 
(36) is easily found. However, this general solution is alge
braically complex, and we give here only the solution we will 
need to define an effective cross section Uelf. This solution 
corresponds to the source-free (Si = 0) case with a nonsto
chastic boundary condition I/Jo = I/Jt. If we define the La-

I 

where the argument of Qi in Eq. (39) is (r + u i ), and we 
have defined 

(40) 

In writing Eq. (39) we have taken a unit incoming in
tensity, i.e., I/Jo = I/Jt = 1. Knowing the statistics, one could 
in principle compute the Qi (r + u i ), and a Laplace inver
sion ofEq. (39) would then give 'I'(x), the solution to the 
problem. 

We choose here to use Eq. (39) in another way. Specifi
cally, if we compute I, the average distance to collision for a 
particle in this half-'Space, we have 

1= 1"0 dxxld:~X)1 = 1"0 dx'l'(x)=\iI(O). (41) 

Setting r = 0 in Eq. (39) we find 

1 = \iI(O) = 1 + (poUt + PtUo)qAc , 
PoUo + PtUt + uOUtqAc 

where we have defined 

(42) 

We now approximate the exact solution for 'I'(x) by a single 
decaying exponential 'l'a (x) according to 

'l'a(x) =e- l7etrX
, (44) 

and define U elf such that '1'0 (x) gives the correct mean dis
tance to collision. Use ofEq. (44) for 'I' (x) in Eq. (41) gives 
1 = l/Uelf' and equating this to Eq. (42) we find 

POUo + PtUt + uoUtqAc 
Uelf = • 

1 + (PoUI + PtUo)qAc 
(45) 

From the physics of the problem, 1 is non-negative for any 
statistics, and hence U elf given by Eq. (45) is clearly non
negative. We will also shortly prove this directly by showing 
that q>O for all chord length distribution functions. Equa
tion (45) is the same result obtained by Vanderhaegen4 from 
diffusion limit considerations. In the case of Markov statis
tics given by Eq. (28), we find q = 1 and Eq. (45) reduces to 
the result found by Levermore3 from an asymptotic analysis 
ofEq. (4). 

To obtain a corresponding expression for an effective 
source, we take Si in Eqs. (35) and (36) to be constant, 
independent of x, and seek the deep-in (x> 1) solution. This 
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place transform of any function hex) by her), i.e., 

(38) 

we then find for this special case 

(39) 

I 
solution will be a constant, independent of x. Omitting the 
algebraic details, we find 

'I'(x= 00) =PoSo+PtSt + (PoUtSO+PtUoSI)qAc , (46) 
Pouo + PtUI + uoulqAc 

with q given once again by Eq. (43). We now define an effec
tive source Self by the equation 

'I'(x= 00) =Self/uelf' (47) 

Since U elf is non-negative, and from the physics so is 
'I'(x = 00), we conclude that Self is non-negative for any 
renewal statistics. The motivation for this definition of Self is 
that a usual transport equation employing U elf and Self (to be 
written shortly) will give the correct deep-in solution in the 
case of homogeneous non-Markov statistics when U i and Si 

are spatially independent. From Eqs. (45)-(47), we then 
deduce 

Self = PoSo + PISI + (PoulSo + PIUoSl )qAc (48) 

1 + (PoUl + PIUO)qAc 

We note the similarity of Eqs. (45) and (48). In particular, 
if the source and cross section are related according to So I U 0 

= St lUI = D, we then find 

(49) 

In the Markov case given by Eq. (28), we have q = 1 and Eq. 
( 48) reduces to the result obtained earlier by Levermore3 

from an asymptotic analysis of Eq. (4). 
In terms of the effective quantities Uelf and Self given by 

Eqs. (45) and (48), we suggest 

(50) 

as the simplest transport equation which incorporates non
Markov statistical effects into a standard transport equation. 
The x dependences of Uelf and Self in Eq. (50) arise from 
using local values of the quantities on the right-hand sides of 
Eqs. (45) and (48). Equation (50) is a robust equation in 
that both U eW and Self are non-negative, and it has the proper
ty of predicting the correct mean distance to collision as well 
as the deep-in solution for homogeneous non-Markov statis
tics when Ui and Si are spatially independent. We note that as 
UiAC tends to zero for both i = 0 and i = 1, Eqs. (45) and 
(48) predict the so-called atomic mix limit 

(51 ) 
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Self = P~o + PISI = S, (52) 

which is the expected result. In the next section of this paper, 
we give a few numerical results to assess the accuracy of Eq. 
(50) as an approximation to the true situation. 

One very major drawback ofEq. (50) is that it does not 
contain scattering. This motivates us to consider a second 
independent procedure for deriving a standard transport 
equation involving effective quantities to take statistical ef
fects into account. This procedure includes scattering and, 
as we shall see, reduces to Eq. (50) in the absence of scatter
ing. Further, it yields, in addition to a standard scalar trans
port equation with effective quantities, a higher level ap
proximation in the form of a two-component vector 
description, as is Eq. (4) for Markov statistics. In fact, this 
scheme is based upon a modification of the exact Markov 
description given by Eq. (4). Specifically, we assume that 
Eq. (4) holds (approximately) in the non-Markov case by 
replacing Ac in Eq. (7) by Aelf , an effective correlation 
length. We define Aelf by 

Aelf = qAC' (53) 

where q is given by Eq. (43) and Ac in Eq. (53) is given by 
Eq. (40). In both Eqs.(40) and (43),A; is the mean chord 
length for material i for whatever non-Markov (renewal) 
statistics is obeyed by the mixture. 

The motivation behind the definition of Aelf as given by 
Eq. (53) is found in an asymptotic analysis of Eq. (4), with 
Ac in Eq. (7) replaced with Aelf . The scaling for this analysis 
corresponds physically to a small amount oflarge cross-sec
tion material admixed with a large amount of small cross
section material. The result of this scaling, in low order, 
leads to the renormalized transport equation3 

I a'll c --a + n·V'll + uelf'll = -uselfE + Self' (54) 
c t 47T . 

where 

U s•elf = U elf - u a •elf ' (56) 

PouaO + PIUal + UaOUalAelf 
U aeff = , (57) 

. 1 + (POual + PluaO )Aelf 

Self = P~o + PISI + (PoUaISO + PIUaOSI)Aelf , (58) 
1 + (PoUal + PIUaO )Aelf 

with Ua; = U; - us;. In the absence of scattering (us; = 0, so 
that U a; = u;) and time dependence, we see that Eqs. (50) 
and (54) are identical, and Eqs. (55) and (58) reproduce 
Eqs. (45) and (48) if one chooses Aelf equal to qAc' 

Thus by a proper choice of the single parameter Aelf in 
the expression [see Eq. (7)] 

£ = PIUO + POUI + A eff " (59) 

the Markov description has been modified to give both the 
correct U elf and Self for general non-Markov renewal statis
tics. Accordingly, we suggest Eq. (54) as a reasonable low 
order approximate description of transport in a non-Markov 
mixture, including the effects of scattering. A better (we 
show this by example in the next section), but still approxi
mate, treatment would be to use Eq. (4) with £ given by Eq. 
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(59). One advantage of using this modified Eq. (4) over Eq. 
(54) is that it reduces to an exact treatment in the special 
case of Markov statistics. More generally, in the case of non
Markov statistics, the modified Eq. (4) would be expected to 
be more accurate than Eq. (54). In particular, in the time
independent source-free (s; = 0) case with constant cross 
sections, Eq. (4) predicts a solution which is the sum of two 
exponentials, whereas Eq. (54) obviously gives a single-ex
ponential solution according to Eq. (44). A two-exponential 
form clearly has a much better chance of accurately predict
ing the true solution than does a single exponential. In the 
next section we will see by example that the modified Eq. (4) 
is, in fact, more accurate than Eq. (54). The disadvantage of 
the modified Eq. (4) over Eq. (54) is that it is obviously 
more complex, being a two-component vector description 
rather than a standard scalar model. 

For this treatment to be robust, we would like Aelf to be 
non-negative. This is easily shown to be the case. From the 
definition of Aelf given by Eq. (53), it obviously suffices to 
show t~at q~O, where q is defined by Eq. (43). We first 
bound Q; (u; ), given by 

O;(u;) = Sa"" dxe-u"'Q;(x). (60) 

We wish to maximize 0; (u;) over all admissible functions 
Q; (x). From the definition of Q; (x) given by Eq. (22), this 
family of functions satisfies • 

(61) 

(62) 

Since the integrand in Eq. (60) contains exp( - u;x), a de
creasing function of x, it is clear that 0; (u;) will be maxi
mized if the function Q; (x) is as concentrated as possible 
near x = 0, subject to the constraints given by Eqs. (61) and 
(62). In fact, it ~ easily shown that the function Q; (x) 
which maximizes Q; (u;) is that corresponding to a periodic 
lattice as given by Eqs. (29) and (30). Thus we conclude 

0; (u;),;;; (1 - e - u,A.,)!u;, (63) 

and use of this in Eq. (43) gives 

q~[ 1 __ 1 _~] 
1 - e - u.,Ao UoAo 2 

(64) 

Since 

(65) 

we then have q>O, thus completing the proof that Aelf >0. 
In the next section, we use the renewal analysis consid

ered here to give a few numerical examples. Specifically, we 
show by example: (1) the transport results for \{I (x) are 
generally sensitive to the details of the statistics in the sense 
that different chord length distributions with the same mean 
can give noticeably different results; (2) the transport re
sults for 'II (x) are generally insensitive to different chord 
length distributions which have the same mean and vari
ance; and (3) the use of the two-component vector Markov 
equations with Ac replaced by Aelf is significantly more accu-
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rate than the use of the scalar transport equation involving 
U etf in predicting transport in non-Markov mixtures. 

Before leaving this section, however, we indicate a few 
characteristics of the use of the gamma distribution as given 
by Eq. (31) in this renewal theory context. This distribution 
is particularly interesting since it includes Markov statistics 
(m, = 1) and a periodic lattice (m, = (0) as special cases. 
The two parameters in this distribution can be chosen to 
match a given mean and variance. As given by Eq. (31), A .. is 
the mean, and the variance is given in terms of A, and m i by 
Vi = A :Im i. Lastly, as we now indicate, in the special case 
that the parameter mi is the same for both materials, i.e., mo 
= m l , the Laplace transform given by Eq. (39) is easily 
inverted to give 'I' (x) as a finite sum of exponentials. 

Ifwe takeft (x) to be the gamma distribution as given by 
Eq. (31), we find by direct computation 

Q .. (r+ui ) = (A;"-l)/(r+ui)A;", (66) 

where 

A .. = 1 +A .. (r+ ui)lm. (67) 

In writing Eqs. (66) and (67) we have set mo = m I = m, a 
common value. The singularities of'li(r) given by Eq. (39) 
in the complex r plane are easily shown to consist entirely of 
simple poles at values of r determined by 

(AoAl)m = 1. (68) 

(The apparent poles at r = - U i are, in fact, not singular 
points.) Taking the mth root ofEq. (68) gives 

[1 + Ao(r + uo)/m][ 1 + AI (r + U I )Im] = e21rnilm, 

l.;;;n.;;;m, (69) 

wherei = ( - 1) 112 on the right-hand side ofEq. (69). Thus 
we have 2m simple poles at values of r given by Eq. (69). 
This in tum implies that the inversion of'ii(r) given by Eq. 
(39) will give a result for 'I'(x) which is the sum of 2m 
exponentials. All that is required to obtain this solution ex
plicitly is to solve the m quadratic equations given by Eq. 
( 69 ), and find the residues corresponding to these simple 
poles. In a similar fashion, the explicit solution for the case 
m l = kmo can be reduced to the problem of solving mo 
polynomial equations, each of degree k + 1. 

III. NUMERICAL RESULTS 

In this section we give a few representative numerical 
results that address two questions. In the first place, we in
vestigate the sensitivity of the solution for the ensemble aver
aged intensity to the details of the statistics. Second, we com
pare the accuracy of the scalar Eq. (54) involving effective 
quantities to that of the two-component vector Eq. (4) with 
A 

l: given by Eq. (59). All of the results given in this section 
are for the source-free (s .. = 0) time-independent problem 
with no scattering (us .. = 0). Additionally, we assume ho
mogeneous statistics and spatially independent cross sec
tions u ... Thus we will be comparing solutions of the simplest 
transport equation 

1001 

d"p(x) + u(x)"p(x) = O. 
dx 
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(70) 

We take Eq. (70) to hold on the semi-infinite line O,;;;x < 00, 

and assign the nonstochastic boundary condition "p(0) = 1. 
The ensemble-averaged solution 'I'(x) for this problem 

is simply the ensemble average of a decaying exponential 
according to 

'I'(x) = (exp( -T», (71) 

where T in Eq. (71) is given by 

T = f dx' u(x'). (72) 

Equation (71) can be evaluated exactly from 

'I'(x) = Po'l'o(x) + PI'I'I(X), (73) 

where '1'0 (x) and '1'1 (x) are the solutions of the renewal 
equations given by Eqs. (35) and (36) and their comple
ments in the source-free (Si = 0) case. The approximate so
lution corresponding to the scalar Eq. (54) with Setf 

= Us,elf = 0 is given by the single exponential according to 
Eq. (44). The approximate solution corresponding to the 

A 

vector Eq. (4), with l: given by Eq. (59), is the sum of two 
decaying exponentials. 

We give numerical results corresponding to three differ
ent sets of physical parameters Pi (the probability) and Ti 

= uiAi (the mean optical chord length). The quantities Ai 
(the mean geometric chord length) and u.. (the cross sec
tion) follow from 

(74) 

In all three cases, we choose the unit oflength so that l:, the 
ensemble-averaged cross section as given by Eq. (7), is uni
ty. These three sets of parameters we consider are summar
ized in Table I. Case I corresponds physically to a small 
amount (PI = 0.1) oflargecrosssection (UI = 9.09) mate
rial admixed with a large amount (Po = 0.9) of small cross 
section (uo = 0.10) material. The optical depths in this case 
are small (To = 0.1) and moderate (TI = 1.0). Case II in
volves the same Pi and Ui as case I, but the optical depths for 
case II are ten times larger than for case I, namely To = 1.0 
and T\ = 10. Case III describes an equal amount (Po = PI 
= 0.5) of the two fluids, one with a very small cross section 
(uo = 0.02) and one with a moderate cross section (ul 

= 1.98). In this case the optical depths are small (To = 0.1) 
and large (TI = 10,0). The chord length distributions we 
investigated numerically are the two-parameter gamma dis
tribution given by Eq. (31), and the block, tent, and ramp 
functions given by Eqs. (32)-(34), respectively. 

Figure 1 compares exact results for 'I' (x) corresponding 
to case I parameters for five different chord length distribu
tions, namely Markov (gamma distribution with mo = m l 

= 1), block, tent, ramp, and a periodic medium (gamma 

TABLE I. The parameters used in the numerical results. 

Case Po PI 7'0 7'1 Ao A, 0'0 tT, 

I 0.9 0.1 0.1 1.0 0.99 0.11 0.10 9.09 
II 0.9 0.1 1.0 10.0 9.90 1.10 0.10 9.09 
III 0.5 0.5 0.1 10.0 5.05 5.05 0.02 1.98 
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FIG. 1. Comparison of exact results for different statistics for case I param
eters. 

distribution with mo = m l = (0). Also included in this fig
ure is the atomic mix result, which is simply 

\flAM (x) = e -x, (75) 

since l:, the ensemble-averaged cross section, is unity. We 
see from this figure a fair amount of spread among the 
curves, from which we conclude that a knowledge of the 
mean of the chord length distribution is in general not suffi
cient information concerning the statistics to accurately pre
dict \fI(x). In particular, we see that the Markov curve 
(which corresponds to exponentially distributed chord 
lengths) is further away from the other curves than is the 
atomic mix curve. Accordingly, in this case if the true statis
tics correspond to one of the four middle curves, it is more 
accurate (except for small x) to ignore statistical effects en
tirely (i.e., use atomic mix) rather than use the Markov sta
tistical description. 

Figure 2 gives the same comparison as does Fig. I, ex
cept now the six curves correspond to case II parameters. 

1.0 

2 
~ 

·i 
~0.4 
.5 

0.2 

O. 
O. S. 

--- Markov (m=l) 
---- Block 
.-.-.-.- Tent 
---------- Ramp 
------- Periodic (m=~) 

........ - Atomic Mix 

10. 
Distance x 

IS. 

FIG. 2. Comparison of exact results fordilferent statistics for ease II param
eters. 

1002 J. Math. Phys., Vol. 29, No.4, April 1988 

1.0 

0.8 

-!'- 0.6 
~ 

·i c: 
~ 

.5 0.4 

0.2 

O. 

--m=3 
--- Block 

O. 

Distance x 

FIG. 3. Comparison of block and gamma (m = 3) exact results for case I 
parameters. 

Again we see the same trend, but in this case the atomic mix 
result is very far from the other five curves. We note that in 
both Figs. 1 and 2 the atomic mix curve is the lowest (expect
ed on physical grounds) and the Markov curve is the high
est. In all of our numerical calculations, we observed that the 
atomic mix and Markov results always bound the result for 
non-Markov statistics from below and above, respectively. 

Having concluded from these and other numerical com
parisons that the mean alone is not sufficient information 
concerning the chord length distribution to accurately pre
dict \fI (x), we asked if the mean and variance together con
stitute sufficient information. The results given in Figs. 3-5, 
and other similar results, answer this question in the affirma
tive; \fI (x) is relatively insensitive to which chord length dis
tribution is used, given that the mean and variance is pre
served. Figure 3 compares the block distribution with the mo 
= m I = 3 gamma distribution (m = 3 matches the block 
variance) for case I parameters. Likewise, Fig. 4 compares 
the tent distribution with the mo = m I = 6 gamma distribu-

1.0 

2 0.6 

i7< 
~ 
'0; 

" ~ .5 0.4 

0.2 

O. 
O. 

__ m=6 

--·-Tent 

Distance x 
IS. 

FIG. 4. Comparison of tent and gamma (m = 6) exact results for case II 
parameters. 
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FIG. 5. Comparison of ramp and gamma (m = 8) exact results for case III 
parameters. 

tion (m = 6 matches the tent variance) for case II param
eters, and Fig. 5 compares the ramp distribution with the 
mo = m 1 = 8 gamma distribution (m = 8 matches the ramp 
variance) for case III parameters. In all three figures we see 
that the two curves are very close. Thus we conclude, at least 
for the unimodal distributions we have investigated, that the 
solution for 'I' (x) is relatively insensitive to the higher 
(greater than second) moments of the chord length distribu
tion. It follows then that any distribution with two param
eters which can be chosen to match an arbitrary mean and 
variance (such as the gamma distribution) can be used to 
represent an arbitrary distribution insofar as predicting 
'I' (x) with a small error is concerned. 

The second major question we addressed with our nu
merical calculations concerns the accuracy of the scalar [Eq. 
(54)] (involving effective quantities) and the vector [Eq. 
( 4 ) 1 [in conjunction with Eq. (59) 1 as approximations to 
the true solution for 'I'(x). Figure 6 considers this compari
son for case I parameters, and a gamma distribution with mo 
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FIG. 6. Comparison of one- and two-exponential approximations for gam
ma (m = 2) statistics and case I parameters. 
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FIG. 7. Comparison of one- and two-exponential approximations for gam
ma (m = 2) statistics and case III parameters. 

= m I = 2. We see that both the one-exponential [corre
sponding to Eq. (54)] and the two-exponential correspond
ing to Eq. (4)] approximations are very close to the exact 
result. This is not unexpected since case I parameters corre· 
spond exactly to the asymptotic scaling which leads to a 
renormalized transport equation involving effective quanti. 
ties. Figure 7 makes the same comparison as in Fig. 6, again 
for a gamma distribution with mo = m1 = 2, but for case III 
parameters. Here we see that the one-exponential approxi. 
mation is noticeably different from the exact solution, 
whereas the two-exponential result is a quite good fit to the 
exact curve. Based upon these and other similar results, we 
conclude that Eq. (4) in conjunction with Eq. (59) is a rea
sonably accurate model for non-Markov statistics, whereas 
Eq. (54), while robust, is in general noticeably less accurate. 

It would be useful to extend these numerical compari
sons to more complex (multimodal) chord length distribu
tions, and involving both external sources (s; ;'=0) and scat
tering (O"s; ;'=0). These comparisons, in particular including 
scattering, would be much more difficult to make, but would 
be very useful to test the robustness of our two tentative 
conclusions. To summarize, these conclusions are the fol
lowing: (1) the mean and the variance of the chord length 
distribution together constitute sufficient information of the 
statistics to obtain a good approximation for 'I' (x), whereas 
the mean alone is not sufficient information; and (2) the 
modified Markov description given by Eqs. (4) and (59) is a 
quite accurate approximation to the true non-Markov situa
tion, whereas Eq. (54) is in general less accurate. In this 
regard, it should be emphasized that at the present time no 
simple exact formulation of the non-Markov situation with 
scattering [analogous to Eq. (4) for Markov statistics] is 
known. Hence to obtain an exact solution for non-Markov 
statistics including scattering, one would have to popUlate 
physical space statistically with the two fluids, perform a 
transport calculation for each realization of this statistical 
popUlation, and then average a large number of these calcu
lations to obtain an estimate of the ensemble averaged solu
tion. This procedure would be prohibitively time consuming 
(expensive) even on the most powerful computer. 
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IV. CONCLUDING REMARKS 

As pointed out in the Introduction, with Eq. (2) as the 
underlying transport equation, Eq. (4) constitutes a com
plete transport description for the ensemble-averaged inten
sity in the case of inhomogeneous Markov statistics, includ
ing the scattering process. In the absence of scattering, Eqs. 
( 19) and (20), together with the complementary equations 
found by interchanging the indices, give the ensemble-aver
aged transport description for arbitrary inhomogeneous re
newal statistics. What is missing at this point is an exact 
transport description for arbitrary renewal statistics with the 
scattering interaction included in the underlying transport 
equation. How to treat this case is a major unanswered ques
tion in this general area of linear transport in randomly 
mixed immiscible fluids. One approach is to search for and 
justify a master equation for general renewal statistics in a 
multidimensional setting including scattering. At this time, 
such a master equation is unknown. 

Other generalizations of the results obtained to date sug
gest themselves. One could extend all of the results in this 
and the earlier papers 1-4 to the case of more than two fluids. 
Such an extension should be entirely straightforward. As 
mentioned at the end of the last section, more numerical 
studies (say on multimodal chord len~th distributions) 
could be undertaken to test the limits of the conclusions we 
have tentatively drawn in this paper. The question of the 
physical realizability of the renewal statistics we have used 
could be studied. For example, can one envision an ensemble 
of partitioning of all space into two (or more) materials, 
such that the same prescribed homogeneous chord length 
distribution is extant along an arbitrary ray? It is known 12 

that this is indeed possible in the special case of an exponen
tial distribution (Markov statistics). One can also use the 
master equation approach to derive equations for the higher 
moments of the random intensity field, such as the variance. 
All of our work to date has focused on obtaining a transport 
description for the ensemble average. 

We close by suggesting one concrete line of inquiry that 
we hope to pursue in the near future. Let us assume that all 
chord length distributions with the same mean and variance 
give essentially the same result for the ensemble averaged 
intensity, within some acceptable accuracy limits. For the 
unimodal distributions considered in the last section, this 
seems to be the case. Then, insofar as a treatment of non
Markov statistics including scattering is concerned, it suf
fices to develop a theory for a single two-parameter chord 
length distribution whose parameters can be chosen to 
match the mean and variance of any distribution of interest. 
That is, it is not necessary to develop a theory for general 
renewal statistics corresponding to an arbitrary chord length 
distribution. One only has to treat the case corresponding to 
one particular chord length distribution to obtain acceptable 
accuracy for any distribution. The hope is that such a partic
ular distribution can be found which lends itself to an exact 
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treatment, including scattering, for the ensemble averaged 
intensity. If this cannot be done, one still has Eqs. (4) and 
(59) as an alternative treatment of non-Markov statistics. 
The numerical results given in the last section, and others, 
suggest this as a reasonably accurate approximation. 

In this regard, we note that the current ability to predict 
the statistical characteristics of a random mixture is in a 
relatively rudimentary state. Hence, as a practical matter, an 
approximate but reasonably accurate transport description 
involving simple integral characteristics of the statistics 
[such as Qi (CTi ) given by Eq. (60)] may be just as useful or 
perhaps even more so, than an exact description requiring all 
of the details of the statistics. It may well be the case that Eqs. 
( 4) and (59), from a practical point of view, constitute a 
theory which is sufficiently accurate at this point in time. 
However, from an understanding and completeness point of 
view, more needs to be done. While it seems that a quite good 
start has been made, much remains to be done before this 
area of inquiry can be considered to be unfruitful for further 
research. 
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Beginning from any given (local) solution of the GL(n,C) anti-self-dual Yang-Mills 
(ASDYM) equations on Minkowski space, a simple technique for the generation of large 
classes of solutions (perhaps in some sense all) is given. The origin of this technique is 
described in terms of two versions of the Ward construction. The resulting description of 
Backlund transformations is sufficiently simple that it is then possible to identify the group 
generated by the collection of all such Backlund transformations and the space on which it acts 
in terms of concrete functions. 

I. INTRODUCTION 

In the past several years a great deal of progress has been 
made in understanding the structure of the anti-self-dual 
Yang-Mills (ASDYM) equations and the various solution 
generating methods. In one approach,I.2 the ASDYM equa
tions are thought of as the integrability condition on a pair of 
first-order linear differential equations, the so-called "Lax 
pair." The Lax pair leads, by several ingenious techniques, to 
the subject of Backlund transformations,3,4 where the basic 
idea is to generate new solutions of the ASDYM equations 
from a seed solution. Another approach by Ward, and with a 
slight variation by Sparling (unpublished), establishes the 
correspondence between solutions of the ASDYM equations 
and holomorphic vector bundles on twistor space. Solutions 
are then generated by a Riemann-Hilbert splitting of the 
patching functions defining the bundle. 

The purpose of this work is twofold. 
(i) We will describe an extremely simple technique for 

the generation of large classes of solutions (in some sense 
all) of the GL(n,C) ASDYM equations on Minkowski 
space, beginning from any given (local) seed solution. From 
a given seed solution, i.e., a Yang-Mills (YM) potential (or 
connection) chosen in a suitable gauge, we show that one 
can take specific combinations of the components of the giv
en potential to produce a completely new potential for the 
ASDYM field. The important fact is that this technique is 
completely algebraic and only involves matrix multiplica
tion. (An interesting feature arising from these transforma
tions is that from the inhomogeneous part of the transforma
tion it is possible to obtain a nontrivial YM field both from 
the pure gauge and even from the zero seed solution.) 

(ii) We wish to describe the geometric origin, via the 
Ward and Sparling approach, of these BT's and show its 
relationship to the work of others. In particular we wish to 
show that the BT's become considerably simpler and less 
mysterious when represented on the twistor data for the 
ASDYM fields. Indeed, the simplification is sufficient to al
low one to identify the infinite-dimensional transformation 

.) Present address: Department of Physics and Astronomy, University of 
Pittsburgh. Pittsburgh, Pennsylvania 15260. 

groups generated by the BT's and the appropriate extension 
of the solution space on which they act. 

In Sec. II we present our notation and the new solution 
generating method. In Sec. III we describe the Sparling and 
Ward approaches to the ASDYM and how the BT's arise. In 
particular we show the geometric origin (from the gauge 
theory point of view) of the Lax pair and the Yang-Pohl
meyer equation. In Sec. IV we discuss the action ofBT on the 
twistor data and how it relates to the problem of reconstruct
ing the space-time field from the twistor data. In Sec. V we 
discuss the transformation group to which the BT's give rise. 
We also briefly relate these ideas to the analogous ones for 
the stationary axisymmetric vacuum equations. 

(In this paper we are concerned only with the local 
problem and do not consider boundary conditions for the 
YM equations. This is because there are many different 
boundary conditions for, and reductions of, the ASDYM 
equations of interest and it would take us too far afield to 
discuss them in any detail. Furthermore, they are not neces
sary for the understanding of the BT's and the infinite-di
mensional group to which they give rise.) 

II. THE BACKLUND TRANSFORMATIONS 
A. Notation 

We begin with our notation and the discussion of several 
useful geometric ideas. 

The ASDYM equations obtained below are three ma
trix-valued differential equations on the matrix-valued vec
tor potential Yo' Define the YM field by 

Fob = 2V[oYb I - [YO'Yb]' 

Then the ASD equations are 

F*ob = - iFab' (2.1) 

where the asterisk is the Hodge duality operator. A useful 
alternative set of equations equivalent to (2.1) ares 

Fob L ob = FobM ob = FabN ab = 0, (2.2) 

where L, M, and N are any three independent self-dual anti
symmetric tensors. Equation (2.2) follows from the orthog
onality of self-dual and anti-self-dual forms. A succinct ver
sion of (2.2) is 
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Fabmab = 0, (2.3) 

with mab a self-dual skew tensor written as 

mab=Lab+Mabt+Nabt2, (2.4) 

where t is an arbitrary point on the (complex) Riemann 
plane C + ( 00 ). 

A particularly useful form for the L, M, and N is ob
tained as follows. Define on Minkowski space the normal
ized null tetrad and the coordinates u, v, w, iii by 

DO=/oava = at + az = av ' 

t:;.°=noava = at - az = au , 
If=moava = - ax + i ay = - aw , 

If=moava = -ax -iay = -au;, 

(2.5a) 

(2.5b) 

with 10'no = - mO'mo = 1 and all other products vanish
ing. Next, from the null tetrad, we define the following vec
tors: 

L act) = lOa + tmoa , 

Ma(t) = mOa + tnOa . 

(2.6) 

(2.7) 

Then using (2.6) and (2.7) we make the following choice for 
(2.4) : 

mab=L laMb] = 10[amOb] + t{l0[anOb] 

+ mO[amOb]} + t 2mO[anOb] . (2.8) 

The skew tensor L [aM b] at any point defines a self-dual 
two-surface through that point. As t ranges over the com
plex Riemann sphere, L [aM b ] ranges over all self-dual total
ly null two-planes through that point. The vectors L act) 
and M act) are two independent vectors in these planes. The 
set of all such two-surfaces in Minkowski space is (projec
tive) twistor space. 

B. The Backlund transformations 

We now give the simple prescription for obtaining the 
BT from any given seed ASDYM connection Ya' 

Given a seed solution Ya of the ASDYM equations, we 
first construct the expressions Ya (xb)L act) and 
Ya (xb)Ma(t) and then seek some matrix ~ (xa,t) such that 
the right-hand side (rhs) of 

~Ya(xb)La(t)~-1 +La(t)Va~·~-1 

= I" a (xb)L act), (2.9a) 

~Ya(xb)Ma(t)~-1 +Ma(t)Va~·~-1 

= I" a (xb)Ma(t) (2.9b) 

is to have the same t behavior as the Y'L and yoM, Le., 
(2.9a) and (2.9b) are to be linear in t. Assuming that such a 
~ exists (the proof by construction will be given later), we 
claim that the I" a defined by (2.9) is a new connection satis
fying the ASDYM equations and further is (in general) 
gauge inequivalent to the original Ya' 

The proof of this consists of first noting that the field 
corresponding to the connection I" a is given by 

F'ab =2V[aYb]- [Ya,Yb] (2.10) 

and that, using Eqs. (2.9) one obtains 

F'abLaMb= ~FabLaMb~-I. (2.11) 
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By Eqs. (2.3) and (2.8), the rhs vanishes and hence F' ab is 
an ASDYM field and I" is an ASDYM connection. That Y 
and I" are, in general, gauge inequivalent follows from the 
fact that Eqs. (2.9) mix the connection components, while a 
standard gauge transformation does not. An additional fea
ture of (2.9) is that if two seed solutions yand y* are gauge 
equivalent, then the two new solutions I" and 1"* obtained 
from (2.9) are, in general, gauge inequivalent. 

Before discussing the construction of ~ for the 
GL(n,C) case, we illustrate the idea for the specific case of 
GL(2,C). 

To begin, any seed solution yofthe GL(2,C) equations 
must first be written in a special gauge (always obtainable) 
which is defined by the vanishing of certain matrix elements 
of Ya' We require that the matrices 

YaL acto) and YaMa(to) 

are upper triangular and the matrices 

{;oYaLa( _(;O-I) and {;oYaMa( _(;O-I) 

(2.12) 

(2.13 ) 

are lower triangular, where to=to(xa) and (;o={;o(xa) are 
functions of x a obtained, respectively, as solutions of the al
gebraic equations 

f(xaLa (to), xaMa (to), to) = 0 , (2.14a) 

f(xaLa ( - (;o -I), xaMa ( - (;o -I), - (;o -I) = 0, 
(2.14b) 

with f and f arbitrary analytic functions of their three argu
ments. 

[A particularly simple choice would be to =;0 = 0, 
which leads to 

L acto) = lOa, Ma(to) = mOa, 

;OL a( -;0-1) = _ mOa, 

{;o"M a( - (;o -I) = _ nOa.] 

When Y is in the special gauge defined by (2.12) and 
(2.13 ), then it is checked easily that ~ of the form, either 

~ = (A 0) ~ = (0 1) o 1 or A 0 ' 

with 

A = (t - to)( 1 + t;o) -I , 

satisfies Eqs. (2.9) automatically. 
With the special choice to = ;0 = 0 we have 

~ = (0 1) 
to' 

(2.15 ) 

(2.16 ) 

(2.17 ) 

Equations (2.9), in this case, become a set of algebraic equa
tions between different components of Ya and I" a (both be
ing in the "special gauge"); one can solve them for I" a as 
follows: 

10aYa = _/oaYa + Ell I oaYa E22 - EI2mOaYaEI2' 

moaYa = - moaYa + E22moaYaEII - E21/oaYaE21 , 

mOaYa = - mOaYa + EllmoaYaE22 + E 12noaYa E I2 , 

noaYa = - noaYa + E22noaYaEII + E21moaYaE21 , 
(2.18) 

where the E ij's are 2 X 2 matrices with 1 as their ij th element 
and all other elements being zero. 
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Remarks: (i) Equations (2.18) can be made somewhat 
simpler using spinors; in the spin frame (OA ,t A) given by 
lOa = oAijA', noa = tAt A', m oa = OAt A', etc., the gauge condi
tions above imply that the connection Ya can be written in 
the form 

Y = (aAA , bAOA ,). 

a CAt A , dAA , 

The new connection r' a is then given by interchanging b A 

with C A and a AA 0 with d AA 0 : 

r' = (dAA o 
CAO

A
'). 

a bAtAo aAA , 

(ii) It should be pointed out that even within the special 
gauge there is still considerable gauge freedom. In fact, in the 
to = to = ° case, the gauge transformation Ya .... Y·a 
= FYaF-I + VaF'F- I, with 

F(x) = (111 h2), (2.19) 
h.1 h.2 

satisfying 

h2/hl = AJ(xaloa, xamoa )/{l- BJ(xaIOa, xamoa )}, 

h.Jh.2 = CH(xamOa, xanoa )/{l- DH(xamoa, xanoa )} 

preserves the special gauge conditions. Here A, B, C, and D 
are particular combinations of integrals of matrix elements 
of Ya' while J and H are arbitrary functions of their argu
ments. The BT's obtained from two gauge related r's are 
gauge inequivalent when the J and H are different from zero, 
i.e., when F is not diagonal. 

(iii) An important point to emphasize is that we can 
compose two different (!g's, say (!g I and gj 2' to obtain an
other allowable (!g = gj I (!g 2' Since the inverse of a (!g is also 
allowable, the set of (!g 's form, roughly speaking, a transfor
mation group on the solution space of the ASDYM equa
tions. Successive applications of this procedure result in the 
analog of the Kinnersley-Chitre type of transformation for 
ASDYM equations6

,7. This technique (in a specialized 
form) was also used by Corrigan et al.8 and Prasad et al,9 to 
generate the infinite hierarchy of Atiyah and Ward. 10 We 
conjecture that they act transitively on this space. 

(iv) As a simple illustration of the above solution gener
ation technique in the GL(2,C) case, let us begin with the 
trivial seed solution, i.e., Ya = 0. Then Eqs. (2.9) reduce to 

Lar'a =Lavagjogj-I, Mar'a = MaVa(!gogj-1 , 

which with Eq. (2.15) become 

L ar' a = diag(O,a), Mar' a = diag(O,b), 

where 

a = - (OOto + tOO In to), b = - (..:1°to + tAO In to) 

is linear in t, as expected. The components of r'are then 
given by 

1007 

10ar'a = diag(O, - OOto) , 

moar'a = diag(O, - AOto), 

nOar'a = diag(O, - AO In to), 

moar' a = diag(O, - 00 In to)' 
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We are thus able to produce nontrivial Maxwell fields by 
applying the BT on the trivial GL(2,C) ASDYM solution. 

Co GeneralIzations 

The ideas used in the GL(2,C) case are generalized easi
ly to GL(n,C). We consider again the two functions to = to 
(x) and to = to(x) defined as the solutions ofEqs. (2.14) 
and A defined by (2.16). We next consider any n X n projec
tion operator E, which is simply a diagonal matrix with only 
ones and zeros on the diagonal (E 2 = E). Then (!g (xa,t) is 
defined by 

(!g (xa,t) = (/ - E) + AE. (2.20) 

Before the BT [Eqs. (2.9], can be implemented, one must 
again impose a special gauge condition on the seed solution. 
These conditions are as follows. 

In the new gauge we construct the four components of y, 

y-L(to), Y'M(to), 

toy-L( - to -I), toy-M( - to -I), 

and require the vanishing of certain specific matrix elements 
ofthe above components, namely, 

Ey-L(to)(I - E) = 0, EY'M(to)(I - E) = 0, 

(/-E)y-L( -to-I)E=O, (2.21) 

(/-E)Y'M( -to-I)E=O. 

These conditions can always be satisfied. As in the 
GL(2,C) case there is still considerable freedom within 
these conditions, producing an equivalence class of gauge 
related connections all satisfying (2.21 ). Two seed solutions 
in this class, in general, yield after the BT, two solutions 
which are gauge inequivalent. Also, products of two trans
formations and inverses of transformations are transforma
tions and hence again we have a transformation group. 

Remark: An alternative, but equivalent point of view to 
our procedure is the following. Consider an ASDYM con
nection yon which we perform an ordinary gauge transfor
mation that depends on the parameter t, i.e, 

Y·a(x,t) = gjYa(!g-1 + Vagjo(!g-I, gj = gj(x,t). 

We now seek (!g such that r* a has the form 

Y· a (x, t> = r' a (x) + aLa (t) + /3Ma (t), 

with a and /3 any two matrices. If such a (!g can be found 
then y~ (x) automatically is an ASDYM connection of the 
type just discussed. The proof of this consists in simply con
tracting Y· a with L a and M a and comparing with (2.9). 
There remains an interesting and perhaps an important 
question-what is the real geometric meaning of this proce
dure? It appears to be related to ordinary gauge transforma
tions-not on a vector bundle over the Minkowski space, but 
on a vector bundle over the spin bundle of the Minkowski 
space. This question is being studied. We will see later that 
the BT corresponds to a singlular gauge transformation on a 
bundle on twistor space. 

III. THE GEOMETRIC BACKGROUND 

In this section we will describe both the Sparling and 
Ward approach to the ASDYM equations and the insight 
they give to the BT's of Sec. II. 
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A. The Sparling equation 

We begin by considering Minkowski space M, with x a an 
arbitrary interior point in M and ex its future null cone. 
Each null generator of ex is labeled by a pair (;,;) (stereo
graphic co-ordinates on S 2 the sphere of null directions) and 
denoted by Ix (;,;). (Almost always we will consider M to be 
the real Minkowski space although on occasion we will allow 
a "small" complex thickening.) In addition, we have on M a 
GL(n,C) ASDYMfield with connection y. In the associated 
GL(n,C) bundle we define our basic variable, a linear map 
G(xa,;,;), which (via the connection Y) parallelly propa
gates, along Ix (;,;), an arbitrary vector in the fiber over x a 

to the fiber at the end point of Ix (;,;), Le., to future null 
infinity (f+). 

[Recall that future null infinity f+ is a null cone, topo
log~cally S2 XR, with coordinates u along the R factor and 
(;,;) holmorphic (affine) stereographic coordinates on the 
S 2 factor. It can be thought of as the space of end points of all 
future pointing null geodesics, with the null geodesic in the 
direction la(;,;) through the point x a and ending at 
(u,;,;) = (xala(;,;),;,;).] 

Now G(x,;,;), which is a function of the starting point 
x a and the generator (;,;) and plays a fundamental role in 
all that follows, is defined formally as 

G=Oexp 1 _ Yadya=Oexp r _Yalads, (3.1) 
Ix<;,{;) Jlx<;,{;) 

where la(;,;)Va = as is the normalized null tangent vector 
along Ix (;,;) and o indicates path ordered integral. We will 
show that G satisfies the following first-order linear differen
tial equation (the Sparling equation), II which is equivalent 
to the original ASDYM equations: 

(1 +;;)a?;G= - GA(u,;,;)lu=xulu<a) , (3.2) 

where A (u,;,;) I u = xUlu< a) is the restriction of the free YM 
data A(u,;,;) given on f+ to the intersection of ex with 
f+. This intersection is described by u =.xala (;,;), 

We now outline a proof of the Sparling equation. 
Proof We first introduce the closed path parallel propa

gator (also called the holonomy operator) associated with 
an infinitesimal closed loop (in fact, a triangle). This loop, 
which lies completely in a self-dual surface, is defined on the 
null cone ex as an infinitesimal triangle Xx formed by two 
neighboring geodesics Ix (;,;) and Ix (;,; + d;) and is 
closed at f+ by a connecting vector Mad;. Since Xx lies in 
a self-dual blade and our field and connection is anti-self
dual, the associated holonomy operator becomes the identity 
operator, Le., the connection is integrable on self-dual sur
faces. Using the definition, Eq. (3.1), of the parallel propa
gator G, its inverse, and the definition of the holonomy oper
ator, we have 

1= G -I (xa,;,;)G(xa,;,; + d;){I + P-IA d;}, 
(3.3 ) 

where I is the identity operator and A is the component of the 
connection along the connecting vector ma on f+, i.e., 

A = PYamalf+' P=. 1 + ;;, (3.4 ) 

where P is used for the normalization of mao 
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Expanding GJxa
,;,; + d;) in Eq. (3.3) and retaining 

terms linear in d ; we obtain the Sparling equation, namely, 

pa?;G= -GA. 
We have just seen from the definition of G and from the 

given anti-self-dual connection Y that G satisfies (3.2). We 
now sketch the proof of the converse, namely, that a solution 
of (3.2), G(x,;,;), which is a regular function of the (;,;) 
sphere, defines an anti-self-dual connection y. This result, 
which we refer to as the reconstruction theorem, is com
posed of two parts: (i) We must show that G does define a 
connection, and (ii) the connection is anti-self-dual. 

(i) The appropriate relationship between G and Y is sug
gested by differentiating Eq. (3.1) in the I a direction, yield
ing 

(3.5) 

What we must do is show that if G does satisfy the Sparling 
equ~tion then indeed (3.5) defines a Ya (x) independent of 
(;,;). This is done most easily by taking an explicit represen
tation of la(;,;), namely, 

la(;,;) = P -I{(/Oa + ;moa) + ;(moa + ;noa )} 

= 2J2(1 + ;;,; +;, i(; - ;),;; - 1) . (3.6) 

We also make use of 

mac;';) =.P (:; ) la 

= {(mOa + ;noa) _ ;(/Oa + ;moa)} (3.7) 

and the identity 

( ~ ) {p;na} = 0 . 

Applying the operator pea la;) on (3.5), aftersomemanip
ulation wiQ.t the Sparling equation (using P a ?; VaG 
= - Va GA - G{(a lau)A}/a)' yields 

ma(;,;)Va GG -I = Ya ma(;,;) + {p(:; )Ya }/a(;,;) . 

( 3.8a) 

Applying (ala;)p to (3.8a)and using the identity and 
ag~in the Sparling equation shows that ( 1 + ;;) (a I 
a ;)Ya = O. This, with the assumed regularity of G, proves 
that Ya = Ya (x) and hence 

ma(;,;)Va GG -I = Ya ma(;,;). (3.8b) 

[A more formal way to see this is by applying the edth
bar operator twice on the Ihs of (3.5). Using the Sparling 
equation one can show that it vanishes, which leads to the 
above result. ] 

(ii) To show that the above defined Y is anti-self-dual, 
we construct the following basic equations which are linear 
combinations of (3.5) and (3.8): 

L a(;)VaGG- 1 = Ya L act) , 

Ma(;)VaGG -I = YaMa(;) , 

with [via (2.6) and (2.7)] 

L act) = lOa + ;mOa=.la _ ;ma, 

M a(;) = mOa + ;noa=.;la + ma. 
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Equations (3.9), derived from the reconstruction theorem, 
are the Lax pair of the ASDYM equations and are a general
ization of the Lax pair of Pohlmeyer, Forgacs, Zakharov, 
and others. Their integrability conditions, namely, 
Ma(;)Va applied to (3.9a) minus L Q(;)Va applied to 
(3.9b), yieldsL laMb IFab = 0, i.e., (2.3), the condition for Y 
to be anti-self-dual. 

We have thus shown the correspondence between solu
tions of the Sparling equation and solutions of the ASDYM 
equations. 0 

B. Left and right gauge transformations 

We now return to the Sparling equation and some of the 
properties of its regular solutions. 

An important point is that the Sparling equation re
mains invariant under G-+ I (xa)G, where I is a nonsingu
lar matrix-val ued function of x a only. This transformation of 
G induces the standard gauge transformation on y: 

Ya -+Y*a = IYal- I + Vall-I. 

We refer to this transformation of G as the left gauge trans
formation (LGT). Also, G can be transformed by multiply
ing it on the rhs by a matrix-valued function Q= Q( I,m,;';), 
where 

I=/(xa,;,t) = xala (;,t), m = xama (;,t). 

We refer to this as the right gauge transformation 
(RGT). Under a RGT the YM free data transforms as 

A * = QA Q - I + P JIQQ -I , 

but the ASDYM connection Ya remains invariant, 12 i.e., 

y* a (xb
) = Ya (x b

). 

Both the LGT and the RGT play an important role. The 
RGT is simply a standard gauge transformation on the data 
(which is a component of the connection on the data surface, 
f+), while the LGT, as mentioned, is a standard gauge 
transformation at the field point xa. Both of these transfor
mations follow from the definition of G as the parallel propa
gator. 

To reconstruct explicitly the yfrom Eqs. (3.9), one sim
ply chooses any two values of (;,t), i.e., (;I,tI) and (;2,t2)' 
and substitutes them into Eqs. (3.9), giving four equations 
to determine Ya (x b

) in terms of the two values of G and their 
derivatives. If we choose (;I,tl) = (0,0) and 
(;2,t2) = (00,00), calling G(xa,O,O) = Gs(xa) and 
G(xa, 00,00 ) = GN (xa), we have 

10ay = DOG 'G -I mOay ="3 0G 'G -I, 
aSS' aSS (3.12) 

nOaYa = 110GN'GN -I, mOaYa = lfGN'GN -I. 

Two of the three self-dual equations are satisfied identically 
by Eq. (3.12), while the third becomes, with 

g= GN -IGS ' 

the Yang-Pohlmeyer equation 

l1°(DOg'g- I ) -If("3°g.g- I ) = O. 

(3.13) 

(3.14 ) 

[Alternatively, the Yang-Pohlmeyer equation is the inte
grability conditions on the Lax pair after using (3.12).] 
There are several things things to note about Eqs. (3.13) and 
(3.14) : They are applicable to any gauge group and further-
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more they are gauge independent, as can be seen by applying 
the LGT to G. If, however, we apply the RGT to G, the 
solutions of Eq. (3.14) are mapped to formally new solu
tions: 

g--+g* = U-IgV, 

with 

U=QI~=;=oo' V=QI~=;=o 
- the known invariance group of Eq. (3.14) Y 

Remark: There are two simple points of comparison of 
our work with that of others. 

(i) If we make the choice of gauge that G N = I [accom
plished easily from an arbitrary G by the choice ofthe LGT 
I (xa

) = GN -I (x
a

)] we have the gauge condition most fre
quently used, namely, nOaYa = 0 and moaYa = O. 

(ii) If we now consider G(xa,;,t) to be analytic in ; and 
t separately (now referring to ~ rather than t) then 
Go(xa,;) = G(xa,;,O) and Goo (xa,;) = G(xa,;,oo) are the 
two "splitting" functions of a Riemann-Hilbert problem, i.e, 

Goo -IGO = 9 (Laxa,Maxa,;), 

with 9 analytic in an annulus on the; Riemann sphere [and 
Land Mas defined in Eqs. (2.6) and (2.7)]. The variable; 
is then what most workers refer to as the spectral parameter 
of the problem. We will return to this point in Sec. III C. 

c. Relationship with BT's 

Returning to the BT, we investigate how the BT, via Eq. 
(2.9) on the yand 1", can be used to relate the two Sparling 
functions G(xa,;';) and G'(xa,;,t). 

For the pair (G', 1" a ) we can write the equations equiva
lent to the Lax pair, Eqs. (3.9). By substituting Eqs. (2.9) 
into (3.9) and using Eqs. (3.9) again, we obtain thefollow
ing pair of equations to determine the G' from the G: 

LOVaG'G,-I = fjJLOVaGG-IfjJ-1 + LOVafjJ·fjJ-l, 
(3.15a) 

MOVaG'G'-I = fjJMOVaGG-IfjJ-1 + MaVafjJ·fjJ-I. 
(3.15b) 

From Eqs. (3.15), one sees that the BT for G' is given as 

G' = fjJGQ, (3.16) 

where Q, a singular RGT, is needed in order to make the G' 
regular, since fjJ (being a function independent oft) is sin
gular at ; = ;0 and; = - ~o -I. (Here fjJ is redefined by 
postmultiplying the previous fjJ [as in Eq. (2.15)] with 
H(xa), a nonsingular matrix-valued function of xa only. See 
also Eq. (4.1).) The choice of Q depends upon the choice of 
f!lJ. Once a fjJ is chosen, the corresponding Q is given by 

Q=Qo{(l-E)+YE}, (3.17) 

where Y (Laxa,Maxa,;,~) is the ratio of two twistor func
tions F(Laxa,Maxa,;,~) and F(Laxa,Maxa,;,~), each of 
which is regular on the (;,;) sphere and has a single zero at 
; = ;0 (x) and; = - ~o -I (x), respectively. [Such an F 
(and F> can be constructed, among several ways, by first 
choosing a twistor function I (Laxa,Maxa,;), which vanish
es at ; = ;o(x) and is holomorphic in a neighborhood of 
; = ;o(x); the Fis then obtained by replacing the three argu-
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ments (Laxa,Maxa,{;) in f by ( WLaxa, WMaxa, W{;), where 
Wis another twistor function of (Laxa,Maxa,{;i) chosen so 
that when; = ; for all {;, the values of ( WLaxa, WMaxa, W{;) 
remain in a neighborhood of (L({;o), M({;o), (;o) and 
W({;o,t) = 1 = W({;,O). We obtain F similarly from an 
j(Laxa,Maxa,{;), which vanishes at (; = - to -I (x). Thus 
Y has the further property that 

Y(xaLaxaMa,{;,O) = f(Laxa,Ma xa,{;) 

and 

Y (Laxa,Maxa,{;, 00) = j-l(xaLa ({;),xaMa ((;),{;). 

We will not show here how such a W can be constructed.] 
To make G I regular, the nonsingular H (x) ELGT and a 

regular QoERGT are needed to make HGQo lower triangular 
at {; = {;o and upper triangular at {; = - to-I for all t. One 
can easily construct such anH and Qo. We, however, will not 
discuss the details here since a simpler and more powerful 
method will be discussed later. 

Remark: As an alternative to discussing the action of the 
BT on the G, the action of the BT on the data of the Sparling 
equation, A, can be found as follows: A is just a component of 
the restriction of the YM connection Ya to f+. However, 
since the ASDYM field and connection are conformally in
variant, as far as theASDYM field is concerned, f+ is on an 
equal footing with any other null cone in Minkowski space; 
an inversion can be used to interchange any light cone with 
f+. So let us assume that the region ofinterest is a neighbor
hood of the vertex of f+; then the application ofthe BT, as 
described in Sec. II, is just as well defined on this neighbor
hood as it is in the interior of M. We can therefore apply the 
above technique on this neighborhood and then restrict the 
connection to f+ and obtain the new A. (Despite the fact 
that we are working at infinity, as far as the YM field is 
concerned, we are still only working locally.) 

Finally, we consider the question of obtaining the new 
solution g' (xa

) of the Yang-Pohlmeyer equation via the BT. 
There are two ways of constructing the g' (xa

). 

(i) From a regular G I obtained in Eq. (3.16), we at first 
evaluate G'N and GiS and then construct the new g' (xa) by 
using Eq. (3.13). 

(ii) We use Eq. (3.12), now both for Y and y, and sub
stitute them in Eq. (2.9), which then generates a set of lin
ear, first-order partial differential equations between the 
components of (GN,GS ) and (G'N,G 'S )' The solutions of 
these equations, along with Eq. (3.13), then yield g'(Xa

). 

This approach is similar to the methods giv.en by several 
authors3.4 to obtain the g' (xa

) from a seed g(xa
). 

D. The Ward construction 

Ward l4 has shown that a solution of the ASDYM equa
tions on a region in M determines and is determined by a 
holomorphic vector bundle on a corresponding region in 
twistor space. 

This can be seen from the ideas presented above as fol
lows. The space M XS 2 with coordinates (xa,{;) for {; =I 00 

[or (xa,1] = {; -I)for {; =10] is the bundle of projective 
primed (self-dual) spinors. Ifwe allow the coordinates x a to 
take on complex values, the space M X S 2 is foliated by the 
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integral two-planes of the vector fields, L a and M a, i.e., the 
set of self-dual planes. The space of these two-planes, as was 
mentioned earlier, is a region in (projective) twistor space 
PT=CP 3

• 

The coordinates 

(3.18 ) 

are constant along L a and Ma and are the (holomorphic) 
coordinates on {; =I 00 in PT; note that PTis naturally a com
plex manifold on which Zj are holomorphic coordinates. [A 
neighborhood of {; = 00 can be coordinatized by 
ZI j = (zoI{;,z l /{;,1!{;).] 

Given an ASDYM field on a region U in M, we can 
construct a holomorphic vector bundle on the correspond
ing region U I in PT. (U I consists of all the self-dual two
planes in U XS2, if U lies entirely within the Euclidean real 
slice of M, then U I is just U X S 2.) A holomorphic frame of 
the vector bundle on U I is determined by a frame of the origi
nal vector bundle pulled back to U XS2, which is holomor
phic in {; and covariantly constant along L a and Ma• Such 
frames exist because the connection is integrable on the self
dual surfaces. This definition is "natural" (i.e., not depen
dent on a choice of gauge). 

Such a holomorphic frame can be represented in terms 
of some frame on space-time by means ofa solution G(xa,{;) 
of the Lax pair, Eqs. (3.9), which is holomorphic in (;: 

L a({;)Va GG -I = Ya L a({;), (3.9a) 

Ma({;)Va GG -I = Ya Ma ({;). (3.9b) 

[Since the operators in (3.9) do not depend on;, we consid
er in the above context solutions G(xa,{;) which are indepen
dent of;.] 

Note that a solution G(x,{;) of (3.9) is unique up to 
postmultiplication G-- GFby some matrix function F(z;) of 
the twistor coordinates Z; alone. 

E. The patching function 

The matrix function G(x,{;) contains more information 
than just that of the holomorphic bundle on PT. To specify 
the bundle, we need only the "patching function" 9. This is 
a matrix function on PT that translates from a frame defined 
on I{; I >! to one defined on I{; I < 2. In particular we consider 
two solutions of (3.9): Go, which is to be regular over the 
region {; =I 00, say I{; I <2; and Goo' which is to be regular over 
the region {; =10, say I{; I >!. It is seen easily from thefactthat 
the only freedom in the solution of (3.9) is right multiplica
tion by a matrix constant along L a and M a that Go and Goo 
are related by 

Go =G
00

9, (3.19) 

with 9 = 9 (z; ). (See the remark of Sec. III E.) The ma
trix 9 is the patching or transition matrix which character
izes the bundle most economically; it provides the transition 
between the components of a section in the frame deter
mined by Go in its region of definition and the components in 
the frame Goo in its region of definition. 

Remarks: (i) An attractive feature of the twistor de
scription of ASDYM fields is that the patching function is 
effectively freely prescribable. We shall see that it plays a 

Mason, Chakravarty, and Newman 1010 



                                                                                                                                    

similar role in the twistor description, as does the function 
A (u,~,~) in the Sparling approach. 

(ii) The patching function 9 can only be reduced to the 
identity if a solution G(x,~) can be found which is regular 
for all ~ including 00. This would, by Liouville's theorem, 
imply that the G were independent of ~. This, however, is 
only possible when the ASDYM field is flat. 

F. Reconstruction of the field from the patching 
function 

In the previous paragraph we discussed the construc
tion of the patching function 9 from knowledge of Go and 
Goo' The converse problem of beginning with a given patch
ing function 9 (Zi) and constructing from it the two func
tions Go(xa,~) and G 00 (xa,~) in their respective domains, 
satisfying (3.19), is the heart of Ward's method of solving 
the ASDYM equations. In order to do this the x a in (3.19) is 
held constant, the 9 becomes a function of ~, and the x a play 
the role of parameters. So, given the data 9, we must solve 

Go(x,~) = Goo (x,~) 9 (Laxa,Maxa,~) 

for Go and Goo' with Go defined for I~ I < 2 and Goo defined 
for I~ I > ~. The problem of splitting the 9 and thus finding 
the two G's is the Riemann-Hilbert problem. Generically 
solutions exist. 

The YM connection Y can now be reconstructed from G 
by reproducing the Lax pair equations (3.9). This is analo
gous to the reconstruction in the Sparling case. The proof 
that the Lax pair exists follows from (3.19) and uses a gener
alization of Liouville's theorem; since L "Va 9 = 0, we can 
write 

Ya L a(~) = L a(~)VaGOGO -I = L a(~)VaGoo Goo -I. 

We see that the first equation implies that yo L is regular for 
I~ I < 2 and the second implies that yo L has a simple pole at 
~ = 00; thus Y'L must be linear in ~ and is therefore 

Loy = /o'Y + ~mooy, 
with / 0. yand mO. yindependent of~; this yields the / ° and mO 
components of the connection. An identical argument ap
plied to the M equation yields nOaYa and iiiOaYa' These con
nection components are identical to those obtained by the 
Sparling approach [Eq. (3.12)]. This once again shows the 
correspondence between the Ward and Sparling versions of 
the twistor construction. 

Remarks:(i) In both the Ward and Sparling versions of 
the twistor procedures, the data are effectively freely prescri
bable. Although it is on occasion possible to analyze the 
ASDYM field directly from its data on twistor space it is 
often desirable to evaluate the field explicitly on space-time. 
Unfortunately there is no general explicit method of solving 
directly either Eqs. (3.2) or (3.19). One falls back on either 
special Ansatze (cf. Ref. 10) or solution generating tech
niques such as the BT's of, for example, this paper. 

(ii) The Sparling equation approach to the ASDYM 
equations can be thought of as a Dolbeault version of the 
Ward construction. 

In a Dolbeault approach one represents a holomorphic 
vector bundle using a frame on PT that depends on Zi and Zi' 
but which has the advantage of being global on the (~,~) 
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Riemann sphere. The matrix functions H(Zi;ii), which ro
tate from the given frame to a holomorphic one, are charac
terized as the solutions of a first-order linear partial differen
tial equation, namely, the vanishing of the covariant a 
operator acting on H; 

~H=al!. dZi +HAidzi =0 
aZi 

for some A i chosen so that ~ 2 = 0 (this last condition is the 
integrability condition for the existence of solutions to 
~H=O). 

In the asymptotic formalism developed earlier, such a 
nonholomorphic global frame is obtained relative to f+ as 
follows: Each twistor plane (i.e., integral surface of L a and 
Ma) given by Zi = const on (xa,~) space intersects f+ at 
the point 

(u,~,~) = (2P~)-'(ZO + ~ZI)'~'~)' 
(Note that in general u is complex.) An ordinary frame for 
the YM field at each point of f+ determines one on PT; the 
frame at a pointzi in PTis given by that at the point at which 
the corresponding twistor plane intersects f + . This frame is 
global in~, but depends on ~ as well as Zi' A rotation from the 
given global frame to a local holomorphic frame is given by 
H(u,~,~) if it is covariantly constant along a?;, that is, 

a?;H= -HA(u,~,~), 
where [u = (2P~) -I (zo + ~ZI ),~,~] is the point where 
the twistor Zi intersects f+ and A is the coefficient of d~ in 
Ya dxalf+' As can be seen, this is a version of the above a 
operator in a special gauge. 

In order to evaluate the field on space-time, it was neces
sary to find a global holomorphic frame over each Riemann 
sphere in PT given by holding x a = const in (3.18). For a 
fixed x a the matrix that rotates from the given nonholmor
phic frame to a holomorphic one on the Riemann sphere 
reduces to finding solutions G(x,~,~) of the Sparling equa
tion that are global in (~,~). 

(iii) Reality structures. The version of the ASDYM 
equations we have been using has been written with the Lor
entzian signature. To obtain the perhaps more familar Eu
clidean version, we send t -+ it. If we then put 

2v = t + iz and 2w = x + iy, 

we have DO = - ia liTv, ao = - i a lav, {f = - a law, 
;5 ° = - a I ali;, so that the Yang-Pohlmeyer equation 
(3.14) becomes 

(g,jjg- I) ,v + (g,wg- I
) ,w = O. 

Usually one is interested in producing real solutions to 
the YM equations. The appropriate reality conditions when 
the field is anti-self-dual are those for Euclidean or (2,2) 
signature (i. e., g should be Hermitian on the appropriate real 
slice). 

The complex conjugation on complex Minkowski space 
that preserves the Euclidean slice induces a conjugation on 
PT, given in the above coordinates by 

(ZO,ZI,z2) -+ (ZO,zI,Z2) = ( - ZI'ZO' - Z2 -I), 

which we can write as Zi -+ Zi' i = 0,1,2. The conjugation is 
antiholomorphic and has no fixed points. 
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A bundle on twistor space is real if its pullback under the 
conjugation is its Hermitian conjugate. In particular, one 
can choose holomorphic frames on Izl < 2 and Izl > ! so that 
the twistor data P satisfy 

fj (z) = &,t(z), 

where t denotes transpose. Alternatively one can choose a 
RGT for the Sparling equation such that 

A (z;,;) = (; /~)A t(z;, - 1!~). 

[The signature (2,2) case is the same as above, except that 

Zo = + Z 1 and Z2 = + Z2 - 1.] 

IV. BT's AND THE TWISTOR DATA 

In this section we will translate the BT's of Sec. II into 
the twistor formalism. We start with a patching function for 
which it is possible to solve the Riemann-Hilbert problem. 
The BT will be seen to correspond to inserting manually new 
singularities which are sufficiently simple into the patching 
function &' (in fact simple poles and zeros) such that it is 
again possible to solve the new Riemann-Hilbert problem. 
As mentioned previously, this process only requires algebra
ic manipulations. 

Let &' (z; ) be some patching matrix for which we know 
how to solve Eq. (3.19), i.e., we have &' = G", -IGO' with 
Go(xa,~) nonsingular for I~ I < 2 and G '" (xa,~) nonsingular 
for I~ I >!. We now consider a new patching matrix 
&" = B '" - 1 &' Bo. For &" to also be a patching matrix it is 
required that B '" and Bo should be holomorphic in the twis
tor coordinates and nonsingular in the range! < I~ I < 2. (By 
a nonsingular matrix we mean a matrix with all its entries 
regular and which is invertible.) We also require of Bo and 
B", that (a) &" is not gauge equivalentto &', and (b) from 
knowledge of the splitting ofEq. (3.19) for &', we can find 
the solution or splitting ofEq. (3.19) for &". 

The matrix &" is gauge equivalent to &' if B '" is nonsin
gular for I ~ I > ! and Bo is nonsingular for I ~ I < 2. So for &' ' to 
be an inequivalent patching matrix, B", must be singular for 
some ~ with I ~ I > 2 and Bo must be singular for some ~ with 
I~ I <!. We shall make such an Ansatz for B", and Bo, from 
which condition (b) follows also. However, in order to moti
vate the Ansiitze we first explain the procedure. 

We have 

&' = G", -IGO 

and we wish to find G'o and G' 00 with the appropriate regu
larity properties such that 

&" = Goo ,-IG
O

' 

and hence 

&" = Boo -I&, Bo = B", -IG", -IGoBo = G", ,-IGo' . 

As a result of the singularities in Boo on I ~ I > 2, G", Boo is not 
regular on I~ I > 2 and so cannot be a good candidate for Goo'. 
However, if the singularity structure of B '" is simple enough, 
we can compensate by finding a (singular) matrix function 
PlJ (xa,~) and setting 

G",' = PlJG",Boo and Go' = PlJGoBo. 

If PlJ can be chosen so that Go' and G", ' are regular on the 
relevant regions, then we are done. 
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First choose a constant projector matrix E = diag(/,O), 
where I is the rX r identity matrix and 0 is the sxs zero 
matrix (r + s = n). We shall decompose all our matrices 
into 2X2 block form with respect to this E. We take 

where I is a twistor function holomorphic on I~ 1< 2, with 
only simple zeros on I~ I < ~ and! is a twistor function holo
morphic on I~ I > !, with simple zeros only in I~ I > 2. 

We now choose PlJ so as to eliminate the zeros in G", B '" 
on I~ I > 2 and thepolesofBoin I~ I<!· The zero sets of I and 
! can be written as ~ - ~o(xa) = 0 and 1 + to(x)~ = 0, re
spectively. We first choose (for gauge fixing) a matrix func
tion of xa, H(xa) such that 

EH(x)Go(xa,~o(x»)(1 - E) = 0 

and 

(1- E)H(x)G", (xa, - to -1(x»)E= O. 

In the block decomposition above this implies that HGo is 
lower triangular at ~ = ~o and HG 00 is upper triangular at 
~ = - to- I. [If we can write Goo (x,~o) and Go in block 
form as 

--I (~o~) (Ao ~) 
Goo (x, - ~o ) = Co Do' Go(x,~o) = Co Do ' 

then it is easily checked that such an H exists when Ao and Do 
are invertible. These conditions only require the nonvanish
ing of two determinants and so will be satisfied generically.] 
This implies that we can write 

HG = (A (~ - ~o)B) 
o C D 

for some matrices A, B, C, and D regular on I~ I < 2. (HG '" 
can be similarly represented.) 

We now put 

PlJ = {E + A (1 - E)} H = (~ ~) H , ( 4.1 ) 

where A = (~- ~o(x»)(1 + to(X)~)-I. 
A short calculation shows that PlJ Go Bo is now regular 

on I~ I <2and PlJGooB", is regular on I~ I>!. For PlJ GoBo we 
obtain 

PlJGoBo = {E + A(1 - E)}HGo{E + 1-1 (1 - E)}-I 

= (1 0) (A (~ - ~o)B) (1 0) 
o A C DOl-I 

=(A (~-~o)/-IB) 
AC A/-ID . 

We see that the vanishing of the determinant of PlJ cancels 
the singularity of that of Bo and the choice of H eliminates 
the pole one would otherwise have in the top right entry of 
the above matrix. Similar remarks hold for PlJ Goo Boo' with 
zeros interchanged with poles. Now PlJ (x,~) is the same ma
trix as was used in Sec. II to first define the BT. 

If we wish to preserve reality conditions we must have 
that the twistor function! (z;) is determined by the follow
ing relation: 

!(z;) = !(z;) . 
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This, in tum, implies ;o(x) = ;o(x). 
Remarks:(i) This procedure does not respect the gauge 

invariance on twistor space, i.e., if 9 and f!2 are gauge equiv
alent patching functions, B0 9 Boo-I and Bof!2 Boo-I are 
not, in general, gauge equivalent. This allows us to generate 
more solutions, since if we can split 9 = Goo -IGo, then we 
can split f!2; thus we can perform the above procedure on f!2 
to obtain a new, distinct solution. 

This fact does, however, mean that the BT's only gener
ate an infinite-dimensional group on the space of patching 
functions and not on the space of solutions of the SDYM 
equations. 

(ii) As it stands, the above transformations are a special 
case of those in Forgacs et al.6 To obtain the general ones, 
one must repeat the above transformations n times, alternat
ing with gauge transformations on the patching matrix. 

v. DISCUSSION AND CONCLUSIONS 

The results we have presented here are an extension and 
generalization of the work of many others. I- 5,7,9,15-18 This 
work frequently involves the application of BT's to solutions 
g(xQ) of the SL(2,C) or SL(3,C) Yang-Pohlmeyer equa
tion, obtaining new solutions g' (xQ) or the application of 
BT's to the direct problem of the solution of the Lax pair, 
Eqs. (3.9). An important feature of our work is that these 
methods are reduced to algebraic manipulations and apply 
to arbitrary groups and arbitrary seed solutions. It also re
lates, in a geometric manner, many of the solution generat
ing techniques and ideas. 

One of the more important features of our work is that it 
is now clear what the appropriate generalization of the infi
nite-dimensional transformation groups on the solution 
space of various integrable systems is in the case of ASDYM 
fields. (Recall that in many integrable systems, the BT's gen
erate a group that acts on either the solution space or some 
extension thereof. These groups are typically loop groups, 
with the infinite-dimensional groups consisting of maps 
from the circle to some semisimple finite-dimensional group. 
Their Lie algebras are Kac-Moody Lie algebras.) In the 
complex case, the appropriate extension of the solution 
space to consider is the space n of patching functions 9, 
nonsingular matrix functions of Zj on the domain ~ < I~ I < 2. 
It is straightforward to convince oneself that BT's, as pre
sented in Sec. IV, together with allowable gauge transforma
tions, are dense in the space r of pairs of matrix functions 
(Bo(zj) ,B 00 (Zj») defined on ~ < I~ I < 2. These act on 9 by 

9 -Boo -19 Bo. 

With Euclidean reality conditions, we must also have 
Boo (Zj) = Bo(zj) and P(Zj) = P(Zj ). This group is clearly 
transitive in the complex case. 
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An example of how the above ideas relate to a perhaps 
more familar integrable system is as follows: In the case of 
stationary axisymmetric SL(2,R) solutions (satisfying a 
certain extra symmetry condition) the ASDYM equations 
are equivalent to the stationary axisymmetric Einstein vacu
um equations. This is a well-known integrable system whose 
BT's generate a group known as the Geroch group. This 
group is generated by the basic BT's with ~o = ;0 = 0 (com
pensated by a gauge transformation to preserve explicit axi
symmetry) together with constant gauge transformations. 7 

Kinnersly and Chitre l6 showed that the Lie algebra of this 
group is a Kac-Moody type algebra associated to a type of 
loop group. In Woodhouse and Mason 18 this group is shown 
to be related closely to the subgroup of r that depends only 
on the holomorphic stationary axisymmetric coordinate 
a = Zo + ZI/~ on PT. 

This same technique [for the SL(2,C) ASDYM case] 
also generates the instanton solutions via the Atiyah and 
Ward 10 Ansiitze. 

ACKNOWLEDGMENTS 

The authors thank the relativity groups at the Universi
ty of Pittsburgh and Mathematics Institute, Oxford Univer
sity for valuable comments. One of us (LM) would like to 
thank in particular NMJ Woodhouse for scientific com
ments and the Andrew Mellon Foundation and Esmee Fair
bairn for financial support. 

This work was supported by the National Science Foun
dation under Grant No. PHY80023. 

Ip. Forgacs, Non-Linear Equations in Classical and Quantum Field Theo
ry, edited by N. Sanchez (Springer, Berlin, 1985). 

2A. A. Belavin and V. E. Zakharov, Phys. Lett. B 73,53 (1978). 
3K, Pohlmeyer, Commun. Math. Phys. 72,37 (1980). 
4M. K. Prasad, A. Sinha, and L. L. Wang, Phys. Lett. B 87,237 (1979). 
sE. T. Newman, Phys. Rev. 022,3023 (1980). 
6p. Forgacs, Z. Horvath, and L. PalIa, Phys. Rev. 023, 1876 (1981). 
7N. M. I. Woodhouse, Class. Quant. Grav. 4, 799 (1987). 
"E. F. Corrigan, D. B. Fairlie, R. G. Yates, and P. Goddard, Commun. 
Math. Phys. 58, 223 (1978). 

9M. K. Prasad, A. Sinha, and L. C. Wang, Phys. Rev. 0 23,2321 (1981). 
10M. F. Atiyah and R. S. Ward, Commun. Math. Phys. 55, 117 (1977). 
liE. T. Newman, I. Math. Phys. 27, 2797 (1986). 
12S. Chakravarty and E. T. Newman, I. Math. Phys. 28, 334 (1987). 
I3R. Ward, Gen. ReJativ. Gravit. 15,105 (1983). 
14R. Ward, Commun. Math. Phys. 80, 563 (1981). 
ISR. Geroch, I. Math. Phys. 13, 394 (1972). 
16W. KinnerslyandD. M. Chitre,I. Math. Phys.18,1538 (1977); 19,1926, 

2037 (1978). 
170. Kramer and G. Neugebauer, Ann. Phys. (Leipzig) 24,62 (1969). 
I"N. M. I. Woodhouse and L. I. Mason, "The Geroch group and non-Haus

dorfftwistor spaces," to appear in Nonlinearity. 

Mason, Chakravarty, and Newman 1013 



                                                                                                                                    

A remark on BRST quantization 
P. Thomi 
Institute/or Theoretical Physics, University 0/ Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland 

(Received 30 September 1987; accepted for publication 18 November 1987) 

Using. rigged Hil?e~ space techniques, the scalar product on the BRST cohomology for certain 
bosomc systems IS ngorously defined. 

I. INTRODUCTION 

In the last few years BRST methods have become an 
important tool in the attempts to covariantly quantize theor
ies with gauge symmetries, e.g., strings. 1

•
2 In the path inte

gral formalism the methods introduced by Fradkin and his 
collaborators3 considerably enlarge the scope of the formal
ism as compared to the Fadeev-Popov description. For in
stance, systems of rank:> 1 not covered by the Fadeev-Po
pov procedure (such as gravity) can be treated. In Yang
Mills (YM) theories, gauges with extra ghosts can be cho
sen. Also the operator formalism is very useful, e.g., it pro
vides one of the simplest ways to arrive at the critical param
eters of string theory. 2 

We will be concerned here with the operator formalism, 
namely, with the BRST cohomology and its inner product 
structure. 

In BRST formalism one works in an extended phase 
space containing the usual canonical variables and the 
ghosts. This extended phase space carries a Poisson bracket 
structure. In quantum theory one has to represent the opera
tor algebra corresponding to this structure on a space of 
states. As a result of the gauge symmetry of the considered 
systems this space is too large. To arrive at the true physical 
space of states one has to impose certain constraints and 
make some identifications. The BRST formalism gives a pre
scription showing how to do this. There exists an operator 0 
acting on the "big" space that is Hermitian w.r.t. the Hermi
tian form on the big space and nilpotent, i.e., 02 = O. Note 
that in order for this to be possible the Hermitian form has to 
be nondefinite.AA state is physical if it is annihilated by the 
BRST charge n. Moreover, one has to identify states that 
differ by 0 Ix ). Since 0 is Hermitian and nilpotent we have 

1m 0 C ker 0 and the true physical space is really the coho
mology of the BRST operator, H :RST' The states in 1m 0 all 
have zero norm and are orthogonal to every physical state, 
i.e., they completely decouple. We see that in order for all 
this to work in the indicated way, it is essential to have on the 
big sp~e of states a well-defined Hermitian form w.r.t. 
which n is Hermitian. 

One would like the inner product on the physical space 
to be induced from the Hermitian form on the big space. 
Further, one wants the BRST formalism to give the correct 
quantum theory for systems where it is known, such as YM 
theories and the relativistic particle. Of course, one wants 
the whole procedure to be unique (at least up to equiv
alence) and well defined. 

There are problems with this, however, even in such 
simple systems as the free relativistic particle. Usually one 
takes as the Hermitian form on the big space [compare (6) ] : 

( t/J,¢) = J dp dTJf/J*¢. 

It is stated in the literature that for simple systems (i.e., 
w~en no topological complication~ occur) H :RST is isomor
phiC to the zero ghost states in ker n. The problem is that the 
above Hermitian form is usually not well defined for these. 
Indeed, for the particle the zero ghost states in ker 0 have to 
satisfy the Klein-Gordon equation and hence do not belong 
toL 2. Rather they are proportional t08(p2 + m2). The Her
~itian f?rm is. thus proportional to 8(0) (arising from the p 
l?tegratIon) times zero (arising from the Berezin integra
tion over 7J). One way out is that the ghosts naturally regu
late it, but "so far, this hope has only been substantiated by 
heuristic arguments.,,4 Another is to define the scalar prod
uct only for equivalence classes of physical states. However, 
having no Hermitian form on the big space one loses the 
argument that shows that the states in 1m 0 completely de
couple, and thus their factoring out is not very well motivat
ed any more. For further discussions on this, see Ref. 4 and 
Sec. 8 of Ref. 5. A third way is given in this paper. 

Another problem is that H :RST depends on the bound
ary conditions one chooses the states to satisfy. This was first 
noted in Ref. 6. 

We found a way to rigorously define the Hermitian form 
on the big space for bosonic systems. In order to be able to 
explicitly calculate H*, we had to make the simplifying as
sumption that the constraints only depend on the momenta. 
For such systems the constraints automatically commute 
strongly. This form (constraints only depending on the mo
menta? can be achieved locally for any bosonic system by a 
canomcal transformation in the extended phase space.5 

However, topological obstructions may prevent one from 
b~nging an arbitrary system to this form globally, and thus 
With the above assumption we restrict ourselves to a subclass 
of bosonic systems. This subclass includes the relativistic 
particle and therefore also the zero modes of the bosonic 
string equivalent to the particle. 6 

We start from (*), expand the wave functions in the 
ghosts and do the Berezin integral. We arrive at an expres-

• (j)(2m-j) 

slon where sums of products of the form t/J ¢ are inte-
(j) 

grated over. Here t/J is a coefficient function ofj ghosts in the 

expansion of t/J and 2m is the number of ghosts [see (15) ]. 

Th
' . (j) 
IS IS well defined if whenever t/J is a distribution then 

(2m-j) 

¢ is a test function (or vice versa) or when both are in 

L 2. So the Hermitian form on the big space is well defined if 
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(j) 

the coefficient functions t/J are chosen from suitable parts of 

a rigged Hilbert space (Proposition 1). There are several 
ways of doing this, and in general they lead to different 
H ;RST' This is similar to the dependence of H ;RST on 
boundary conditions mentioned above. We define a charac
ter function X(j) (Definition 2) that indicates in which 
function spaces the coefficient functions ofj ghosts lie. We 
show that for all X( j) that lead to reasonable H '" [these are 
the monotonically decreasing ones with X(O) = 1] the 
BRST cohomology isH '" = S '( C{f) ESS( C{f), where C{f is the 
constraint surface (Theorems 1 and 1'). Thus the arbitrari
ness of X does not show up in the final result, all (consistent) 
choices of X are equivalent. We see that H '" has (more than) 
twice (because the first summand is S I, not S) as many de
grees of freedom as the physical space in more traditional 
quantization schemes, which is S( C{f ). This "doubling" is an 
intrinsic feature of our formalism, it occurs even for trivial 
topology. If topology is nontrivial, additional doublings may 
occur, but this is not considered here. The induced Hermi
tian form on H '" is given in (28). It is not positive definite. 

In order to have a positive definite inner product we 
have to choose a linear subspace n of H '" . This n must be left 
invariant by the algebra of BRST observables, especially by 
the Hamiltonian. There is a whole infinity of such n's but 
they all lead to mutually equivalent quantum theories. These 
quantum theories are also equivalent to the usual quantum 
theory in systems in which we know what the correct quan
tum theory is. Thus by selecting the subspace we also remove 
the doubling. So to speak, the two problems, doubling and 
nondefiniteness of the induced form, cancel each other. Fin
ally we have to complete n w.r.t. the induced inner product 
to arrive at the physical Hilbert space. Although there is 
some arbitrariness along the way, the final Hilbert space is 
unique. 

One should, of course, try to extend these methods to 
more general systems. For instance, one should look at the
ories of arbitrary rank. For these, factor-ordering problems 
in the BRST operator can lead to complications. It would 
also be interesting to examine the consequences of nontrivial 
topology and second-class constraints. An important issue is 
to generalize our procedure to fermionic systems. We have 
some partial results that indicate that similar methods work 
at least in the case of the spinning particle of Galvao and 
Teitelboim.7 But this is left for a future publication. 

The paper is organized as follows: In Sec. II we give a 
short review ofBRST quantization of bosonic systems. This 
is mainly intended to fix notation. In Sec. III we define the 
Hermitian form and determine H ;RST' In Sec. IV we discuss 
the selection of the subspace on which the induced form is 
positive definite. We show that consistent choices exist and 
that they are all equivalent. 

Excellent reviews on the subject of Hamiltonian BRST 
and BFV methods have been written by Henneaux.5

•
8 Most 

of our notation is taken over from there. 

II. BRST QUANTIZATION FOR BOSONIC SYSTEMS 

We denote by (qI",p!-' ),1" = 1, ... ,n, the phase-space vari
ables, by t/Ja, a = l, ... ,m, the constraints, and by A. a the asso-
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ciated Lagrange mUltipliers. The phase-space variables ful
fill the usual Poisson bracket relations. It is convenient 
sometimes to treat the Lagrange mUltipliers on the same 
footing as the canonical variables. To this end we add to the 
phase space the pairs (A. a,1T a) satisfiying [1Tp,A. a] = - ~p, 

In order not to change the dynamical content of the theory 
we have to impose the additional constraints 1Ta = O. We 
denote the constraints ( 1T a,t/J a ) collectively by G a' 

a = 1, ... ,2m. We assume thatthe constraints depend only on 
the momenta and thus have vanishing Poisson brackets. To 
every constraint we add a pair (rt, & a), the ghosts and their 
momenta, of anticommuting variables. They satisfy 

[rt'&b] = [&b,1Ja] = -~~, (1) 

(1Ja)*=1Ja, (&a)*= -&a· 

Since by assumption [Ga,Gb] = 0, the classical BRST 
charge 0 reads 

0= 1JaGa. (2) 

It satisfies 

[0,0] =0. (3) 

To pass to quantum theory we replace the (generalized) 
Poisson brackets by i times the (anti)commutators. So we 
have to represent the following operator algebra: 

A A A 

[~,pv] =ilY:, [,1.a,1Tp] =i~p, [9a'~b] = -i~~. (4) 

Real classical variables must be represented by Hermitian 
operators, imaginary ones by anti-Hermitian operators. We 
consider what might be called the (p, 1T, 1J) representation on 
functions t/J = t/J (p, 1T, 1J ). Of course, there are also other rep
resentations, but this is the most convenient one for our pur
poses. The operators act as 

;.p. . a A 'a' a 
Of =1--, p!-, =P,., /l =1--, 

ap!-, a1Ta 

. al 

~a = 1Ja, fj) b = - 1- . 
a1Jb 

(5) 

These operators have the right Hermiticity properties w.r.t. 
the Hermitian form 

(t/J,t/J) = ;k J dp d1T d1J 1/I*t/J, (6) 

wherek = m{mod 2). This factor has to be included to have 

(t/J,t/J)'" = (t/J,t/J). 

Expression (6) is what is usually given in the literature.5 So 
far it is only a formal expression; it will be rigorously defined 
in Sec. III. 

Since all variables occurring in the classical expression 
for 0 have vanishing Poisson brackets, we have no factor
ordering ambiguities and therefore we may simply substitute 
the operators (5) for the classical variables in the expression 
(2) for the classical BRST charge. We thus have 

fl = ~aGa. (7) 

Nilpotence of fl, Le., 
A2 o =0, (8) 

is readily checked as well as Hermiticity w.r.t. the Hermitian 
form (6). The condition for a state to be physical is 
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(9) 
A 

and one has to identify !llx) with 0, so 
A 

11/I)phys -11/I)phys + !llx), (10) 

and thus the physically relevant space is 

ker OJ - = ker O/lm 0 = H :RST> (11) 

i.e., the cohomology of the BRST operator. Since (1/I,t/J) = 0, 
A A 

V ¢'Eker !l, cpelm !l, the Hermitian form (6) induces a Her-
mitian form on H * which we again denote by ( . , . ). We re
quire it to be nondegenerate, but we do not require it to be 
positive definite. 

Also, the observables are grouped into equivalence 
classes. An operator A is a BRST observable if 5 

( 1) it is Hermitian and even, 
(2) it has ghost number zero, i.e., commutes 

w~hA the ghost number operator, 
(12) 

( 3) [!l,A] = O. 
We identify two observables if they differ only by [K,O], i.e., 

A-A' =A + [K,O]' (13) 

where K is any operator that lowers the ghost number by one 
unit. The action of the BRST observables is well defined on 
H * since they map physical states into physical states and 
map 1m 0 into itself as follows from (12) (3). For more 
details see Ref. 5. 

III. THE SCALAR PRODUCT AND /l;RST 

In the expression (6) for the Hermitian form a Berezin 
integration over the anticommuting variables TJ occurs. In 
order to perform this integral we expand the wave functions 
in the TJa 's: 

2m 
1/1 (p,1T,TJ ) = L L 1/Ia" ... ,aj (p,1T)TJa, . • ·TJa

j
. (14) 

j=O a j 

The coefficient functions are antisymmetric in al, ... ,aj • Put
ting this in (6) and using (TJaTJb)* = (TJb)* (TJa)* = TJbTJa, we 
get 

./. A. ·k f d n d m ~ ~ .,'* A. a l ," "a2m ('I"'f') = I P 1T £. £. 'f'aj"'a,'f'aj+I"'a2m€ , 
j=O a j = 1 

(15) 

where €1"'2m = 1. We note here a similarity to differential 
forms. We can associate to 1/1 a "Hodge dual" defined by 

1/1 a "'a 1 a,"'a2m 1/1 (16) 
(* )' J= [(2m-j)!] € aj+I"'a2m' 

This is exactly the same definition as for differential forms, 9 

and as there it holds 

(17) 

With this notation the Hermitian form can be written as 

2m (j) (j) 2m f (j) (j) 

( 1/I,t/J) = /~o ( 1/1, t/J ) = /~o dp d1T 1/1 * ( * t/J ), (18) 

i.e., is similar to a sum over scalar products ofj-forms. We 
denote the space of coefficient functions 1/Ia''''a/p,1T) by Oi, 
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and we may write ¢'E!l*, where!l* = Gl jOi. This is the same 
notation as used in the deRham theory. 

The expression (15) would be well defined if all the 
1/Ia''''a

j 
were square integrable functions. This is not general 

enough, however. For instance, in the case of the free relativ
istic particle we should recover the well-known one-particle 
quantum theory. The states of this theory are _ 8 (p2 + m2). 

Thus we have to find a way to give (15) a proper meaning 
even when generalized functions are involved. In practice 
these generalized functions usually are 8 functions. 

The same problem appears in the Dirac procedure. The 
physical state condition (p2 + m2) 1/1 = 0 has only the zero 
solution if ¢'E L 2. Thus one has to modify the original Dirac 
approach to also allow for generalized functions. Similar 
problems occur also in quantum mechanics whenever opera
tors with continuous spectrum are considered. As seen be
low, the BRST formalism is able to master this in an elegant 

way. 
The natural extension of the concept of a Hilbert space 

when generalized functions are involved is a rigged Hilbert 
space, \0 which we now proceed to define to the extent we 
need it. 

Definition 1: Let lHo be a space offundamental functions 
(test functions) over some manifold M. In Do let there be a 
positive definite, nondegenerate, continuous, Hermitian in
ner product (','). Let HI/2 be the completion oflHo w.r.t. 
this inner product. Let lHl be the adjoint space to lHo. There 
exists a continuous linear operator T which maps lHo 1-1 
onto an everywhere dense subset in 8 1/2 and its (antilinear) 
adjoint T' maps 8 1/2 1-1 onto an everywhere dense subset in 
lH l. The triple lHoC lHI/2 C lHl is called a rigged Hilbert space. 

Remark: This lHo has to be a countably Hilbert nuclear 
space. This is the case for the usual test function spaces. 

We take as M the space spanned by p,1T; as lHo the C co 

functions from M to C that decrease together with all their 
derivatives faster than any power, i.e., lHo = S(M). The in
ner product is (1/I,t/J) = S AM1/I*t/J, where AM is the Lebesgue 
measureonM, lH I/2 isthenL 2(M) andlHl = S'(M). We use 
the notation S, L 2, S' even though the considered functions 
are complex valued and usually the S, L 2, S' functions in the 
literature are real valued. (We choose lHo = S in order to 
have it invariant under Fourier transformations.) So the 
rigged Hilbert space we will work in is 

S(M) 

II 
C L2(M) 

II 
C S'(M) 

II 
lHo C HI/2 C lHl 

(19) 

To describe in which part of the rigged Hilbert space the 
coefficient functions lie, we introduce the following nota
tion. 

Definition 2: The character of a space of coefficient func
tions Oi is defined by 

xU) = x(x = O,P) iff Oi = (lH,,) (2;"). 

In ( 15) in every summand an element of Oi is multiplied 
by an element of !l2m - j and then integrated over. If xU), 
x(2m - j) <!, then the S sign means Lebesgue integration. If 
xU) = 1, X = (2m - j) = 0 (or vice versa), it means that 
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the linear functional'l/1*eS' is evaluated on the test function 
</JeS (or vice versa). Although this is not an integral in the 
usual Lebesgue sense, it is nevertheless common to use the 
same notation for this operation. In all other cases the 
expression ( 15) is ill defined. Summarizing we have the fol
lowing proposition. 

Proposition 1: (a) The Hermitian form (15) is well de
fined iffX(j) + x(2m - j)<1. 

(b) For (15) to be well defined it is necessary that 

x(m)<!. A A "'-

For rank 0 systems the action of n = "tGa on '1/1 is de
scribed by the operation p: nI -+ fii + I defined by 

(20) 

The square bracket means antisymmetrization, and it is ob
vious that p2 = O. So we have that 

p' p',! ,!+ I p2m 

0-+ n° -+ n 1-+ ... -+ fii -+ ... -+ n 2m -+0, 

H 2m 

(21) 

where 

nI = HXU) 

is a differential complex, the BRST complex, and our task is 
to calculate its cohomology: 

H~RST = EIlH~RST = EIlker pH I/Impj. (22) 
j j 

Let us start with HO = ker pi = {'I/1olGa '1/10 = 0, Va}. In the 
representation we have chosen for the quantum operators, 
these are just algebraic equations for '1/10' If X(O) = 0, !, the 
only solution is '1/10 = 0, If X(O) = 1 then every distribution 
of the form na {j( Ga )d, where d is any distribution on the 

constraint surface <6, <6 = n (Ga = 0), is a solution, the 
a 

space of solutions is thus isomorphic to S ' ( <6 ). This space 
S' ( <6 ) should not be confused with the subspace of S' (M) of 
all distributions which are concentrated on <6. The latter 
contains elements like {j functions concentrated on <6 de
rived in directions nontangential to ~; these are not annihi
lated by all Ga. Thus we have the following proposition. 

Proposition 2: 

° {O, if X(O) = O,!, 
H = 

S'(<6), if X(O) = 1. 

For the general case we have to look at ... 
pi pi+ I 

-+ fii - I -+ fii -+ nI + I -+ .. '. We split it up in several prop-

ositions. 
Proposition 3: If X(j»! and X(j - l»X(j), then 

Hj = 0, Vj. 
Prool: Since nl/lmpj;:?ker pH I/lmpj, it is sufficient 

to show that fii 11m pj = 0 under the above assumptions. We 
have to consider three cases. 

(a) X( j - 1) = ! = X( j): The image of HI/2 under p 
are all L 2 functions that vanish on <6. But since <6 is of 
measure zero this is ismorphic to L 2, since in L 2 any two 

1017 J. Math. Phys., Vol. 29, No.4, April 1988 

functions differing on a set of measure zero are identified. 
Thus fii/lmpja;:H1/21H1/2 = O. 

(b) X(j-l)=I,X(j)=!: Note that in this case 
Dompj;ffii- I. But surely Domp j::JHI/2 Uker pj, and we 
can proceed as in (a). 

(c) X(j-l) = 1 =X(j). In this case Impj=HI, 
e.g., {j(G) can be removed with {j'(G), etc. So fii/lmp 
=HI/HI =0. 

Proposition 4: If X(j) = 0, then (a) H j = O(j < 2m) 
and (b) H 2m =S(~). 

Proof' Since HoCHI/2CHI' it is sufficient to look at the 
case when X(j - 1) = O. We thus have to calculate H * in 
the case where all coefficient functions are test functions. We 
exploit the similarity to differential forms to connect our 
problem to a theorem proved in Ref. 5. In Ref. 5 an operation 
{j2 was defined by 

({j2'1/1)a''''aj - ,= 'I/1a,"·aj Ga· 
J 

It maps fii to fii - I. One can show that 

p = - *{j2*, (23) 

i.e., {j2 is the adjoint of p which can be considered as an 
exterior derivative. Theorems 3.1 and 3.2 in Ref. 5 state that 
the cohomology of the differential complex 

fj, 

0-+n2m -+ ... -+n°-+o 

is trivial if the functions making up the fii's are sufficiently 
regular in a neighborhood of C(j. This is satisfied for the test 
functions S(M). Using these theorems we can calculate the 
cohomology of the BRST complex ( n * ,p ). t/JE ker p iff 
p'l/1 = 0 iff, because of (23), -*{j2*'1/1 = O. This holds iff 
{j2*'1/1 = o. Now applying the theorems of Ref. 5, *'1/1 = {ji( 
for some K must hold. Taking the Hodge dual of this equa
tion we get, using (17), 

U-l) 
- *{j2* ( - 1 )j* K . 

Dividing by ( - l)j and using (23), we get '1/1 = p*K = pK, 
(2m) 

i.e., t/JElm p. Thus ker p = 1m p whenever '1/1 = 0 so that 

{j2*'1/1 is defined. This proves (a). 
(b) For 1/Jelmp2m it holds that 'I/1lcc = O. Ifx(2m) = 0, 

functions such as {j' ( G), etc., are not in the domain of p2m, 
since their image under p would be a {j function and thus lie 
outside Ro. We have Imp2m = {1/JeS(M) 1 '1/11 cc = O}. So two 
functions in n2m are equivalent iff they coincide on <6. Thus 
H 2m = n2ml _ a;:S(~). 

Remark: The similarity to deRham theory exploited in 
the proofis only formal, e.g., Poincare duality does not hold 
in H ~RST in general as is seen from the above. Proposition 4 
states that when only test functions are allowed then 
H * = H 2m = S( <6 ). In the literature usually it is stated that 
H* = HO. This would be the case if X(j) = 1, Vj, as seen 
from Propositions 2 and 3, but in this case the form ( 15) is ill 
defined (Proposition 1). 
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Here we also note that H * depends on X (j). This is an 
observation similar to the one that H * depends on the 
boundary conditions imposed on the coefficient functions 
made in Ref. 6. Below we will see that for all X such that H * 
contains a subspace on which the induced form is a positive
definite scalar product, we arrive at a unique H *. 

In the remaining cases, X(j - 1) <X(j). We do not 
need the explicit form of H j in these cases, since if we require 
H * to be such that the induced form on it is nondegenerate 
and that it contains a subspace on which that form is even 
positive definite, then they can have only a trivial intersec
tion with that subspace. We must require to have such a 
subspace, since this will be precisely the physical pre-Hilbert 
space. 

Lemma 1: IfX(j - 1) <X(j), then Hj#O. 
Proof: ker pH I :Jp(Hx(j» since p(Hx(j) ) efii and 
z· . 

p = O. So H1:Jp(Hx(j) )/lm/pl#O. 
The next proposition shows that X (j) can never raise to 

the value 1. 
Proposition 5: For the induced form on H * to be nonde

generate, it is necessary that whenever X (j) = 1 then it must 
hold (a) X(j') = 1, Vf<j, and (b)j<m. 

Proof: If X(j) = 1 then by Proposition 1, x(2m 
- j) = O. Assumex(j - 1) < 1. Then by Lemma 1, Hj#O. 

In order that no degenerate directions occur, H Zm - j also has 
to be nonzero, as is seen from (15). This, however, contra
dicts Proposition 4. Iterating this gives (a). Then (b) fol
lows from (a) and Proposition 1 (b) . 

This excludes X(j - 1) = O,! and X(j) = 1. The last 
case to be discussed is X( j - 1) = 0 and X( j) =!. To do 
this we need a result from the theory of linear topological 
spaces. 

Lemma 2: If X is a topological VS, Ya linear subspace, 
then X /Y is Tz{::} Y closed in X. 

This is proved in Ref. 11 (Proposition I, p. 77). With 
this we now show the following proposition. 

Proposition 6: If X( j - 1) = 0, X( j) = !, then H j does 
not contain a nontrivial, normable subspace. 

Proof: By Proposition 4, ker p I H = 1m p and since Ho is 
dense in HI/z, we also have 1m e. = ker p. We call ker p = X, 
Imp = Y. We have Y #Xand Y = X. We have to look at the 
linear subspaces A ex / Y. This A is of the form U / Y with 
U = (A X Y) ex. It is a topological VS (with the subspace 
topology), and Y = U where the closure of Y is taken in U. 
So the assumptions of Lemma 2 are satisfied, and since Y is 
not closed in U, A is non-Hausdorff and therefore not nor
mabIe whenever A #0. 

Actually we have proved more, namely, that every non
zero subspace of H j and thus H j itself is non-Hausdorff. This 
means that this space can never occur in the true physical 
subspace of H*. However, we cannot exclude it completely 
from H *. To this end we have to make an additional assump
tion. Two possiblities are given by Theorems 1 and 1 I. 

Theorem 1: If H *, nontrivial, is such that the induced 
Hermitian form is non degenerate and there exists a subspace 
having nontrivial intersection with every H j # 0 such that on 
that subspace the induced form is positive definite, then 

1018 

(i) X is monotonically decreasing, 
(ii) X(O) = 1, x(2m) = 0, 
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(iii) H* = HO (f)H 2m = S'(l$') (f)S(l$'). 
Proof: (i) According to Proposition 5, X can never raise 

to 1. According to Proposition 6, X cannot raise to!, because 
if it did, there would occur nonzero (Lemma 1) Hj which 
have trivial intersection with the true physical subspace. 
Thus X is monotonic. 

(ii) If X(O) # 1, then X(j)..;;!, Vj, by (i). But then 
H * = H 2m by Propositions 3 and 4. So either H * = 0, if 
H 2m = 0, or the induced form is degenerate, if H 2m # O. 
Thus X(O) = I, x(2m) = 0, follows by Proposition 1. 

(iii) By (i) and Propositions 3 and4,Hj = Oifj#0,2m, 
soH* = HO (f)H 2m

• By (ii) andPropositions2and4(b) the 
claim follows. 

The additional assumption that only H Ps should occur 
that contribute to the true physical subspace is reasonable, 
but as we have seen above, it is not necessary for consistency, 
An alternative additional assumption, with which one also 
can prove the claims (i)-(iii) of Theorem 1, is that the in
equality in Proposition 1 (a) is always satisfied with the 
equality sign. This is a sensible restriction on X. One should 
always choose function spaces as big as allowed by Proposi
tion 1 (a) and not artificially restrict oneself to smaller ones. 
In this case one can prove (i )-( iii) without using Lemma 2. 

Theorem I': If H * nontrivial is such that the induced 
form on it is nondegenerate and X satisfies 

X(j) + x(2m - j) = 1, (24) 

then (i)-(iii) of Theorem 1 hold. 
Proof: (ii) If X(O) # 1 then X( j) # 1, Vj, by Proposition 

5. By (24) it must then hold X( j) = !, which gives H * = 0, 
contradicting the assumptions. 

(i) X(j) #0 forj<m because otherwise x(2m - j) had 
to be 1 [by (24)], which contradicts Proposition 5. Once X 
drops to !, which occurs at m at the latest, it can never raise 
to 1 again by Proposition 5. Therefore, if X is monotonic for 
j<m, then the fact that it is also monotonic forj>m follows 
from (24). 

(iii) As in Theorem 1. 
The results are summarized in Table I. 

Theorem I' establishes that for reasonable choices of X, 
H * does not depend on X. For definiteness, in the sequel, we 
will always assume 

X(O) = 1 x(2m) = 0, X(j) =!, j#0,2m. (25) 

We see that (at least) a "doubling" [actually it is more than 
a doubling since S ' ( 1$' ) :J S ( 1$' )] of the degrees of freedom 
compared to more traditional quantization schemes is a gen
eral feature of bosonic systems even when the topology is 
trivial. Such a doubling is well known in the literature.4-6,8 It 
is removed by scalar product arguments, but usually the dis
cussion is rather heuristic. We will systematically treat this 
problem in Sec. IV. 

Sincep is Hermitian w.r.t. (15) and nilpotent, a Hermi
tian form is induced on H * by (15). It is given by 

with tPo,l/JoES'(l$') and tPl"'2m,l/JI"'2mES( C#f). We introduce 
the abbreviations 
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TABLE I. The BRST cohomology groups Hi as a function of X(j - I) and X(j) UFO). 

x(j-I) X(j) Hi(j#2m) HIm Remarks 

0 0 0 S('if ) 

! 0 0 S('if ) by Proposition 4 

0 0 S('if ) 

0 non-TI non-T2 by Proposition 6. Excluded under additional assumptions. 

! ! 0 

1 ! 0 

0 

! 
0 

"'1"'2m = "'2m' tfirm ... t = tfirm' (27) 

Since "'o,t/JoeS' (~ ), the "integral" in (26) is effectively only 
over ~ and not over M. We may thus write 

(""t/J)IHO = jk L dIL(~)(~t/J2m + (-1)
mtfirmt/Jo)· (28) 

The positive measure dIL ( ~) on ~ is defined by 

AM = dG I /\·· ·/\dG2m dIL(~)· (29) 

It is an (n - m)-form, the volume form induced on the 
(n - m)-dimensional manifold ~. The solution of this 
equation is not unique, however, if dIL and d{L are two solu
tions, then 

f r:p dIL = f r:p d{L, V rpelElo· 

dIL can be given an expression in coordinates: 

(30) 

where (G I ···G2mlx l 
•• ·x2m ) is a maximal rank minor of 

(aG;laxk) andxk = 1Ta , PI'. We will never need the explicit 
form of dIL, so this may suffice. For details the reader may 
consult Ref. 12, Chap. III, Sec. 1, No.9. As an example we 
do the free relativistic particle. 

Example: For GI = 1T, G2 = p2 + m2, Xk = 1T, PI" 
AM =d 4pd1T, 

GI G2 a1T ape 1 0 ° 
det( Xl x2) = det aG

2 
aG

2 
= det (0 2pO) = 2p , 

(

aGt aGI) 

a1T ape 

therefore 

dIL = d
3
p . 

2po 

This depends, of course, on what coordinates we have cho
sen to parametrize the mass shell. It is no wonder that the 
relativistic measure emerges since both AM and the con
traints are relativistically invariant in this example. 

The induced Hermitian form on H· is still not positive 
definite: 
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0 
0 

0 

Theorems 1, l' 

by Proposition 3 

excluded by Proposition 5 

by Proposition 3 

II "'112 
= jk L dIL( ~"'2m + ( - 1) mtfirm "'0) 

= 2 L dILl "'01 I "'2m I~ (arg "'0 - arg "'2m) m odd 
m even· 

(31) 

From this expression we also note that lI"'11 2ER as it should 
be. 

Let us summarize what we achieved thus far. We have 
described a formalism that naturally allows for distributions 
to occur. In this respect it is superior to the original Dirac 
formalism where the states are represented by square inte
grable functions only. Often it happc;!ls there that the solu
tion of the physical state condition Ga I"'> = 0 only allows 
the zero state (e.g., this is the case for the particle). We 
proved (under some reasonable assumptions) that H· is 
unique and does not depend on the character function X 
(Theorems 1 and 1'). However, we have two problems: (1) 
compared to more traditional quantization schemes we have 
a doubling of the degrees of freedom; and (2) the induced 
form on H· is not positive definite. But, as we will see below, 
these problems cancel each other so to speak. We were in 
trouble if we had either only the doubling or only the nonpo
sitive definiteness of the induced form, because if so, the 
BRST quantization could not be equivalent to other quanti
zation methods for our bosonic systems. In order to get a 
positive-definite scalar product, we have to choose an appro
priate subspace of H·. By this "truncation" or "selection 
rule" (both expressions are used in the literature) we also 
remove the doubling. This is the subject of the next section. 

IV. THE SUBSPACE(S) WITH POSITIVE-DEFINITE 
INNER PRODUCT 

We have to choose a subspace II C H • on which the Her
mitian form (28) is positive definite. This subspace has to be 
linear since we are dealing with quantum mechanics, i.e., 
""t/J,EII =} a'" + pt/JEII. The task is to determine all possible 
choices for II. We start by considering a mapping P: 
S(~) =}2S '('iC) defined by 
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P( "'Zm) = {"'oES' ('tr) 111"'11 2 > 0; 

"'oEP( "'Zm ) A rfJoEP( rfJZm ) 

~a"'o + /3rfJoEP(a"'Zm + /3rfJZm), VrfJ}. (32) 

Note that P(O) = 0. The linearity requirement turns out to 
be very restrictive. It implies that there can be only one "'0 
with every "'2m' Indeed, ifthere were two "'0 and "'0 say, then 
the difference ("'0' "'Zm) - ("'0, "'Zm) = ("'0 - "'0, 0) 
would be a zero norm state which is not the zero state. So, in 
fact, P: 8( 'tr) -+8' ('tr), and since it has to be linearit is of the 
form 

P( "'Zm) = I"'zm' IES' ( ~) fixed. (33) 

But not every feS' ('tr) is allowed in this formula. We have 
Proposition 7: 

1I"'1I2 >0¢}{lm/ >0 (m odd), 
Rei> 0 (m even). 

Proot We do it for m odd. The other case is similar. 
From the above we have "'0 = I"'zm. We put this into the rhs 
of (31). This turns out to be positive for all "'Zm'= 0 iff 
sin(arg"'o-arg"'zm) =sin(arg/) is positive on~, i.e., 
Im/> 0 on all of'tr . 

There are many possible chocies of linear subspaces II 
on which the inner product is positive definite. They are 
indexed by the the set of generalized functions from 'tr to the 
upper (m odd) [or right (m even)] complex half-plane. 
However, 1I,~8( 'tr), Vf Actually, we have the following 
proposition. 

Proposition 8: (II,; ( ... ) In) and (lIg; ( ... ) In.) are iso
morphic scalar product spaces. By this isomorphism F, an 
isomorphism F. bet~een the operator algebras over II, and 
IIg is induced. Thus A is Hermitian if and only if F.A is. 

Proot Let m be even. Then m odd is similar. It is suffi
cient to prove that all lIe's are isomorphic to III' The scalar 
products in II I and II, are (28): 

("',rfJ) In, = 2 f dp, r/JrmrfJzm' 

("',rfJ) I n
f 

= 2 f dp, Rei r/Jrm rfJzm . 

The isomorphism Fbetween III and II, is given by 

F( "'Zm ''''Zm) = ( I /..jRe/)"'zm; (lI..jRe/)"'zm)' 

This is well defined and invertible since Re I> 0 according to 
Proposition 7. Clearly F: III -+11, is 1-1 and linear. AlsoFis 
isometric: 

(F""FrfJ) In = f dp, 2 Re/_
1
_ "'~m _1_ rfJzm 

f ..jRe I ..jRe I 

= f dp,2r/JrmrfJzm = ("',rfJ) In,. 

The induced map between the op~or algebras ov~r II I and 
II, respectively, is defined by (F. A) (F",) = F(A",), thus 
F. is given by 

A A 

F.A =FAF- I. 

The last claim follows trivially from the definition of F. and 
the fact that F is an isometry. 

The choice of I is further restricted by the (minimal) 
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requirement that II, must be left invariant by the algebra of 
BRST observables, especially, it must be left invariant by the 
Hamiltonian. By (12), BRST observables act on H*, and 
they do not mix the H j (since they commute with the ghost 

A. A A ........ 

number operator). So A must be of the form A = Ao ED Azm , 
A A 

whereAo acts on H ° andAzm on H Zm. In the next proposition 

we show that Ao I S(,iC) = Azm . We use a matrix notation for 

A. The 2Zm X2Zm matrix A acts on the space n* = EDOi, 
j 

which is considered as a 2zm-dimensional space. The dimen-
sion ofOi is (tm) in this notation. We then have the following 
proposition. 

Proposition 9: In every equivalence class 3A ofthe form 
A A A 

A'1 with A commuting with Ga. 
A A A 

Proof' From (12),2, it follows A = ED Aj' where Aj acts 
. A . ] 

on 0', i.e., A transforms every 0' into itself. The proof pro-
A A 

ceeds by induction onj. Forj = 0 we have Ao = A'1 since n° 
is one dimensional and A is first class as follows from 
( 12) (3) when considered at p = o. [Compare, e.g., Ref. 5 

A 

formula (6.1.6).] In every equivalence class there is an A 
A: A 

such that even A commutes with the Ga (see Ref. 5, Sec. 
7.3). Then from (12) (3) follows 

A. A. AA 

Aj+IP=pAj =pA =Ap, 
A A 

and thus Aj + I = A'1 which comple,tes the p~oof. 
So we ~ust have I such that I A "'Zm = A I "'Zm for all 

observables A. This is the case if one choosesl constant. Such 
a restriction does not contradict Proposition 8. We illustrate 
this by an analogous finite-dimensional example. 

Example: Let H = R2 with coordinates xo, Xl. As sym
metric bilinear form, we choose (x;y) = x°yl + xlyO. It is 
nondegenerate, XO and Xl axes are null directions. Restricted 
to the subspace lIa = {xeRZlxo = axl}, the norm induced 
by ( ; ) is IIxl12 = 2a(xl )z, i.e., ( ; ) Ina is positive (negative) 
definite iff a> 0 (a < 0). We have 

(x;y) Ina = (x;Y)a = 2axlyl. 

The spaces (lIa ,(")a) and (lIp,(',)p) (a,{3> 0) are iso
morphic. The isomorphism is given by 

F(axl,xl) = (.J(iii xl;..ja/3 -IXI), 

and we have indeed 

(Fx,Fy)p = 2{3(FX)I(Fy)1 = 2axlyl = (x,y)a' 

Now consider the algebra r oflinear transformations on H2 
which consists of maps that scale the 45° direction by a factor 
r and/or do an overall scaling by u. They are given by the 
two-parameter family of matrices 

!!... (r + 1 r - 1) , 
2 r- 1 r+l 

which are self-adjoint w.r.t. (.,), as is easily checked. When 
we demand that lIa be mapped into itself by the algebra r, 
then we must have a = ± 1 since II ± 1 are the only sub
spaces which are mapped into themselves by all elements of 
r. 

Note also that whenl commutes with A, then the map
ping F * introduced in Proposition 8 is the identity mapping. 
A convenient choice for/is 
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(34) 

where k again equals m (mod 2), since this leads directly to 
the usual Klein-Gordon product in the case of the free rela
tivistic particle. Other choices of f = const are unitarily 
equivalent to this by Proposition 8. In summary we have the 
following. 

Theorem 2: There exist subspaces "/CH· isomorphic 
to the physical space of the more traditional quantization 
methods (in the cases where the latter work), which are left 
invariant by the algebra of BRST observables and which 
carry a positive-definite inner product induced from the 
Hermitian form on the "big" space of states. The quantum 
theories corresponding to the different choices of these "t's 
are all equivalent. The completion of "l w.r.t. this inner 
product yields the physical Hilbert space. 
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It is shown that the necessary and sufficient condition for the Yang-Mills equations 
(associated with an arbitrary group G) to be derivable from a Lagrangian (which is polynonial 
in the derivatives of the connection) is that the Lie algebra p of G possesses an invariant 
nondegenerate quadratic form r. It is well known that for semisimple groups such a r exists, 
namely the Killing form. What is not so well known is that such a r exists for many other 
groups and in particular for many solvable and nilpotent groups. Several examples in this class 
are discussed. 

I. INTRODUCTION 

The framework of classical Yang-Mills theory is a prin
cipal G bundle over a Riemannian (or pseudo-Riemannian) 
manifold (M,g); in most of the recent developments G is a 
compact Lie group. It is, however, easily observed that, 
when G is a solvable Lie group, the nonlinear classical Yang
Mills field equations possess an interesting linear structure. 
They can be divided into ordered sets of equations with the 
following properties: the first set is a collection of homoge
neous linear equations (a set of independent Maxwell equa
tions); each of the following sets is also linear but not homo
geneous, the coefficients being determined in terms of the 
previous sets. This linear structure suggests that in such a 
situation one could exhibit or study a nontrivial but solvable 
model for quantization. 

Unfortunately the "generic" solvable Yang-Mills theo
ry has field equations that cannot be derived from a vari
ational principle1

; hence no standard canonical formulation 
of a quantum theory is available. A simple example of such a 
situation is provided by the group of affine transformations 
of the real line, the two-dimensional Borel group (see be
low). 

Nevertheless there are particular solvable and even nil
potent, non-Abelian Lie groups such that the corresponding 
Yang-Mills equations are indeed the Euler-Lagrange equa
tions of a variational principle. 

II. EXISTENCE OF A LAGRANGIAN 

Let 1T: P-+Mbe a principal bundle with structure group 
G; assume (M,g) is an oriented pseudo-Riemannian mani
fold of dimension m and that G is a connected Lie group of 
dimension n. Let r be a symmetric bilinear form on the Lie 
algebra rr of G; let w be a connection one-form on P (which is 
rr valued) and let fi be the corresponding curvature two
form. Let {U a; aEA, an indexing set} be an open cover of M 
such that P I Ua is trivial and let u a: U a -+ P be a section of 
PI Ua' The curvature field Fa =ua*fi can be used to define 
an m-form on Ua , namely 

Fa 1\ *Fa 

aJ Chercheur qualifte au F.N.R., Belgium. 
bJ Present address: FAMAF, Laprida 854, 5000 Cordoba, Argentina. 

(where * is the Hodge dual relative to the pseudo-Rieman
nian structure g and the given orientation) which has values 
in rr ® rr· If one evaluates r on this element one obtains a real
valued m-form, which we shall denote 

(2.1) 

If r is Ad G invariant, La is the restriction to U of a global m
form L on M. If M is compact, or if the curvature fi has a 
support F such that 1T(F) is compact, one can define the 
integral 

(2.2) 

where Vg is the pseudo-Riemannian volume form associated 
to the given orientation; the function .Y is the Lagrangian. 

Assume the open set U is the domain of a chart of (M,g) 
and denote by xa (a';;;:m) the corresponding coordinates: let 
U be a section of P I u. Choose a basis X A (A.;;;: n) of rr and let 
CAB cbe the structure constants of rr in this basis. Write 

ifJ=u*w, F=u*fi, 

and thus components in this coordinate basis read 

(u*W)(.!-.) = (u*w)a =ifJa A(X)XA, (2.3a) 
axa 

(U*fi)(.!-. ,.!-.)=(U*fi)ab=FabA(X)XA. (2.3b) 
axa axb 

Then 

Fab A(X) = ifJb,a A(X) - ifJa,b A(X) + ifJa B(X)ifJb C(X)CBc A, 
(2.4) 

where a = a /axa
• Also 

(2.5) 

with 

.. 1 ( a a) rAB = r(XA,XB), g'l= (g- )ji> gkl =g axk ' axi . 

The Euler-Lagrange equations corresponding to the 
functional S (defined on some space of connections) read 

r(*d*F + * [*Fl\ifJ]) = 0, (2.6) 

where r: rr -+ rr* is the linear map associated to r. Expressing 
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(2.6) in the chart U one gets 

YAB [VsFtb B + ifJs cF'b DCCD B ]g" = 0, (2.6') 

where V is the covariant derivative relative to the Levi-Civita 
connection of fl'. 

We will consider (by definition) that (2.6') are the 
Yang-Mills equations. With YAB an invariant quadratic 
form on the Lie algelera we see that they are the Euler
Lagrangian equation of the Lagrangian (2.5). The converse 
question then arises; given Eq. (2.6'), when are they deriv
able from a Lagrangian? 

Expanding (2.6') in terms of the derivatives of ifJa A we 
have 

(tkg/j - g/jgki)YAB a 2 ijifJK B 

+ (tbgjkCBKDifJb KYAD + 2tkgjSCGB
DifJs GYAD 

- g/jgk'CGBDifJ, GYAD - tkg"rs/YAB + tjg'Tst kYAB 

- glbgjT ky _ glbgktr jy )a '" B ,b AB ,b AB j'l'K 

- (tbg"yADr,s mCGKDifJm GifJb K 

+ tbg"YADr'b mCGKDifJs GifJm K 

- glbg"YADCPQDCGKQifJs GifJb K). (2.6" ) 

The r 's m are the Christoffel symbols of g. 
The field equations are now defined to be Eqs. (2.6") 

where Y is any nondegenerate quadratic form on fl'. (They are 
equivalent (as Y is nondegenerate) to 

In what follows we shall denote by ifJa (a.-;;,,N = nm) the 
components of the connection ifJ k B. 

We now wish to find under what circumstances (2.6") 
are the Euler-Lagrange equations of a Lagrangian. We first 
state Lemma I, which is proved in the Appendix. 

Lemma 1: Let Ube a contractible open set of R m; let E' 
be the Banach space of fields ifJa' a.-;;,N, defined on U, com
pactly supported and of class C' (r:;;. 3). If the field equa
tions (2.6") are the Euler-Lagrange equations associated to 
a Lagrangian!f, defined on U XE'XE'-l, 

which has a polynomial dependence in the last variables and 
which is at least twice differentiable, then this polynomial 
may be assumed to be of degree 2 and the coefficients of the 
terms of order 2 depend on x" only. 

Remarks:(i) The Banach space E'XE,-l can be re
placed by another "reasonable" Banach space associated to 
this problem; it is introduced only to be able to use in the 
proof Poincare's lemma in an infinite-dimensional frame
work. 

(ii) The Lagrangian (2.5) is of the type described in 
Lemma!. 

Lemma 2: If the field equations (2.6") are the Euler
Lagrange equations of a Lagrangian !f as in Lemma I, then 
r is necessarily an invariant nondegenerate quadratic form 
onfl'. 

Proof By Lemma 1, one may assume that 
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The corresponding eA ) Euler-Lagrange equation, 
d fdx"(a!f fa [aaifJ/] - a!f faifJ/) = 0, reads 

2aij,k/B (X)a\ifJk A 

+ (2a.aii,k 1 (x)- a(bj,kB) 
I A B aifJ/ 

+ A a'" B 
a(bj,1 ») 

aifJ/ j'l'k 

'1 ac +a.bJ'A ---=0. 
I aifJ/ 

By comparing the coefficients of the terms linear in ajifJk B 
with the equivalent terms in (2.6") one sees that 

a(bj,IA) a(b j·kB) 

aifJ/ aifJ/ 

= YADCBKDifJb K(tbgjk _ 2gjbtk + g/jgkb) 

+ SjklBA (x). 

By antisymmetry in (kB/A) of the left-hand side we have 

YADCBKD + YBDCAKD = o. (2.7) 

This is the condition for the invariance of yby ad fl'. In order 
to see this, consider the invariance condition 

YABVAVB = YABUACUBDVCVD, 

with V A in the Lie algebra and U A B in the adjoint represen
tation of G. Letting U A B = {jAB + ~C DB A we have Eq. (2.7) 
as a consequence. 

Lemmas I and 2 prove that the Yang-Mills equations 
(2.6") corresponding to a Lie group G are derived from a 
variational principle if and only if the Lie algebra fl' of G 
admits a nondegenerate invariant quadratic form. 

Observe that the invariance condition, which follows 
from local arguments, in a given trivialization ofthe bundles, 
ensures (and it is necessary to have) a global well defined 
Lagrangian. 

[Observe also that the field equations written as (2.6m
) 

are not of the Euler-Lagrange type.] 

III. EXAMPLES 

In this section we show that nondegenerate solutions of 
(2.7) do exist for certain solvable groups or algebras (e.g., 
the extended Heisenberg algebra) and sometimes they do 
not (e.g., the two-dimensional Borel algebra). Some of these 
examples have been considered elsewhere in relation with 
pseudo-Riemannian spaces.2

-4 

(a) Semisimple Lie algebras: We first point out in the 
well known case of semisimple Lie algebras that, using the 
Jacobi identity, the Killing form 

KAB=YAB = CCADCDBC 

identically satisfies (2.7). In fact the Killing form can be 
defined for any group and will always satisfy (2.7). The Kill
ing form, however, is nondegenerate only for semisimple Lie 
algebras. One is thus forced to seek other nondegenerate 
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quadratic forms if one considers solvable Lie algebras. 
(b) Solvable Lie algebras: A solvable Lie algebra 9'0 is an 

algebra such that the chain of subalgebras 9'o,9'I'fh,(h,"" 
9'N = 0, where 9'n + I is the commutator subalgebra of 9'n' 
terminates with the trivial algebra. 

(i) The two-dimensional Borel algebra: The algebra of 
the group of affine transformations of the real line 
(x--+ax + b) has no nondegenerate invariant quadratic 
form. This is seen from the fact that its algebra defined by 
[XI,x2] = - X2 (with XI = xa" and X2 = a,,) has the 
structure constant C 2

12 = - 1 which when substituted into 
(2.7) yields 

rl2 = r22 = 0, 

a degenerate quadratic form. 
(ii) The extended Heisenberg algebra: This (2n + 2)

dimensional algebra consists of the generators (z*,xi'Yj'z), 
with i,j = 1, ... ,n, satisfying the following commutation rela
tions (with no summations implied): 

[Z*,Xi] = aiYi--+CYiz*", = ai' 

[Z*'Yi] =/3iXi--+ C "'z*y, =/3i' 

[Xi>Yj] = r/iijz-CZxiYj = ri~ij' 
all other commutators and structure constants vanishing. 
Systematically substituting these structure constants into 
(2.7) yields the following conditions on the quadratic form: 

rzz = r",z = ry,z = r",Yj = rzxi = rz"y, = 0, 

r,,!,,} = rY;Yj = ° U=!=j) , 

no summation, 

no summation. 

Note that the component r z*z*, though not determined, can 
be set equal to zero by adding to z an arbitrary multiple of z*. 
Since z* is the center of the algebra this operation does not 
alter the structure constants. If the r zz* is chosen arbitrarily 
(say equal to one) then the quadratic form is uniquely deter
mined by the above conditions and is easily seen to be nonde
generate. If the ai' /3i' and ri are chosen to be one, then the 
metric is the Lorentz metric. 

(iii) The derived subalgebra of the extended Heisenberg 
algebra: If we consider the (2n + 1) -dimensional subalge
bra of the extended Heisenberg algebra defined by omitting 
the generator z* we have the only non vanishing commuta
tors 

[Xi>Yj] = ri~ijZ-+Cz"'Yj = ri~ij 
making this a nilpotent algebra. It is now easy to check from 
(2.7) that the associated quadratic form is now degenerate, 
namely 

rzz = r",z = ry,z = 0. 

(iv) Nilpotent algebras with nondegenerate invariant 
forms: Let 9' = A2Ron ED (Ron ED Rn), where n;;.2, * is a linear 
isomorphism Rn--+Ron, and A2Ron is the exterior product of 
ROn with itself. Let R: ROn X ROn X ROn _ ROn be a trilinear 
map having all the symmetries of a curvature map. Define a 
multiplication table by 

1024 J. Math. Phys., Vol. 29, No.4, April 1988 

[X*,Y*] = X* /\ Y*, X*,Y*ERon, 

[X* /\ Y*,Z*] = *-IR(X*,Y*,Z*), 

all other commutators vanishing. The invariant quadratic 
form becomes 

r(X*,Y) = (X,Y), 

r(X*/\Y*,Z*/\U*) = (X,Z)(Y,U) - (X,U)(Y,Z), 

all other components vanishing. Here ( , ) is the usual sca
lar product on Rn. This algebra corresponds to a symmetric 
space of dimension 2n and signature (n,n). 

A special case of this is the five-dimensional algebra 
(n = 2) with generators XI' X2, X*I' X*2' and X*12 given 
by 

[X*I,x*2] = X*I2' 

[X*I2,x*d =X2, (X*I2,x*2) = -XI' 

The non vanishing components of the quadratic form are 

r(Xi,X*j) = ~ij' r(X12,xI2) = 1. 

IV. DISCUSSION 

We have here shown that the necessary and sufficient 
condition for a set of Yang-Mills equations to be derivable 
from a Lagrangian is that there exist an invariant (under the 
action of the associated group) nondegenerate quadratic 
form. Though a common belief is that this implies that the 
associated group must be semisimple, we have shown that 
this is not necessary and that in fact there are many solvable 
groups with such a quadratic form. Though there is no 
known classification of solvable groups which describes 
those possessing an invariant nondegenerate form, it is clear 
that given the structure constants of a group, Eq. (2.7) per
mits one to find the form if it exists or show that it does not 
exist. 

Several interesting questions arise from these consider
ations. 

( 1) Considering the case of a solvable group with a La
grangian and hence Hamiltonian, what can one say about 
the quantization of such a system? As mentioned in the In
troduction the underlying classical equations have a simple 
linear structure, with each linear set behaving as a problem 
with an external potential (the solutions from the previous 
set). Does this feature of the equations aid in the quantiza
tion and if so how? This is under investigation. 

(2) A related question is are there any solvable groups 
with an invariant quadratic form such that the form is posi
tive definite? Unfortunately the answer to this question is no. 
This follows from the fact that for a given Lie algebra, a 
positive definitive form exists if and only if this algebra is 
that of a compact group.5 Since a solvable group can never be 
compact, no such form exists for its Lie algebra. This would 
seem to prohibit a physical quantization procedure since an 
indefinite form would introduce an energy operator without 
a lower bound. 
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APPENDIX: PROOF OF LEMMA 1 

The Lagrangian .!f can be written as 

(AI) 

where the coefficients Aa""'anN are functions of xa
, tPa ad

mitting continuous partial derivatives up to order 2 and 
where a11 + ... + anN<M = order of the polynomial .!f. 
Comparing the coefficient of a second-order derivative 
a 2

jj tPa in the Euler-Lagrangeequationsof(Al) with (2.6") 
one sees that Aa""'anN is zero if any of the akA> 2; also 
Aa""'anN = 0 as soon as one of the akA's is equal to 2 and one 
other akA is not zero. We can thus write the highest-order 
term (if it exists for r> 2) in the polynomial as 

.!f = ~ D; ... ; a "'a (x,tP)a; tPa .. ·a; tPa £.. I ,. I r I I r r 

with no pair (iPj) repeated. If r > 2, writing the term in 

a \;,tPa.aa, tPa , ... (a;. /\ tPa.)·· ·a;,tPa, (k =1=/) 

in the equation numbered alone sees D; ... ; a "'a is anti-
I ,. I r 

symmetric in i k ,ii' hence totally antisymmetric in the indices 
i l " ·i,. If r = 2, one can write D;,.;,.a,a, as the sum of a part 
antisymmetric in i l i2 and a part which is symmetric in i l i2• 

Using the form of (2.6") one sees that the symmetric coeffi
cient is a function of x alone. Hence 

+ ~ d; ... ; a "'a (x,tP)a; tPa .. ·a; tPa' ~ I r' I,. I I ,. r 
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where A ij.afJ = A ji.afJ and d is totally antisymmetric. Consid
er then the coefficient of the term of order r, in 
a; tPa .. ·a; tPa ,in the equation numbered a; it is proportion-

I I ,.,. 

alto 

a(d; ... ; a "'a ) '( a ) I ,. I , ~ d 
- OA. + ~ aA. ;,"·;,.a,"·a,· 

'l'a k=1 'l'a. 

If r>2 this must be equal to zero. By the Poincare lemma,6 
there exist functions e;, .. ';,.a,"'a,_, (x,tP) such that 

d; ... ; a '''a = ± ( - I )k-I(~)e; ... ; a "'cr '''a' 
I ,.. I ,. k=l arpak I ,.. 1 k r 

Modifying the Lagrangian .!f by a divergence 

± (-l)j-I(~) 
j= I dx; 

J 

X [e . . "i a . "a a. A. "·a. A. 
'1 r' I r-l ,.V'a. 'j_1'f'aj_l 

Xa. A." ·a. A. ], 'J+l'f'aj r,.'f'a,._t 

one gets a new Lagrangian .!f' for which the field equations 
are still the Euler-Lagrange equations and which has no 
terms of order r. The result follows by induction. 
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The quantization of N = 2 supersymmetric Yang-Mills theory coupled to a matter 
hypermultiplet has been done in the harmonic superspace by requiring BRS and anti-BRS 
invariances. The corresponding Ward identities have also been derived. 

I. INTRODUCTION 

Supersymmetric field theories have been shown to have 
remarkable cancellations of ultraviolet divergences. The 
cancellation is expected to be even more dramatic in the case 
of extended supersymmetry. These cancellations are most 
easily seen in the context of superfield perturbation theory, 
where supersymmetry is manifest. However, superfield per
turbation theory has been developed, so far, only for N = 1 
supersymmetry. Indeed, in N = 1 supersymmetric theories, 
the quadratic divergences are absent, a fact that gives a key 
to resolving the hierarchy problem. 1 In supersymmetric 
models the cancellations of the ultraviolet divergences are 
due to the supersymmetric Ward identities (WI). The 
breaking of these identities leads to additional ultraviolet 
divergences in perturbation theory.2 For theories with ex
tended supersymmetry, the supersymmetric WI are fulfilled 
when we use the extended superfield formalism. 3 

On the other hand, the supersymmetric theories need to 
be regularized. Several approaches are possible. One of these 
is the dimensional regularization which is not supersymme
tric.4 A remedy for this problem was proposed in the dimen
sional reduction scheme, which breaks the supersymmetric 
WI in the N = 1 supersymmetric Yang-Mills theory, in the 
Wess-Zumino gauge at the one-loop leve1.5 Another possi
ble scheme is the gauge-invariant higher derivative method 
preserving manifestly the supersymmetry.6 

In order to handle the ultraviolet divergencies and satis
fy the supersymmetric WI of extended supersymmetric the
ories, it is apparently necessary to develop the superfield for
mulation. 7 Very recently, Galperin et al.8 have put forward a 
new idea called "harmonic superspace," and have developed 
N = 2 superspace formulations. Their method has an advan
tage in that their superfields are not constrained. The main 
features of this formalism is that it contains the zweibeins 
U j± (i = 1,2), which parametrize the coset space SU (2)1 
U ( 1 ), and that any superfield contains an infinite number of 
component fields. 

Superfield perturbation methods for this theory have 
been developed in two ways: by requiring the BRS and anti
BRS invariance,9 which is the clue to the proof of renormali
zability; and by using the Faddeev-Popov procedure, where 
the quantum Lagrangian is obtained via covariant 
gauge. 10,11 

In this paper we complete the construction of the N = 2 

a) Permanent address: L. P. T. Faculte des Sciences, Av. Ibn Batouta, P. O. 
Box 1014, Rabat, Morocco. 

supersymmetric quantum Lagrangian of the gauge and mat
ter hypermultiplets using the BRS and anti-BRS prescrip
tion. Furthermore, we construct, in the harmonic super
space, the N = 2 supersymmetric WI. Following Lee6 and 
Zinn-Justin,12 the renormalized N = 2 supersymmetric ac
tion can be constructed in such a way that it still satisfies the 
WI. 

The paper is organized as follows. In Sec. II we give 
some preliminaries on an N = 2 harmonic superspace, while 
in Sec. III we derive the BRS and anti-BRS transformations 
for gauge and matter hypermultiplets. We then construct the 
N = 2 supersymmetric quantum Lagrangian corresponding 
to gauge and matter hypermultiplets. In Sec. IV we obtain 
the N = 2 supersymmetric WI ofBRS and anti-BRS symme
tries. At last we construct the algebra of renormalized BRS 
and anti-BRS operators, which leave the renormalized La
grangian invariant. Finally, Sec. V is devoted to the conclu
sion. 

II. GENERALITIES ON THE N=2 HARMONIC 
SUPERSPACE 

In this section we recall the main features of the N = 2 
harmonic superspace, following the conventions and nota
tions of Refs. 8 and to. In this space the harmonic variables 
U j± (i = 1,2), called zweibeins, play an important role in 
the construction of N extended supersymmetric theories. 
The zweibeins are SU(2) isodoublets satisfying the proper
ties 

U +jU j- = 1, U ±jU j± = O. (2.1) 

The N = 2 harmonic superspace in the real or central basis 
(CB) is parametrized by the coordinates 

(2.2) 

where (J a,j and 0 ~ are Weyl spinors and SU (2) isospinors. 
From (2.2) one can pass to another basis, the analytic basis 
(AB), given by 

z= (X~, (Ja+, 0:, (Ja-' Oiz-' U j±). (2.3) 

In this new AB the N = 2 supersymmetry is realized as fol
lows: 

DX~ =-2i(~cI'O+ + (J +cI'E')U j-, 

D(Ja+ =~aU/, D(J;; =~aUj-, (2.4) 

DO iz+ = E'iz U /, DO;; = €la U j-' 15 U j± = O. 

We notice that the variables (x~, (J:, 0 iz+, U j±) and 
(~, 0:, 0;;, U j±), where 
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X~ = XI' + if} juliOj> (2.5) 

form closed subsets under the N = 2 supersymmetric trans
formations. We call these subspaces analytic and chiral sub
spaces, respectively. This allows us to define an analytic su
perfield t/Jq(XA,f} +,(} +,U ±), which satisfies the conditions 

D+t/Jq = 0 =D +t/Jq, 

where q is the U C
( 1) charge, and 

D+=~ D+=!. . 
af} - , af}-

The N = 2 gauge hypermultiplet is described by the real ana
lytic superfield V + +. The field strength W, which is a chiral 
superfield independent of U j± variables, gives the action 10.11 

(2.6) 

which can be expanded as 

II = J d 4XA d
2f} + dZO + dU 

XTr [v++ 1 (D+)4D-- V++] 
D++ 16 

+lint (V++). (2.7) 

Therefore there exist two N = 2 matter hypermultiplets. 
The first is the Fayet-Sohnius (FS) hypermultiplet, which is 
described by means of a complex analytic superfield t/J +. Its 
kinetic term is given by 

12 = J d 4XA d
2f} + dZO+dU¢+D ++t/J+, (2.8) 

where 

D + + ~ a + + - 2if} + u JJ(} + a ~, 

with 

a++ = U+ i __ a_. 
aU- i 

The second is the Howe-Stelle-Townsend (HST) hyper
multiplet, described by a real analytic superfield {l. Its free 
action is 

13= J d 4XA d 2f}+dZO+dU(D++{l)(D++{l). (2.9) 

Therefore the full action of the FS hypermultiplet, including , 

interactions with the gauge superfield, is 

n = J d 4XA d 2f}+ d 2(}+ dU¢+iP++t/J+, (2.10) 

while for the HST hypermultiplet we have 

n = J d 4XA d 2f} + dZO+ dU(iP++{l)(iP++{l), 

(2.11 ) 

where 

iP++ = D ++ + iV++ 

is the covariant derivative. 
Furthermore, the analytic superfields V + +, t/J +, and {l 

transform under gauge transformation of any gauge group G 
as 

V++' = eiA ( V++ - iD ++)e- iA, 

t/J'+ = lIAt/J+, {l' = eiA{le- iA, 

where A is an analytic real superfield. 

(2.12) 

(2.13) 

As can be seen from Ref. 9, the action (2.6) is BRS and 
anti-BRS invariant. In what follows we shall derive the BRS 
and anti-BRS transformations for the N = 2 matter hyper
multiplets, and see what is the most general form of an N = 2 
supersymmetric, BRS and anti-BRS invariant Lagrangian 
that includes a matter hypermultiplet. 

III. EXTENDED BRS AND ANTI-BRS EQUATIONS 

Let Gbe a compact gauge group, and let V + + , C, C' and 
b be the classical superfie1ds (superconnections). The per
turbative gauge theory is generated by:£' Q' an N = 2 super
symmetric, gauge-fixed, but BRS (t5s ) and anti-BRS (t5s') 
invariant Lagrangian. The Lagrangian:£' Q has zero UC( 1) 

charge, as well as ghost number or Faddeev-Popov charge 
zero, and is renormalizable by power counting. The math
ematical expression for:£' Q is given by9 

:£'Q=:£'G/+ ~ J d 2f}+d 2(}+dU 

XTr t5s t5s '{V++ V++ + 2aC'M4+C} (3.1) 

where:£' GJ is given by (2.6), a is a gauge parameter, and 
M4+ is an arbitrary operator of mass dimension ( - 2) with 
a U C(1) charge of ( + 4). 

The BRS and anti-BRS symmetries are defined by the 
actions of their generators on all superfields9 as 

t5s V++ = -D++C-i[V++,C], 

t5sC= -CXC, 

t5s' V++ = - D ++C' - i[ V++,C'), 

t5s'C= -b+CXC', 
(3.2) 

t5sC' = b, t5s'C' = - C'XC', 

t5sb = 0, 

where 

A XB=HA,B). 

Equations (3.2) are obtained by extending the analytic sub-

1027 J. Math. Phys .• Vol. 29. No.4. April 1988 

space to (X ~,f} + ,(} + ,5,5'), or by making a special gauge 
transformation with a gauge parameter A such that 

A = sC + s'C' + ss'b. (3.3) 
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Now if we include matter superfields in our formalism, the 
gauge transformations (2.13) can be extended to 

'¢+ = /A¢>+, .n = eiAOe- iA. (3.4) 

On the other hand, '¢ + and .n can be expanded in the ex
tended analytic subspace as9 

'¢+ = ¢>+ + 585¢> + + 5'85·¢>+ + 55'8585·¢>+, 

.n = 0 + 5850 + 5'85.0 + 55'8585.0. (3.5) 

Hence 

8¢>+ = 585¢> + +5'85·¢>+ + 55'8585·¢>+, 

80 = 5850 + 5'85.0 + 55'8585.0. 
(3.6) 

Expanding (3.4) for an infinitesimal transformation, one 
obtains 

8¢>+ = (X¢>+, 80 = i[A,O]. (3.7) 

The identification of (3.6) and (3.7) leads to the BRS and 
anti-BRS transformations of ¢>+ and 0: 

85¢>+ = iC¢>+, 85.¢>+ = iC'¢>+, 

850 = i[C,O], 85.0 = i[C',O]. 
(3.8) 

It is clear that the actions (2.10) and (2.11) are invariant 
under BRS and anti-BRS symmetries. 

However, in order to construct the most general 85 and 
85" N = 2 supersymmetric invariant Lagrangian, with zero 
UC ( 1) charge and ghost number conserving, by the Yang
Mills theory coupled to the FS multiplet, consider terms ob
tained by the actionof85, 85" and 8585, on a polynomial of 
superfields. One has the following possibilities: 

8
5
8

5
, [A. 2+¢+¢>+], 

8
5
8

5
, [v3+¢>+ + lJ'3+¢+], . 

85 [A. 2+C''¢+¢>+], . 
8

5
, [A. 2+C;,6+¢>+], 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

whereA. 2+ and v3 + are coupling constants with mass dimen
sion ( - 2) and ( - 1), respectively. 

Now while steps (3.9d) and (3.9c) are excluded be
cause they are not BRS and anti-BRS invariant, respectively, 
steps (3.9a) and (3.9b) are convenient terms. Hence the 
most general N = 2 supersymmetric Lagrangian that is in
variant with respect to 85 and 85, and is a function of ¢> + and . 
;,6 + is given by 

.!f = .!fclass + f d 2(} + dZO+ dU 8585, 

X{PI(V3+¢>+ + lJ'3+¢+) +P0 2+¢+¢>+}, 
(3.10) 

where .!f class is given by (2.10) and PI' P2 are new gauge 
parameters. 

By expanding the two last terms in (3.10) using (3.8) 
and (3.2), one obtains 

8585' [v3+¢>+ + lJ'3+¢+] 

= [v3+ (ib + C'C)¢>+ + lJ'3+¢+ (ib - CC')], (3.11) . 
858

5
, [A. 2+;,6+¢>+] . . 
= [U 2+;,6 + ib¢>+ + U 2+;,6+ [C',C]¢>+]. 
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On the other hand, the expression (3.1) gives 

~8585' [V++ V++ + 2aC'M4+C] 

= [-D++bV++ - abM 4 +b+D++C'g++C 

+ [V++,C'][ V++,C] 

- (a/4)[C',C']M 4 +[C,C]], (3.12) 

where 

g++C=D ++C + i[ V++,C]. 

Eliminating the auxiliary superfield by using its equation of 
motion, we obtain 

.!f Total = .!f GI + .!f class + f d 2(} + d 27f + dU 

X{D++C'g++C+ (1I2a)D++V++ 

X (lIM4+) [D ++ V++ + iPlv3+¢>+ 

+ 2iP0 2+¢+¢>+ + H.c. 

+ higher order in V + + and ¢> +}. (3.13 ) 

We notice that the gauge condition, given by the equation of 
motion of the auxiliary superfield, is modified by the intro
duction of the matter multiplet. We obtain the 't Hooft gauge 
when PI = 1. Therefore, in such a quantization procedure, 
we obtain an inconvenient mixing of V + + and ¢> +, which 
can be overcome if the internal symmetry is spontaneously 
broken. 13 

In the following section we derive the N = 2 supersym
metric WI corresponding to BRS and anti-BRS symmetries. 

IV. THE N= 2 SUPERSYMMETRIC WI AND ALGEBRA OF 
RENORMALIZED BRS AND ANTI-BRS OPERATORS 

The N = 2 supersymmetric theory defined by the La
grangian ( 2.10) and ( 3.1) is renormalizable by power 
counting. The Lagrangian (3.10) is not renormalizable be
cause the coupling constants A. 2+ and v3+ have dimensions 
( - 2) and ( - 1), respectively. However, the renormaliza
ble theory can be built by adding local counter terms in all 
superfields, and the N = 2 supersymmetric WI must be sat
isfied at any finite order in the perturbation theory. To ob
tain these WI, let us start from a gauge-fixed, N = 2 super
symmetric Lagrangian such as the one given in (3.13): 

Y=.!fTotal(V++, C, C', b, ¢>+, a, PI' P2) . 

Consider also a system of external superfields p2-, y-, 1], 
and 1]' coupled to the composite superfields as follows: 

Ieff = I TotJd + f d 12Z dU 

x{p2-8585· V++ + y-8585 .¢>+ 

+ Y-8585·¢+ + 1]8585·C' + 1]'8585·C}, 
(4.1 ) 

where 

d 12Z = d 4 X
A 

d 2(} + d 28 + d 2(} - d ZO -. 
The effective action (4.1) is BRS and anti-BRS invariant. 
Therefore we introduce external superfields coupled to su
perfields as 
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I=Ieff + f d 12ZdU{J't-V++ +J;t/J+ 

+}tP-~+ +JcC+Jc'C' +Jbb}. (4.2) 

Notice that we may maintain BRS and anti-BRS invariance 
by prescribing that the external superfields do not trans
form. 

The generating functional of Green's functions is then 
given by 
exp[iW(J,p, '1], '1]',y)] 

= f DV++DCDC'Dt/J+D~+ 

xexp{iIeff + i f d 12Z dU . 
x{J't V++ +J;t/J+ +};¢+ +JcC 

+Jc'C' +Jbb }}. (4.3) 

We remark that we may express all composite superfields by 
differentiation with respect to the corresponding external 
superfields. In fact, the generating functional of a one-parti
cle irreducible is defined by 

r[ V++, t/J+, C, C', b, J,p, '1], '1]', y] 

= W[J,p, '1], '1]', yl - f d 12Z dU [J't V++ 

. 
+J ;t/J+ +} ;'(p+ + +JcC+JeC' +Jbb]. 

(4.4) 

We have 

8r _ J2-
8V++ - - V , 

8r 8r 
-Je , 

8C 8C' 

and 

8!;- =8585.v++, ::- = 8585,t/J+, 
(4.6) 

8r !. + 8r £ £ , 8r ~ £ C 
-=--=8585 ,t/J , -=vsvs'C, -=vsvs' . 
8y- 8'1] 8'1]' 
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In the above section we have assumed that all param
eters involved in the effective action are finite. Furthermore, 
the generating functional (4.3) contains infinities. We have 
also assumed that these infinities can be regularized by 
means of a method that preserves the 8585, symmetry. 

The renormalized N = 2 supersymmetric theory can 
now be obtained by adding to the effective action (4.1) local 
counter terms in the superfields and external superfields. In
deed, the renormalized action IR leads to a finite renormal
ized generating functional r R satisfying the WI at any finite 
order in the loop expansion. The IRis then given by 

IkBRs• anti-BRS) = f d 4XA !fR(V++,C,C',b,t/J+) 

+ f d I2ZdU{p2-Pi+(v++) 

. 
+ y-Pt (t/J+) + y-P 2+ ('(p+) 

+ '1]'P3 (C) + '1]P3 (C') 

+...iP4 (b) + ... }, (4.9) 

where Pi +, P 2+' P3, and P4 are unknown polynomials in 
the superfields, and the dots represent quadratic terms in 
external superfields. 

We then introduce the following operator: 

8R = (8585, )R 

= fd 12Z dU{P2+ (V++)_8_ 
I 8V++ 

such that 

(8
5
8s ,)RV++ =Pi+(V++), 

(858s' )Rt/J+ = P t (t/J+), (8s85, )RC = P3 ( C), 

(8585, )RC' = P3 (C'), (8s85, )Rb = P4 (b). 

Therefore the WI (4.8) can be rewritten as 

(4.11) 

(4.12) 

Using (4.9) and (4.11) yields the following equations, 
which are true for any value of external superfields: 

(8585,)R!fR(V++,C,C',b,t/J+) =0, 

(tjs8s' )R(8s8s ,)R = 0, 

on all unknown polynomials. 

(4.13) 

(4.14) 

Expression (4.13) shows that the renormalized N = 2 
supersymmetric Lagrangian must be invariant under a 
(8s8s,)R symmetry that satisfies (4.14). In what follows we 
shall see for which conditions the nilpotency of (8585 ,)R is 
equivalent to that of (8s )R and (8s ' )R. 

Assuming that the effective action is only BRS invar
iant, 
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leff =ITotal + f d12ZdU{p~-c5sV++ +rl- c5sf/)+ 

+ 111-c5s~+ + 1J1c5sC' + 1J;c5sC}. (4.15) 

The variation of the corresponding generating functional r 
with respect to c5s symmetry leads to WI: 

fd 12Z dU{( c5r c5 c5r c5) 
c5p~ - c5 V + + + c5 V + + c5p~-

( 
c5r c5 c5r c5) 

+ c5rl- c5t/>+ + c5t/>+ c5rl-

+ (~ -4- + ~r !. ) 
c5r 1- c5(fi + c5(fi + c5r 1-

+ (c5r c5 + c5r c5) 
c51J; c5C c5C c51J; 

+ (:~ c5~' + :~, c5~J}r = o. ( 4.16) 

The renormalized action is then given by 

I~RS = f d 4XA yR( V++,C,C',b,t/>+) 

+ f d12Z{p~-qi+(V++) +rl-qt(t/>+) 

. 
+ 111- q2+ ((fi+) + 1J; q3( C) 

+ 1Jlq3(C') +A1q4(b) + ... }. (4.17) 

Similarly, the renormalized BRS symmetry is then 

(c5 I )R = (c5s )R 

= f d 12Z dU{q2+ (V++)_c5_ 
1 c5V++ 

+(~+) c5 +(~+) c5 + q2 'f' ~~+ + q2 'f' ~ 
U'f' c5t/>+ 

(C)~ (C,)_c5_ (b)~} 
+ q3 c5C + q3 c5C' + q4 c5b' 

Hence 

(c5
S

)RV++ = ql+ + (V++), 

(c5s )Rt/>+ = q2+ (t/>+), (c5s )RC = q3( C), 

(c5s )RC'=q3(C'), (c5s )Rb=q4(b). 

The BRS WI (4.16) is equivalent to 

(c5s )RI~RS = 0, 

which implies 

and 

(c5s )R(c5s )R = 0, 

on all unknown polynomials qi +, q2+' q3' and q4' 

(4.18 ) 

(4.19) 

(4.20) 

(4.21 ) 

(4.22) 

Now, if we assume that the effective action is anti-BRS 
invariant, then 
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leff =ITotal + f d 12ZdU{pi-c5s'V++ +r2- c5s·t/>+ . 
+ 112- c5s·(fi+ + 1J2c5s'C' + 1J2c5s'C + uc5s·b}, 

(4.23) 

(4.24) 

The renormalized anti-BRS action, given in terms of un
known polynomials R i +, R 2+' R3, and R4, is 

l~nli-BRS= f d 4xA YR(V++,C,C',b,t/>+) 

. 
+ r2- R 2+ (t/>+) + 112- R t ((fi+) 

+ 1JiR3(C) + 1J2R3(C') 

+ uR4 (b) + .. -}. (4.25) 

The renormalized operator (c5s ' )R is such that 

(c5s·)RV++ =Ri+(V++), 

(c5s' )Rt/>+ = R t (t/>+), (c5s ' )RC = R3(C), (4.26) 

(c5s ' )RC' = R3(C'), (c5s ' )Rb = R4(b). 

As before, the anti-BRS WI (4.24) leads to 

(c5s·)R Y R (V++,C,C',b,t/>+) = 0, (4.27) 

(c5s' )R(c5s.)R = O. (4.28) 

Therefore, acting by (c5s )R on (4.26) one obtains 

(c5s )R(c5s' )R V + + = (c5s )RR i + (V + +), 

(c5s )R(c5s' )Rt/> + = (c5s )RR 2+ (t/> +), 

(c5s )R(c5s' )RC = (c5s )RR3( C), (4.29) 

(c5s )R(c5s' )RC' = (c5s )RR3(C'), 

(c5s )R (c5s' )Rb = (c5s )R R4(b). 

Now in order to satisfy the equation 

(c5sc5s.)R = (c5s )R(c5s' )R, 

one must have 

(c5
S
)RRi+(V++) =Pi+(V++), 

(c5s )RR 2+ (t/>+) = P t (t/>+), 

(c5s )RR3 (C) =P3 (C), 

(4.30) 

(4.31 ) 

(c5s )RR3(C') = P3(C'), (c5s )RR4(b) = P4(b). 

T. Lhallabi 1030 



                                                                                                                                    

Finally, to obtain the complete BRS algebra for 15: and 15:., 
one imposes 

(t5s )R(t5s.)R + (t5s' )R(t5s )R = 0. (4.32) 

In fact, on applying (t5s·)R to (4.19) and identifying with 
(4.19), we find 

(t5s.)R~+(V++) + (t5s )RRt+(V++) =0, 

(t5s' ) Rq2+ (</J+) + (os )RR 2+ (</J+) = 0, 

(t5s.)Rq3 (C) + (Os)RR 3 (C) =0, (4.33) 

(Os' )Rq3 (C') + (Os)RR 3 (C') = 0, 

(os' )Rq4 (b) + (Os)RR4 (b) = 0. 

Note that (4.31) and (4.33) are the necessary conditions on 
all the counterterms in order to satisfy the algebraic proper
ties of the renormalized BRS and anti-BRS symmetries. 
However, (4.13), (4.21), and (4.27) are sufficient to build 
the renormalized N = 2 supersymmetric Lagrangian, which 
contains all necessary counter terms to make the theory fi
nite, as the most general (Os)R and (Os' )R invariant. 

V. CONCLUSION 

In this paper we have first derived the BRS and anti
BRS transformations of the FS and HST hypermultiplets. 
We have seen how the matter hypermultiplet is included in 
the harmonic superspace quantization procedure of N = 2 
supersymmetric Yang-Mills theory, by requiring BRS and 
anti-BRS invariances. The part of the N = 2 supersym
metric, BRS and anti-BRS invariant Lagrangian corre
sponding to a matter hypermultiplet contains dimensional 
coupling constants A. 2+ and t?+. This leads to a nonrenor
malized </J+ interaction and, consequently, to additional di
vergences in the theory. In (3.13) Lagrangian, one recovers 
the 't Hooft gauge for PI = 1, which is very useful when the 
internal symmetry is spontaneously broken. Second, we 
have derived the BRS and anti-BRS WI by using the func
tional formalism. We notice that, at this level, the effective 
action is invariant under (t5sos') symmetry. The renormal
ized action IRis then given by adding local counter terms in 
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all superfields to the renormalized Lagrangian. Such action 
also satisfies the WI. Furthermore, we have proved in a very 
simple way that the renormalized Lagrangian must be in
variant under a symmetry (0505, )R satisfying (4.14). In or
der to complete the usual BRS algebra, we have constructed 
two effective actions, one invariant under BRS, the other 
invariant under anti-BRS symmetries. Then we have defined 
two renormalized BRS and anti-BRS operators (t5s )R and 
(os' )R, respectively. 

One of the futures of this work is to construct the general 
(Os)R and (Os.)R forms compatible with power counting, 
U C

( 1) charge, and ghost number conservations, and then to 
build the renormalized N = 2 supersymmetric Lagrangian 
as the most general (OsOs,)R or (Os)R and (Os·)R invariant. 
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A class of light-cone integrals typical to one-loop calculations in the two-component formalism 
is considered. For the particular cases considered, convergence is verified though the results 
cannot be expressed as a finite sum of elementary functions. 

I. INTRODUCTION 

In the evaluation of one-loop diagrams (such as the 
"swordfish" diagrams) in the two-component formalism of 
the light-cone gauge, one finds integrals of the type 

K(p,q) = f dr 1 
r(r-q)2 (p+ +r+) 

(1.1 ) 

and 

KI( ) f dr (/+r1), 1=1,2, (1.2) 
p,q = r(r - q)2 (p+ + r+) 

where the measure dr according to the dimensional regular
ization technique is defined over an analytically continued 
space-time of 2m dimensions. 

Right from the start one should be aware that naive 
shifts of integration variable are not permissible in light-cone 
integrals that are linearly divergent by power counting as
sessment.' Happily none of the above integrals falls into this 
category and for convenience I consider the shifted versions 

- f dr 1 K(p,q) = 
(r - p)2(r _ p _ q)2 r+ 

(1.1') 

and 

K- I( ) - f dr r1 p,q -
(r_p)2(r_p_q)2 r+ 

( 1.2') 

instead of Eqs. (1.1) and (1.2). Here I treat the singularity 
at r+ = 0 according to the prescription first suggested by 
Mandelstam,2 namely, 

lIr+ = lim [lI(r+ +iEr-)]. (1.3 ) 
E_O+ 

II. EVALUATION OF K(p,q) 

Using the standard procedure of exponentiating propa
gators, Eq. (1.1') becomes 

K(p,q) = - LX> da d/3 ei(ap'+pq'J :~ e ix(r'+2r-R), 

(2.1 ) 

where 

x=a +/3, 

xR =/3q - ap. 

(2.2) 

(2.3 ) 

Resolving the momentum integral through the employ
ment of the Mandelstam prescription [Eq. (1.3)], one ob
tains3 

where 

y = a/(a + /3) , (2.5) 

u=q+/(p+ +q+), (2.6) 

f/ = qlqI + q2q2 = 2q+q- _ q2, (2.7) 

t = ~ [(1 + v - p) + ~ (1 + v - p)2 - 4v] , (2.8) 

t = ~ [ (1 + v - p) - ~ (1 + v - p) 2 - 4v ] , (2.9) 

v = [2(p+ + q+ )(p- + q- )]/q2 , (2.10) 

p=2p+p-/q2, (2.11) 

p± = (po ±p3)/.J2. (2.12) 

In order to carry out the y-integration, first I expand the 
denominator of the integrands in power series 

1 ~ k-\ 

(1 - oy) = k~\ (oy) 
(2.13 ) 

so that now, the y-integrations can be expressed in terms of 
beta functions and hypergeometric functions of two vari
ables4 

- ( - 1T)"T(2 -m) 
K(p,q) = (+ +) 

P +q 
00 

X 2: ~-\[ (i),"-2B(k + m - 2,m - 1) 
k=\ 

- (vq2),,,-2B(1,k) 

XF\ (k,2 - m,2 - m;k + 1;5' -l,t -\)] . 
(2.14) 

Isolating the k = 1 term of the sum and employing the 
following functional relations for the hypergeometric func
tions5

: 

F] (a,/3,/3';r;x,y) 

= F\ (a + 1,/3,/3';r;X,y) 

- (/3 /r)xF\ (a + 1,/3 + 1,/3';r + l;x,y) 

- (/3'/r)yF\(a + 1,/3,/3' + l;r + 1;X,Y), (2.15) 
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FI (a,/3,/3';a;x,y) = (1 - x) -P(1 - y) -P', 

FI (a,/3,O;y;x,y) = zPI (a,/3;y;x), 

FI (a,O,/3';y;x,y) = 2Fl(a,/3';y;y), 

(2.16) 

(2.17) 

(2.18 ) 

and expanding, wherever necessary, for w-2, one gets 

K(p,q) = t? {In(2P +P-)_sln(S-I) 
(p+ +q+) i S 

-€ln(€i I)} + (p+ ~q+) 
,., u" {2 (2P+P-) XL +In--

k=l(k+l) (k+I) i 
~ 1 2FI(1,k+2;k+3;s-l) + "- - + -=-.!..:--'--"'--:...-"'--=-~ 

m=1 m (k+2)s 

+ 2FI(I,k + 2;k1=.3;€-I) } +0(2-w). 
(k + 2)s 

(2.19) 

Furthermore, using the expansion4 

2Fl (l,k + 2;k + 3;z) 
(k+2) 

In(1-z) k ~-k-l 

= - Z(k+2) - m~o (I +m) , 
(2.20) 

the final expression for K is written as 

K(p,q) = t? {In(2P+f-)-51n(s-l) 
(p+ +q+) q S 

-€ln(€i I)} + (p+ ~q+) ktl (k: 1) 

X { 2 + In(2P+P-) 
(k+ 1) i 

- S k + I In( S ""i I) - € k + I In( € i I) 
k 1 k (s k - m + € k - m) } + L - - L ...:::--~---'-

m=lm m=O (1+m) 

+0(2-w). (2.21 ) 

III. EVALUATION OF j(I (p,q) 

The evaluation of Ki (p,q) follows in a completely anal
ogous way. After the y-integrations are performed the result 
is 
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i 
K/(p,q)=(l+qi)K(p,q)-t? q r(2-w) 

(p+ +q+) 

X i:u"-I[( _1ri)W-2 
k=1 

XB(k+w-l,w-l) 

- ( - ~2)w-2B(l,k + 1) 

XFI(k + 1,2 - w,2 - w;k + 2;S-I,€ -1)], 
(3.1) 

which yields 

IV. CONCLUDING REMARKS 

The explicit calculation showed that the integral defined 
in Eq. (1.2) has its pole part canceled out. It suggests thl\t in 
the Mandelstam prescription the transversal components of 
the vector momentum, ,J, over the longitudinal component, 
r+ , yield n < ° as far as power counting is concerned. There 
remains to be seen whether the lower limit for n can be deter
mined accurately. In any case, it is interesting to note that 
this pattern of convergence for momentum integrals in the 
light-cone gauge a fa Mandelstam is characteristic of this 
gauge. 
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The global aspects of the gauge fixing in the Polyakov path integral for the bosonic string are 
considered within the Ebin-Fischer-Mareden approach to the geometry of spaces of 
Riemannian metrics and conformal structures. It is shown that for surfaces of higher genus, 
the existence of local conformal gauges is sufficient to derive the globally defined integral over 
the Teichmiiller space. The generalized Faddeev-Popov procedure for incomplete gauges is 
formulated and used to derive the global expression for the Polyakov path integral in the cases 
of torus and sphere. The Gribov ambiguity in the functional integral over surfaces without 
boundary can be successfully overcome for arbitrary genus. 

I. INTRODUCTION 

The Faddeev-Popov procedure applied to the Polyakov 
path integral for the bosonic string I is the basic tool for ob
taining the expression for multiloop amplitUdes in the form 
of a finite-dimensional integral over moduli space.2-6 It also 
gives the complete expression for the integrand in terms of 
functional determinants, which is the starting point of recent 
investigations of the structure of multi loop amplitudes.7.8 It 
turns out that an essential simplification of the bosonic string 
integrand is possible, if one takes into account the natural 
complex structure of the moduli space. The factorization 
theorem9-11 asserts that the integrand is the square of a holo
morphic form on the moduli space. Moreover, there is only 
one (up to constant) holomorphic volume form on the mod
uli space. All of this provides a very powerful framework to 
analyze string perturbation theory. 

The first step on the long way from the Polyakov path 
integral to the unique holomorphic form on the moduli 
space is the Faddeev-Popov procedure. In the commonly 
used prescription,2-6 the functional measure is treated as a 
formal volume form related to some Riemannian structure 
on the space of fields. The Faddeev-Popov determinant ap
pears as a Jacobian factor due to the change of variables. 
Such an approach is essentially local, and it is not obvious 
that it is valid globally. The situation is more complicated in 
the case of a functional integral over surfaces of genus 
h = 1,0. One uses a mixture of global (dividing by the vol
ume ofthe conformal group) and local (modified Jacobian 
factor) arguments.2-6 

In order to investigate the global geometrical aspects of 
the Faddeev-Popov procedure in our previous paper, a 
slightly modified prescription has been introduced. 12 Fol
lowing the ideas of Singer,13 Schwartz,14 and Babelon and 
Viallees in the case of Yang-Mills theories, the functional 
measure is treated as a Riemannian volume form, but instead 
of the change of variables, the appropriate formal generaliza
tion of the Fubini theorem on the principal fiber bundle is 
used. Roughly speaking, the basic idea of this approach is to 
pass from functional measure (which is not well-defined) to 

a) On leave of absence from Institute of Theoretical Physics, University of 
Wroclaw, Wroclaw, Poland. 

the infinite-dimensional Riemannian geometry, which has a 
precise mathematical meaning. The Fubini theorem for fi
nite-dimensional principal bundles has the form of the equal
ity of two integrals, each of which is uniquely determined by 
the specific set of geometrical data. In the infinite-dimen
sional case such integrals have no meaning, but one can still 
consider the corresponding sets of geometrical Objects. This 
geometrical transcription of the Faddeev-Popov procedure 
has been discussed in Ref. 12 for the Yang-Mills theory and 
for the point particle. The case of the bosonic string for high
er genus (h> 1) has also been considered under the simpli
fied assumption that the global smooth gauge fixing exists. 

Global aspects of the gauge fixing in the Polyakov path 
integral for the bosonic string were previously considered by 
Killingback.16 It was shown that the fibration 

(1.1 ) 

is nontrivial for genus h = 1,0 and topologically trivial in 
other cases. (g~ denotes the identity component of the dif
feomorphism manifold group of genus h, and Jt h denotes 
the space of Riemannian metrics with a trivial isometry 
group.) More recently, the topology of this fibration has 
been discussed in the context of the Yang-Mills theory. 17 As 
follows from the fiber bundle description of the Teichmiiller 
theory developed by Earle and Eells, 18 the fibration ( 1.1) is 
topologically reducible to the principal fiber bundle with the 
structure group SL(2C)/Z2 in the case of a sphere and 
SO(2) xSO(2) in the case ofa torus. These reductions can 
be used as global generalized gauge fixings (incomplete 
gauges). In the Yang-Mills theory the situation is worse
there are no reductions with a finite-dimensional fiber. 17 

The aim of the present paper is to justify, from the global 
point of view, our previousl2 geometrical interpretation of 
the Faddeev-Popov procedure and extend it to the cases of 
sphere and torus. It requires a more detailed knowledge of 
the geometry of fibration ( 1.1 ) than the topological observa
tions mentioned above. We shall refer to the Ebin-Fischer
Marsden approach 19-23 to the geometry of the space of Rie
mannian metrics and of conformal structures on manifolds 
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of arbitrary dimension. Taking into account the peculiarities 
of two dimensions and connections with the Teichmiiller 
theory, 18 the appropriate theorems are formulated in Sec. II. 
In Sec. III, using local conformal gauges, the global gauge
independent form of the integral over Teichmiiller space is 
derived. The underlying geometry of the d'Hoker-Phong4 

approach is also discussed. In Sec. IV it is shown that in the 
case of a torus, the fibration ( 1.1 ) has smooth reduction, and 
the reduced bundle is explicitly constructed. The global geo
metrical interpretation of the Faddeev-Popov procedure for 
generalized (incomplete) gauges is achieved by the formal 
generalization of the Fubini theorem for finite-dimensional 
reducible principal fiber bundles, which is formulated in the 
Appendix. In Sec. V the case of a sphere is discussed along 
similar lines. The results of Sec. III-V complete our geomet
rical interpretation of the Faddeev-Popov procedure for the 
Polyakov path integral over closed surfaces, and provide the 
global geometrical justification for the results derived by the 
"change of variables." 

II. INFINITE-DIMENSIONAL GEOMETRY 

Let us briefly describe some basic results of the geome
try of the space of Riemannian metrics and conformal struc
tures on two-dimensional manifolds in the form adapted to 
our further considerations. These results will be formulated 
in terms of Frechet manifolds and Frechet-Lie groups.24.25 
The structure of a Frechet manifold naturally arises if one 
considers a space of smooth (C'" ) sections of some fiber 
bundle. The topology of uniform convergence of all deriva
tives is most natural in this case. Then the structure of a 
Frechet manifold can be introduced by the "vector bundle 
neighborhoods" construction.24,26 However, for Frechet 
manifolds the implicit function theorem and the inverse 
function theorem break down. 24 To overcome these difficul
ties one commonly regards the Frechet manifold as the in
verse limit of the family of Hilbert manifolds modeled on 
appropriate Sobolev spaces Ir (s denotes a Sobolev class). 27 
Such construction is possible for a large class of Frechet 
manifolds appearing in physical applications. I 9-23 It turns 
out that many theorems have easier proofs in the case of 
Hilbert manifolds for arbitrary s (both theorems mentioned 
above work in this case). If the s dependence is sufficiently 
regular, then it is possible to derive the information about the 
smooth case. 19-23 The results listed below are derived within 
this framework, as a consequence of the Ebin slice 
theorem. 19 For all details and proofs we refer to the original 
papers. 

LetMh be a compact orientable smooth two-dimension
al manifold without boundary, of genus h. Let JI h denote 
the space of C'" Riemannian metrics on M h , So JI h is a 
Frechet manifold modeled on the Frechet space C'" (S2) 

= C '" ( T * Mh ® s T * M h ) of smooth symmetric tensor 
fields of the type (0,2) onMh with the C '" topology (i.e., the 
topology of uniform convergence of all derivatives on com
pact subsets of Mh ). Let g; h denote the group of smooth 
diffeomorphisms of Mh with C '" topology. It is the Frechet
Lie group25 under the operation of composition of mappings. 
The Frechet-Lie group is a smooth Frechet manifold with a 
group structure such that the multiplication map and the 
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inverse map are smooth. In fact, g; h has the finer structure 
ofthe inverse limit Hilbert (lLH)-Lie group.27.28 As a Fre
chet manifold, g; h is modeled on the space C '" ( TMh ) of 
smooth vector fields. The space tangent to g; h at leg; h is 
naturally isomorphic to the space 

C"'(/*TMh ) 

= {l5f Mh -+TMh, 151 is smooth and 'fT015/=/}, 

where 'IT: TMh -+Mh is the bundle projection. We denote by 
'lrh = C '" (Mh ) the Frechet space of smooth real functions 
on Mh with C'" topology. With the pointwise addition of 
functions it is, of course, the Abelian Frechet-Lie group. We 
introduce the semidirect product 9J h0'1rh as a space 9J h 
X 'lrh with the product Frechet manifold structure and 
with the group operation defined by 

(I',q; '). (f,q;) == (1'0 f,q; + q; '0 I). 

SO 9J h0'1rh is a Frechet-Lie group.23 As a Frechet mani
fold it is modeled on the Frechet space C '" (TMh ) 

xC"'(Mh )· 

We have the following natural right actions of the 
groups listed above, on the space of matrices JI h : 

AD: Jlh X9J h 3 (g,f) -+1*geJ(h' (2.1) 

A w: Jlh X 'lrh 3 (g,q;) -+e'l'geJ(h' (2.2) 

A DW: Jlh X (9J h0'1rh ) 3 (g, (f,q;»)-e'l'I*geJ(h' 
(2.3) 

All of these actions are smooth. 19.23 We will briefly describe 
the geometry of these actions. The actions AD and A DW are 
not free. We define the isotropy group I f of g in 9J h , 

If =={/e9J h: I*g = g}, 

and the isotropy group Cf ofgin 9Jh0'1rh, 

Cf =={(f,q;)e9J h0'1rh: e'l'l*g =g}. 

Clearly C f is isomorphic to the conformal group of g: 

{/e9J h: I*g = e'l'g, q;e'lrh}. 

For this reason we will use the symbol Cf for both groups. 
With this identification, I f is a subgroup of C f . 

In order to obtain the free 9J h action let us restrict our 
attention to the space :i h of metrics with trivial isotropy 
groups: 

~ h == ( geJ( h: If = {id}}. 

This space is open and dense in JI h' 19 Moreover, from the 
Ebin slice theorem there follows this proposition. 

Proposition 1 19, 2~. The restriction of the actionAD to the 
submanifold :i h cJI h defines a smooth principal fiber 
bundle 

9J h -+ 1h 
! (2.4) 

~h/9Jh' 
The topology of (2.4) is described by the following 

proposition. 
Proposition 2: For all h, the principal fiber bundle (2.4) 

is nontrivial. 
Proot The space JI h is convex and hence contractible. 

The space:i h is also contractible [see at Singer's proof that 
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the space of irreducible connections on a principal SU (n ) 
bundle over a compact manifold is contractible,13 and see 
also the remark that follows]. Therefore if our bundle is 
trivial, then 

0=1Tq (1h ) =1Tq (.7!/fgh) fiB1Tq (fgh)' 

and, for allq, the homotopy groups1Tq (fg h) must be trivial. 
But it is not true for all h. In fact, for h;;;. 1, 1T 0 (fg h ) :;6 0, and 
for h = 0, 1T2(fg 0) = 1T2(SO(3) ).29 

The situation improves if we consider the subgroup fg~ 
C fg h of diffeomorphisms homotopic to identity. We define 

C~ =C~ nfg~, I~ =I~ nfg~, 

..£h={g~h: I~ = {id}}. 

Proposition 3 3~. (a) For all h > 1 and all ~ h' C ~ 
= {id}. 

(b) For h = 1 and allg~I' Cf :::::SO(2) XSO(2). 
(c) For h = a and allg~o, C~ :::::SL(2C)/Z2' 

As follows from Proposition 3 (a), in the case of higher genus 
we have ..£ h = vii h • 

Note that fg~ is a closed subgroup, locally diffeomor
phic to fg h' Ebin's derivation 19 of the slice theorem can be 
immediately applied to the restricted action. This yields the 
following. 

Proposition 4 1~. The space..£ h is an open and dense sub
set in vii h' The restriction of the action AD to ..£ h X fg~ 
defines the smooth principal fiber bundle 

fg~ .... ..£h 

l 

Jth/fg~. 

(2.5) 

We have also the result about triviality derived by stan
dard topological arguments by Killingbeckl6 and slightly ex
tended by Solov'ev. 17 

Proposition 5 16. l~. For h> 1, the bundle (2.5) is topo
logically trivial. In other cases it is nontrivial but topologi
cally reducible to the SO (2) X SO (2) bundle for h = 1 and 
to the SO (3) bundle for h = O. 

The sharpened version of this result in the smooth case 
will be derived in Secs. IV and V. Now let us consider the 
action of Ph on vii h' This action is free, and we have the 
following result of Fischer and Marsden. 

Proposition 6 2~. The action A W
: vii h X Ph .... vII h de

fines a smooth principal trivial Ph bundle, 

Ph .... vIIh 

(2.6) 

vIIh/Ph· 

Let us note that the triviality of (2.6) is stronger than 
the topological triviality. Proposition 6 asserts that the glo
bal smooth section of the bundle (2.6) exists. 

As follows from the Proposition 6, the quotient space 
'1f h = vii h/Ph has a well-defined Frechet manifold struc
ture. The space '1f h consists of smooth conformal structures 
on M h. 18,23 The tangent space Y[g 1 Crfi h at [g] eCrfi h is natu
rally isomorphic with the space of smooth, traceless (with 
respect to g' e [g ] ) symmetric tensor fields of the type (0.2). 
On the space '1f h one can define the action of the group 
fg~,18 
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(2.7) 

This action is free for h > 1, as follows from Proposition 3. In 
order to obtain the free action in the cases of torus and 
sphere, one can proceed, following the idea of Fischer's ex
tension theorem for superspace,20 to the appropriate sub
groups of fg~. Our case is more regular. All isotropy groups 
are isomorphic [Proposition 3 (b), (c) ], so we have only one 
type of orbit. The suitable subgroups are 

fg~ (x) ={jefg~: j(x) = x} (xeMI ) 

in the case of a torus, and 

fgO(X 1,X2,X3 ) = {jefgo: j(x j ) =xi , i= 1,2,3} 

(Xl>X2,X3 are three distinct points on Mo) in the case of a 
sphere. They are closed smooth Frechet-Lie subgroups of 
fg~.21 . 

The action (2.7) has been studied in the context of the 
Teichmiiller theory by Earle and Eells. 18 Their results can be 
summarized in the following. 

Proposition 71~. (a) For h > 1, the action (2.7) defines a 
smooth, topologically trivial principal fg~ bundle, 

fg~.... Crfi h 

l (2.8) 

Crfi h/fg~ =Yh 

over the Teichmiiller space Y h of the surface of genus h. 
(b) For h = 1, the action (2.7) restricted to the '1f I 

Xfg~ (x) defines a smooth principal fg~ (x) bundle, 

fg~ (x).... '1f I 

l (2.9) 

'1f1/fg~(X) =YI 

over the Teichmiiller space of the torus. 
(c) For h = 0, we have a diffeomorphism 

'1f o:::::fg 0(X1,X2,x3)' 

Proof: In the original paper18 it was shown that (2.8) 
and (2.9) are topological bundles. The smooth bundle struc
ture can be obtained by construction of smooth bundle iso
morphisms of (2.8) and (2.9) onto some smooth principal 
fiber bundles. 

(a) Our general idea is to identify '1f h with the space 
vii h- 4 of metrics with constant scalar curvature 
R (g) = - 4. The space vii h- 4 is a closed smooth submani
fold of vii h ,22 and the restriction of the action A D to vii h- 4 

X fg~ defines on vii h- 4 the structure of a smooth principal 
fg~ bundle, 

(2.10) 

vIIh-4/fg~. 

By the results of Kazdan and Warner,31 for every metric 
~ h there exists a uniquely determined function rp 
eC 00 (Mh ) for which e'P~ h- 4. Then from the form of the 
Berger-Ebin splitting of Ygvll h for metrics with constant 
scalar curvature32 [see also (3.15) and (3.16) in the next 
section], it follows that vii;; 4 defines a smooth global sec
tion of the fibration (2.6). This section is the required bundle 
isomorphism of (2.8) onto (2.10). 
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(b) The following considerations are based essentially 
on the results of Ref. 22. In the case of a torus, the space of 
metrics with zero scalar curvature coincides with the space 
Y of fiat metrics. Now Y is a smooth closed submanifold of 
.-III" The restriction ofthe action AD (2.1) to Y X..@? (x) 
defines on Y the structure of a smooth principal fiber bun
dle, 

g?(x)-+ Y 
! (2.11) 

y/g?(x). 

Let Y r C Y be the space of metrics with a fixed Levi-Civita 
connection r. By the results of Ref. 22, for every geY we 
have a splitting 

YgY = Yg & g $ YgY r(g) , 

where & g is the g? orbit of g. Moreover, all metrics from 
Y r have the same isotropy groups 7 f. It follows that Y r 

defines the global smooth section of the bundle (2.11). Let 
us consider the intersection YO==Ynrl, where 

r l == {geJI l : fM,.[gd
2z= I}. 

Now r I is a closed smooth submanifold of .-111,19 invariant 
under the action of the group g I' The restriction of AD to 
~ X g? (x) defines the principal fiber bundle 

g? (x) -+ yo 

! 

yo/g?(x). 

(2.12) 

The submanifold .7} == Y r n r I provides a smooth global 
section of this bundle. It is a so-called Teichmiiller section 
( see Ref. 18 for discussion of this section in terms of covering 
the space of the torus). As in the case h > 1, one can prove 

that yo determines the smooth global section of the bundle 
(2.6), which is a bundle isomorphism of (2.9) onto (2.12). 

(c) In the case of a sphere, go = gg. The space of 
metrics with constant scalar curvature R(g) = 1 coincides 
with the go orbit & gs of the standard metricgs .22 Using the 
Ebin technique l9 one can show that & gs is diffeomorphic to 
g oil ~s-::::,g 0(XI,X2,X3 ). On the sphere, every metric is con
formally equivalent to a metric with constant scalar curva
ture.31 Therefore it follows from the Berger-Ebin splitting32 

that & gs determines a smooth global section of the bundle 
(2.6), which is the required diffeomorphism. 

As a simple consequence of Propositions 3, 6, and 7, we 
have the following (compare the Fischer-Marsden proof of 
the slice theorem for the action of g0Yon.-ll for higher 
dimensions23 ) . 

Proposition 8: (a) For h> 1, the actionA DW (2.3) de
fines the smooth, principal, topologically trivial g~0Yh 
bundle 

..@~0Yh-+ .-IIh 

! (2.13) 

Y h • 

(b) For h = 1, the action ADW restricted to the sub
group g? (x)0YI defines the smooth principal trivial 
g?(x)XYI bundle 
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g?(x)0YI -+ .-III 

! (2.14 ) 

Y I • 

(c) For h = 0, we have a diffeomorphism 

.-IIO-::::'..@O(XI,X2,x3)XYO· 

Let us also note that the space of conformal structures 
~ h has a natural complex structure (it is a complex Frechet 
manifold 18). Taking the quotient of this structure by the 
canonical projection of the bundle (2.8), we obtain the natu
ral complex analytic structure on Y h • For these complex 
structures, the global holomorphic section exists for the 
torus only. 18 Since in this paper we are interested in the con
nection between the geometry of the space of met rices (rath
er than the space of conformal structures) and the Polyakov 
path integral expressed as an integral over Teichmiiller 
space, the complex structure of Y h will not be discussed. It 
is, however, crucial for the holomorphic factorization 
theorem.9-11 

III. h> 1 

In this section we will discuss the global aspects of the 
conformal gauge fixing in the Polyakov path integral over 
surfaces of higher genus. For the geometrical analysis of this 
path integral we refer to our previous paper. 12 Here we will 
start with the following form of the vacuum-to-vacuum am
plitude: 

X g dflM, 
( 

det''y ) - 13 

SM • .[gd 2z 
(3.1) 

obtained after integration over embeddings of the model 
world sheet manifold Mh into a 26-dimensional Euclidean 
target space.2~.12 In the above expression, dflM,dflHS,dfl ws 

denote the formal volume forms related to the weak Rieman
nian structures M( I ) on M h , lP ( I ) on ..@~, and 
W g

( I ) on Y h , respectively. They are defined as follows: 

Mg( I ): C""(S2)XC""(S2)-+R, 

W~( I ): C""(Mh)XC""(Mh) .... R, 

W~(8.p 18.p')= f .[gd 2z8.p8rp'; 
JM. 

Hfd( I ): C""(TMh)xC""(TMh)-+R, 

Hfd (8f 18f') == f .[g d 2Z gab8r8f'b . 
JM. 

(3.3) 

(3.4) 

The above Riemannian structures are not invariant un
der conformal deformation of a metric, so we can not apply 
the Faddeev-Popov procedure (in its standard form) to the 
integral (3.1) using the gauge fixing for the whole gauge 
group gh0Yh. The integrand and the measure in (3.1) 
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are ~ h invariant, so according to the commonly used ap
proach 1-6 one can fix the gauge only for the diffeomorphism 
group. The most convenient is the conformal gauge intro
duced by Polyakov. I 

In our global geometrical formulation of the Faddeev
Popov procedure, it is necessary to have the global smooth 
section. Then the topological triviality of the bundle (2.5) 
(Proposition 5) is not sufficient. In fact, the splitting of the 
space tangent to the bundle, determined by the subspace tan
gent to the gauge fixing slice, is crucial in the construction of 
the Faddeev-Popov determinant. 12 Leaving aside the prob
lem of the existence of a global smooth section of the bundle 
(2.5), we will show that it is sufficient to work with local 
smooth sections (which, by Proposition 4, always 
exist). 

Let us choose the family {o-a } ael of local smooth sec
tions 

o-a: Y h :JUa 3t-+gaEJt'h 

of the bundle (2.13), such that the related family of open sets 
{U a} aeI is a locally finite covering of the Teichmiiller space. 
This is always possible since, by the Teichmiiller theorem,33 
Y h is homeomorphic to R6h - 6 and, therefore, paracom
pact. We introduce the partition of unity on Y h' 

(3.5) 

related to the coverning {Ua}aeI. Let!a ==o-a (Ua ) CJI h. 
Then l:a ==A W (!a X 'Ir h ) is a smooth submanifold of JI h. 
We define local sections of the bundle (2.5) (local confor
mal gauges) by 

CTa: Jlh/~~:J Ua 3U-+gaEJt'h' 

{gal = l:a nTI.; leu), 
(3.6) 

where Ua ==TID (l:a), and TID: Jlh -+Jlh/~~ denotes the 
canonical projection of the bundle (2.5). Note that, for all 
gel:a , Ygl:a nker TI. = 0, and the local section (3.6) is 
smooth. The family {Ua } ad is a locally finite covering of 
JI h/~~ for which the partition of unity (3.5) can be easily 
extended. 

For every local trivialization 

~~-+ Jlh==TI.;I(Ua ) 

! 

Jlh/~~ = Ua, 

the geometrical description of the Faddeev-Popov proce
dure given in Ref. 12 is fully justified. It yields (at the critical 
dimension) 

Z~~a = f ct>a d 6h - 6t detMg)8tPi [8Xj) JUa 

where 

~ a_ IT(a_)-
VXj== atjga -"2 r atjga ·ga· 

(3.7) 

The expression {8tPi }~: 1 6 is an arbitrary basis of 
ker P g: CYgaJlh, and 
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(H(P t »)ij = Mg (8tP; [8tPj)· 

In order to clarify the global geometrical meaning of the 
integrand of (3.7), we introduce a few natural orthogonal 
splittings of the tangent space YgJl h. First, we consider the 
splitting determined by the action A W (2.2): 

YgJlh = Kg $%g, 

%g =={8geC ""(S2): 8gab =8tpgab' 8tpEC""(Mh )}, 

Kg =={8geC ""(S2): ~b8gab =o}. (3.8) 

This decomposition is globally integrable.23 Here % g is the 
subspace tangent to the 'lrh orbit of g, and Kg is tangent to 
the submanifold 

ffl-'(g) =={g'EJt'.,,: /-leg') =/-l(g)} 

[/-l (g) denotes the volume form related to g). Introducing 
the conformal Lie derivative 

Pg : C "" (TMh ) -+C 00 (S2)' 

(Pg8f)ab == (gac Vb + gbc Va -gab Vc)8fC, 

P g+: C""(S2)-+C""(TMh ), 

(P g+ 8gY== - g<aVb8gab , 

we have the splitting23 

Kg = 1m Pg $ ker P g+ , 

and the York decomposition34 

YgJlh = ImPg $ker P / $%g. 

(3.9) 

(3.10) 

This decomposition can be obtained by the intersection of 
the splitting (3.8) with the following one related to the ac
tionADw (2.3)23: 

YgJl h = 1m Tg $ ker Tg+, 

Tg: C ""(TMh ) xC ""(Mh )-+C ""(S2)' 

Tg(8j,8tp)ab == (gac Vb + gbc Va )8fC +gab8tp, (3.11) 

Tg+: C "" (S2) -+C "" (TMh) xC ""(Mh ), 

Tg+ 8g== ( - ~CVb8gab' ~b8gab). 

Note that ker P t = ker Tg+ . Let TI;-,": Y gJl h -+ ker P g+ be 
the projection operator related to the decomposition (3.11). 
We have 

Mg (8tP; [8Xj) = Mg(8tPi [TI;+ (:rj ga )) = Mg (8tP; [an· 
Here a J == TI;-'" 00-a. (aj ) denotes the horizontal lift of the 
vector aj ==a / at j tangent to the Teichmiiller space at teY h' 
i.e., the unique solution of the conditions 

TIDW.aJ = aj , aJe ker P t = (YgTI.;~(g»)\ 
wheregeTI.;~(t), and TI DW : JI h -+Yh denotes the canoni
cal projection ofthe bundle (2.13). The whole integrand of 
(3.7) is independent of the basis {8tPJ~:16 and ~~ in
variant. In order to show the 'Ir h invariance, it must be 
decomposed into two pieces: det Mg (8tP; [aJ) and 

( 
det P g+ Pg )112 ( det'.!L' g ) - 13 

detH(Pt) SM
h
,fid 2z 

(3.12) 

The 'Ir h invariance of the first term is a consequence of the 
relation 
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l):"'g=e"'(}I!. 
J J 

The 7r h invariance of (3.12) has been shown by Alvarez. 2 

It follows that the integrand of (3.7) is a well-defined 
(6h - 6)-form on the Teichmiiller space independent of a 
special choice of local sections. So for global coordinates 
{t J}~~ 1 6 on Y h' we can drop out the partition of unity and 
arrive at the following formula: 

Z~6 = f d6h-6tdetMg(8t/1ilan 
jY

h 

(3.13 ) 

In order to obtain a somewhat more elegant form of 
(3.13), one can use the freedom in the choice of bases {8t/1i} 
of ker P t c Y gJl h • Let us consider the set of vector fields 
{8vJ~~16 on Y h such that, at every point tEYh, 
{8v j (t)}~~ 1 6 is a basis of the space tangent to Y h at t. Then 
the horizontallifts{8vJ of {8vJ [in the bundle (2.13) with 
respect to the metric Mg ( I ) (3.2)] form a basis of 
ker P t CYgJlh at every metric gEJIh • Choosing in 
(3.13) {8t/1J~~ 1 6 obtained in this way, and using the same 
symbol for the vector fields on Y h and their lifts on JI h' one 
can rewrite (3.13) in a form independent of a special choice 
of coordinates on Y h : 

x ( detP t Pg )112 ( det' .!t'g ) -13, 

det H(P g+) fM ..[g d 2z 
h 

(3.14 ) 

where {dt/li}f: 1 6 are one-forms on Y h dual to the vector 
fields {8t/1J~: 16. The above expressions (3.13) and (3.14) 
are the starting point for the holomorphic factorization.9-11 

A slightly different geometrical interpretation of (3.7) 
has been done in terms of the Weil-Peterson metric on the 
Teichmiiller space by d'Hoker and Phong.4 The geometry 
underlying their approach is described by the Berger-Ebin 
splitting32

: 

YgJlh = ker rg Ell 1m rt, 
rg: C""(S2)-+COO(Mh ), 

rg8g=. - Vc V Cg"b8gab + vaVb8gab - R(g) ab8gab , (3.15) 

rt: COO(Mh )-+COO(S2)' 

(rt f)ab =. - 8gab Vc V'i + Va Vbf - fR(g)ab' 

The summand ker rg is the space tangent to the submanifold 

Jlf<g)=.{g'EJlh : R(g') =R(g)} 

[R (g) ab denotes the Ricci tensor of g; R (g) =.g"b R (g) ab is 
the scalar curvature of g ] . 

For metric g with constant scalar curvature, the inter
section of the decompositions (3.15) and (3.11) gives a finer 
splitting: 

YgJl h = Imr.t EIlkerPt EIlYg&'g, (3.16) 

where tJ g =.A D(g,.@2) is the .@2 orbit of g. Therefore, if 
one restricts oneself to the submanifold JI h 4 cJI h of met-
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rics with constant scalar curvature R = - 4, then that part 
of the integrand (3.13), 

-g 
d 6h - 6t detMg (8t/1i la j ) 

detH(Pt) , 

can be interpreted as a volume form dw WD related to the 
Weil-Peterson metric on Y h • It is defined as the projection 
of the .@2-invariant Riemannian structure Mg ( I ) (3.2) 
on Jlh-4, onto Y h • The remaining .@2-invariant (but not 
7rh -invariant) part must be evaluated on JI h 4. It is a well
defined function on the Teichmiiller space. The d'Hoker
Phong expression of Z ~6 has the following form: 

IV.h=1 

We will start the discussion of the global aspects of the 
Faddeev-Popov procedure in the case of a torus with the 
derivation of the sharper version of Proposition 5. Let us 
denote by !71 the space of metrics on MI with fixed flat 

Levi-Civita connection r, such that f M,,Jg d 2Z = 1. Let ~r 
be a space obtained from y~ by the action of the group 7r I' 

Proposition 9: For h = 1, the smooth principal.@? bun
dle 

(4.1 ) 

11/'@?, 
is reducible to the smooth principal SO(2) X 50(2) bundle 

Cr -+ ~r 
t (4.2) 

~r/Cr =11/.@?, 

where Cr = Cf, gE~r; ~r ='~r n11• 

Proof; From the proof of Proposition 7 we have that!71 
is a smooth closed submanifold of JI h' Then, by Proposition 
6, the orbit ~r = A W (!71, 7r I) is a smooth closed subman
ifold of Jl1. For gl,g2EY~, the.@ I isotropy groups If',lf2 
have the same component of identity: / f' = /f2.22 For flat 

- - - tp -
metrics on the torus, If = C f and C ~ g = C f , so all metrics 
from ~r have the same .@?<::)7r1 isotropy group, which we 
will denote by Cr. The intersection ~r = ~r n1 I is a 
closed smooth submanifold of 1 I' and the restriction of the 
action A D: 11 X.@? -+1 I to ~r X C~ provides the struc
ture of the principal smooth Cr bundle (4.2). By Proposi
tion 3, Cr ::::::50(2) X50(2). Finally, since every metric on 
the torus is 7r1 equivalent to the flat metric, we have 'frl 
Cr = 1 I/.@? , and the bundle (4.2) is a reduction of (4.1). 

The reduction of the bundle is a natural generalization 
of the gauge fixing-the incomplete gauge fixing. In fact, the 
global smooth section can be viewed as a reduction to the 
bundle with a trivial structure group {id}. We will formulate 
the Faddeev-Popov procedure for this generalized gauge 
fixing. Roughly speaking, our aim is to express the func
tional integral over the bundle (4.1) in terms of the integral 
over the reduced bundle ( 4.2). In the finite-dimensional case 
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we have an appropriate version of the Fubini theorem (see 
Appendix). According to the ideas of Ref. 12 mentioned in 
the Introduction, the Faddeev-Popov procedure can be seen 
as a formal generalization of the finite-dimensional Fubini 
theorem. 

The infinite-dimensional counterpart of the lhs of (AS) 
is determined by the following set of geometrical objects: the 
smooth principal fiber bundle (4.1), the weak Riemannian 
Pfl? -invariant structures (3.2 )-( 3.4), and the Pfl? -invariant 
functional on :ill formally defined by 

F[g]== dOw g (i g) - I ( det''y ) - \3 

?'r, S M, Ji d 2Z 

The infinite-dimensional counterpart of the rhs of (AS) is 
determined by the smooth reduction (4.2) of the bundle 
(4.1), by the induced Riemannian structures M}; on ~r and 
li g on Cr , by F [g] ==F [g] l"fr' and by the functional D[g] 
on ~r (the Faddeev-Popov determinant). In order to find a 
form of D[g), we must construct the infinite-dimensional 
counterparts of the operators au, au+ defined by the formu
las (A6) and (A7). Let us consider the canonical decompo
sition of the space tangent to 11 at gEl:r' related to the 
action AD (2.1) 19: 

Yg11 = 1m a g EB ker a g+, 

ag: C"'(TMh )--+C"'(S2)' 

(ag 8/)ab == (gac Vb + gbc Va )8/ c, 

at: C"'(S2)--+C"'(TMh ), 

(ag+ 8g)c== - ~CVb8gab' 

(4.3 ) 

The summand 1m a g is the space tangent to the Pfl? orbit 
ofg. 

We have also another splitting determined by the sub
space Ygl:r tangent to l:r atgEl: r : 

Yg11 = Ygl:r EB (Ygl:r )1. (4.4) 

For gE~, we have a decomposition22 

Ygl:r =kerPt EB.5Yg , (4.5) 

where the first summand is tangent to Y~ and the second to 
the Jr l orbit of g. This splitting is Jr l invariant, so the 
decomposition (4.5) is valid for all gEl: r . It follows that 
(4.4) agrees with the York splitting (3.10), and (Ygl:r)l 
= ImPg • 

Let n;: Yg11--+lm Pg be the orthogonal projection 
related to the York splitting (3.10). The infinite-dimension
al counterpart of the operator au (A6) is given by 

n;oag: C"'(TMI)--+lmPg, 

and coincides with the conformal Lie derivative Pg : 

C"'(TMI)--+/Jr'g (3.9). Therefore the Faddeev-Popov de
terminant in our case has the form 

D [g] = (det' P t Pg )112, 

where P t is given by (3.9), and the symbol det' for "deter
minant" means that the zero eigenvalues are omitted. 

Resumming the Faddeev-Popov procedure applied to 
the functional integral (3.1) for h = 1 yields the following 
expression: 
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X (det'p
g
+p

g
)1/2 g, 

( 
det''y ) - \3 

SM, Jid 2z 
(4.6) 

where dO}; and dwB are volume forms related to the induced 
Riemannian structures M}; on l:r and li g on Cr , respec
tively. Note that in (4.6) the submanifold ~r is replaced by 
l:r· This is partly justified since ~r is open and dense in l:r, 
so we can assume that l:r \~r has "zero measure." More
over, ~r/JrI = l:r/JrI::::::YI' 

The next step is to perform the formal Fubini theorem in 
the case of the trivial fibration: 

Jr1--+ l:r 

!nr 

Y~. 

It is straightforward, since the manifolds A W (Y~,cp) and 
A w(g,JrI ), for CPEJrI, gEY~, are orthogonal whenever 
they intersect, and their tangent spaces split Ygl:r (4.5). It 
leads to the expression 

wheregEY~,gEnr I(g). Since the metric induced on!'r is 
not Jr l invariant, the "Jacobian factor" 

(det Mg (8¢.j 18¢.j) )-1/2 (4.7) 

appears, where {8¢.1,8¢.2} is an orthonormal basis ofker P g+ 
with respect to the scalar product Mg ( I ), g = nr (g). 

In order to extract theg-dependent part of the volume of 
Cr , we introduce, for an arbitrary basis {8cpI,8cp2} ofker Pg , 

the matrix 

H(Pg )ij==Mg (8cpjI8cpj)' gE!'r· 

But ker Pg forms a Lie algebra of Cr , so 8cpI,8cp2 can be 
interpreted as linear independent right-invariant vector 
fields on Cr. Taking the dual basis {dcp l,dcp 2} of right
invariant one-forms on Cr , we have (for gEl:r ) 

{ dwg =(detH(pg »)1/2 X { dcp l l\dcp2. 
JCr JCr 

Note that the integral on the rhs is independent of the metric 
g. Changing variables by the Teichmiiller section O'r: 
Y I -+ Y~ and by Jr 13 cp --+ e9'gEn r I (g), and proceeding as 
in the case of h > 1,12 we arrive at the d'Hoker-Phong form 
of Zi6

,4 

Z i6 = (L
r 

dcp 1 1\ dcp 2) - 1 X fy, dw WP 

X (det' P t Pg )1I2( det' .Y g ) - 13 , 
det H(Pg ) S M,.,Jg d 2Z 
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where dw wP='a1dwr is a Weil-Petersson volume form on 
the Teichmiiller space. Note that factor (4.7) equals 1 for 
g=g. 

The form of Z i6 suitable for a holomorphic factoriza
tion9-11 can be obtained as in the previous section by the 
appropriate choice of {l5cpI,l5cp2}, {15t/JI,I5t/J2}: 

Zi6 = (L
1 

dcp I Adcp 2) - I X Jy, dt/JI Adt/J2 

( 
d t' P + P ) 112 ( det' X' ) - 13 

X det H(;g }d:t ~(P t ) f M,.Jg d ~z . 

(4.8) 

In the above formula, dt/JI,d"p2 are dual to the linear indepen
dent vector fields I5t/JI,I5t/J2 on f l , and H(P g+ } is evaluated 
with respect to the horizontal lifts of I5t/JI,I5t/J2 at geJll' Re
call that these lifts are understood in terms of fibration 
(2.14) and the Riemannian structure (3.2). The choice of 
{l5cpI,l5cp2} is restricted by the following condition. Let 
{l5cpI,l5cp2}' {l5cp; ,l5cp ~} be the bases in ker Pg Cfgvl( I and 
ker Prg Cfrgvl( I' respectively. Then 

I5cp: = j.l5cpi o/- 1 . 

With this choice the integrand of (4.8) is a iiI~ 0Y I-invari
ant functional on vi( I' and f c1dcp I A dcp2 is g independent. 

V.h=O 
As follows from Proposition 8 (c), the geometry of the 

space of Riemannian metrics on the sphere is very simple. In 
order to obtain the smooth version of Proposition 5 in this 
case, let us fix a certain metricgEv#' o' Let ~g be the Yo orbit 
of this metric. By Proposition 6 it is a smooth submanifold of 
vi( . For every metric gE~. , C ~ = C ~. Then the restriction o g _ _ 

of the action A D to Yg XC~, where ~g ='~g nvl( 0' deter
mines the structure of the principal fiber bundle with the 
structure group C ~. From the proof of Proposition 8, it fol
lows that each metric gEv#' 0 is iii 00 Yo equivalent to g, so 
Y.IC~ = vi( oIii1o' In consequence we have the following. 

g Proposition 10: For h = 0, the smooth principal iii 0 bun
dle 

iilo-+ ~o 
! 

~oliilo 
reduces to the smooth principal SL(2C}/Z2 bundle 

C~ -+ Yg 

! 

YgIC~ =~oIii1o. 

(5.1) 

(5.2) 

The reduced bundle (5.2) can be interpreted as a gener
alized (incomplete) gauge fixing. One can apply the geomet
rical Faddeev-Popov procedure described in the previous 
section. In the case of a sphere it yields 
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where dn~,dwg are volume forms related to the induced Rie
mannian structures M~ on ~g and Jjg on C~, respectively. 
Introducing an arbitrary basis {l5cpJf= I in ker Pg :::: I:d C~ 
and changing variables Y03cp-+e'P8e~g, we have 

Z~6 = (it dcp I A .. ' Adcp6)-1 

X (det' P t Pg ) 1I2( det' X' g ) - 13 

detH(Pg} fMo.Jg d 2z 

Since the group C~ ::::SL(2C}/Z2 is noncompact, one can 
argue that Z ~6 vanishes.6 
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APPENDIX: THE FINITE-DIMENSIONAL INTEGRATION 

In this appendix we will consider an integration of the 
G-invariant function on a finite-dimensional nontrivial (but 
reducible) principal fiber bundle. 

Let P(B,G,1T} be the principal fiber bundle over B, with 
the compact Lie group G as a structure group and with the 
projection 1T: P-+B::::P IG. The expression 

denotes the right action of G on P. We assume that P is 
reducible to the bundle P(B,K,1f}, whereK is the nontrivial 
subgroup of G. It means35 that there exists a homomorphism 
(u',u") ofthe bundleP(B,K,1f} intoP(B,G,1T} such that 0": 

K -+ G is an embedding, and the mapping 0''' induces the 
identity diffeomorphism of the base B. Identifying P with 
0''' (P), one can treat P as a submanifold of P. The right 
action Ra: P-+P of K on P is the restriction of the right 
action Ra of G on P; similarly, 1f = 1T[p. We consider a G
invariant Riemannian metric g on P (VaEG: R :g = g). This 
metric, if restricted to the submanifold P, provides the K
invariant (induced) Riemannian structure g on P. All ob
jects considered here are assumed to be sufficiently smooth. 

We will consider the integral 

where/is a G-invariant function on P, dwg denotes the vol
ume form related to the metric g on P, and dw hp is the volume 
form related to the right-invariant metric hp on G. The fam
ily of Riemannian structures {hp}pEp is such that 

/o(p} = f Gdwhp is a G-invariant function on P. Our aim is to 
express the integral /[ /] as an integral over the reduc~ 
bundle P with the volume form related to the metric g on P. 
For this purpose we will use two versions of the Fubini 
theorem on the trivial principal bundles. 12 

For each G-invariant Riemannian structure g on 
P(B,G,1T), there exists a uniquely defined Riemannian struc
ture g on B as well as the related volume form dor on B. Let 
us denote by g the Riemannian structure on B determined by 
the metric g on P, and by dmg the related volume form. Using 
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the partition of unity on B and Theorems 1 and 3 of Ref. 12 
the following relation can be derived: 

I[ f] = if (det ru+ ru) 1/2dii)g , (A1) 

where {rp}pEp is the family of mappings defined by 

rp: G'=TeG-+TpP, rp={3p'IT.G' 

where 

{3p: G-+1T- I(1T(p»), RaP=p-a. 

The family of adjoint operators {r/ } pEp is determined by 

hp(8a,r/8p) =gp(rp8a,8p), 

where 8aETe G, 8PETp P. (Let us note that the function! is G 
invariant and can be seen as a function on B.) Similarly, for 
the reduced bundle P we have 

fp (1 do}'·) - I' djjjg = i!'(det T:Tu )1/2dtiig, (A2) 

where!, is the K-invariant function on P, while dr/'· denotes 
the volume form on K related to the induced metric 
hu = hulTK . The families {Tu} uep,{Tu+} ueP are defined by 

Tu: K' = Te K -+ Tu P , Tu =PU'IT,K , 

where 

Pu: K-+1T- I(1T(U»), Pu (c) =Rcu = U'c (uEPCP), 

and 

hu (8c,T: 8u) = gu (Tu8c,8u) 

(8CEK' = TeK, 8UETuP) . 

Now we will compare the volume forms djjjg and dtiig. 
Let us introduce the following orthogonal decompositions of 
the tangent spaces TuP,TuP at the point uEPCP: 

(A3) 

Wu=TuP= Vu EB vt, TuP= Wu EB wt, (A4) 

where Vu and Vu denote the spaces tangent to the fibers of 
the bundles P and P, respectively. We choose two orthonor
mal (with respect to the metric gu) bases {8pJ7= I in vt 
and {8uJ7= I in V~ [n = dim(B)]. From the definition of 
the metric induced on the base manifold B,12 it follows that 
the bases in T1r(u) B, 

8q; =1T.8p;, 8q; = 1T. 8u; , 

are orthonormal in the metrics g and g, respectively. The 
transition matrix A between these bases can be easily evalu
ated: 

n 

8q; = I g1r(U) (8q;,8qj )8qj 
j=1 

= ± gu(9;~"8u;,8pj)8qj = ± Aij8qj' 
j=1 j=1 

where 

moV" -Vl V l lfu: u-+ u' 

and II~": Tu P -+ V t is the projection operator related to the 
decomposition (A3 ). Passing to the dual bases 
{dq;}7= I ,{dq;}7= I' we have 
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n n 

dii)g = /\ dq; = detA /\ dq; = detA dtiig. (AS) 
;=1 ;=1 

Let us note that det A can be seen as a determinant of the 

operator g; ~" evaluated in the orthonormal bases of V ~ and 

V t. So det g; ~" defined in this way is the K-invariant func
tion on P. Now, from (AI), (A2), and (AS) we have 

I[f] = J (1 do}u) - I(u) (det ru+ru) 1/2 
p K (detTu+Tu)I/2 

X (detg;~")djjjg. 

In order to simplify this expression, it is convenient to intro
duce the following family of operators {au} ueP: 

au: G' = TeG-+ wt, au =II:"oru , (A6) 

where II:": TuP-+ wt is the operator related to the decom
position (A4). The adjoint operators {a u+} ueP are defined 
by 

(A7) 

8aEG' = TeG, 8UETuP. By an explicit calculation one can 
verify that 

__ u __ u Xdet g;v1 = (det' a + a )112 
(

det r+ r )112 
det T u+ T u u u u , 

where the symbol det' for "determinant" means that the zero 
eigenvalues are omitted. Let us summarize our discussion 
with the following theorem. 

Theorem 1: If P(B,K,1T) is the reduced bundle of the 
principal fiber bundle P(B,G,1T), then for the G-invariant 
metric g on P and the G-invariant function on P, there holds 

l(L dc/p
) - Idwg 

= fp(L dWhu) -Idet' a u+ au djjjg, 

(A8) 

where the operators {au LeP,{au+ } ueP are defined by (A6) 
and (A7), respectively. 

In the special case of the trivial reduction provided by 
the global section of P, this theorem reduces to Theorem 3 of 
Ref. 12 for the trivial bundles (with the convention that 

S{e}dwhu 
= 1). 
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A method to derive conservation laws for evolution equations that describe pseudospherical 
surfaces is introduced based on a geometrical property of these surfaces. A new third-order 
evolution equation is obtained as a first example for a nongeneric case in the classification 
given by Chern and Tenenblat [Stud. Appl. Math. 74, 1 (1986)]. 

I. INTRODUCTION 

Chern and Tenenblatl introduced the notion of a differ
ential equation for a function u(x,t) that describes a pseu
dospherical surface (p.s.s.), and they obtained a classifica
tion for such equations of type u, =F(u,ux, ... ,akul axk). 
These results provide a systematic procedure to obtain a lin
ear eigenvalue problem associated to nonlinear equations of 
this type. 

In this paper we introduce a new method to derive an 
infinite set of conservation laws for equations that describe a 
p.s.s., based on a geometrical property of these surfaces. 
Moreover, we exhibit a new third-order evolution equation, 

(1) 

which is the first example for a nongeneric case in the classi
fication mentioned above (see Theorem 2.5 in Ref. 1). The 
traveling wave solutions of ( 1) are obtained in Sec. III D. 

In Sec. II we present a general result (Theorem 2.1), 
which is the basis of our method, and its main consequence 
( Corollary 2.2). In Sec. III we apply these results to specific 
equations obtaining conserved densities which are oflocal or 
nonlocal type, depending on the equation being considered. 

II. GENERAL RESULT 

We recall I the definition of a differential equation that 
describes a p.s.s. Let M2 be a two-dimensional differentiable 
manifold with coordinates (x,t). A differential equation for 
a real function u (x,t) describes a p.s.s. ifit is a necessary and 
sufficient condition for the existence of differentiable func
tions 

lif' 1 (i(3, 1 (j(2, 

depending on u and its derivatives such that the one-forms 

CtJi =/il dx +Ia dt (2) 

satisfy the structure equations of a p.s.s., i.e., 

dCtJ 1 = CtJ3/\ CtJ2 , dW2 = CtJ I /\ CtJ3 , dCtJ3 = CtJI/\CtJ2 • (3) 

As a consequence, each solution of the differential equation 
provides a metric on M 2, whose Gaussian curvature is con
stant, equal to - 1. Moreover, the above definition is equiv
alent to saying that the differential equation for u is the inte
grability condition for the problem 

dv = av, (4) 

where v is a vector and a is a traceless 2 X 2 matrix of one
forms given by 

(5) 

Wheneverhl = 11 is a parameter and the functionsl. l andh 1 

do not depend on the parameter 11, (4) is the eigenvalue 
problem considered by Ablowitz et at.,2 as was observed by 
Sasaki. 3 

If M 2 is a two-dimensional Riemannian manifold with 
Gaussian curvature - 1, then there exist orthonormal vec
tor fields whose integral curves are geodesics and horocycles 
of M2 (see Proposition 4.1 in Ref. 1). The analytic interpre
tation of this result for differential equations which describes 
a p.s.s. is contained in the following theorem which is a gen
eralization of Proposition 4.2 in Ref. 1. 

Theorem 2.1: Letlif' l(i(3, 1,.;J(2, be differentiable 
functions of x,t such that 

- 111.1 + 112,x =/3ti22 - 121h2' 
- 121., + 122.x =/11/32 - 112hl , (6) 
- hi" + h2.x =1. tin - l12hl • 

Then the following statements are valid. 
(i) The following system is completely integrable for ifJ: 

ifJx =hl +111 sin ifJ + 121 cosifJ, 

ifJ, =/32 + /12 sin ifJ + h2 cos ifJ· 

(ii) For any solution ifJ of (7), 

(7) 

CtJ = (I.I cos ifJ -hi sin ifJ)dx + (ft2 cos ifJ - h2 sin ifJ)dt 
(8) 

is a closed one-form. 
(iii) Iflif are analytic functions of a parameter 11 at zero, 

then the solutions ifJ(x,t,11) of (7) and the one-form CtJ are 
also analytical in 11 at zero. 

Proof: Point (i) follows from the Frobenius theorem. In 
fact, a straightforward computation shows that (6) implies 
ifJxt =ifJrx' 

Point (ii) is proved by showing that the systems (6) and 
(7) imply that the exterior differentiation of CtJ is zero. 

As for point (iii), suppose hj are analytic functions of a 
parameter 11. Each equation of the system (7) can be consid
ered as an ordinary differential equation whose right-hand 
side is an analytic function of (ifJ, '1J). The solutions ifJ(x,t,11) 
of this equation exist as defined by (i). It follows from a 
theorem of ordinary differential equations (Ref. 4, p. 36), on 
the dependence of solutions upon parameters, that ifJ(x,t,11) 
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is an analytic function of 1], for 1] in an appropriate neighbor
hood of zero. Q.E.D. 

Before considering the main consequence of the above 
result, we point out that condition (6) says that the forms (tJi 
given by (2) satisfy (3). 

In the following corollary, we consider the functions/;j 
to be analytic in 1], and describe the solutions ¢ of (7) as a 
power series of 1]. Moreover, from (8) we obtain a sequence 
of closed one-forms. 

In order to state the result we need to fix our notation. 
We suppose 

00 

/;j(x,t,1]) = L It (X,t)1]k . 
k=O 

Then the solutions ¢ of (7) are of the form 
00 

¢(x,t,1]) = L ¢j(x,t)1]j. 
j=O 

We consider the following functions of 1], for fixed x,t: 

C(1]) = cos(¢) = co{to ¢j1]j) , 

S(1]) = sin(¢) = sin(.f ¢j1]j). 
:/=0 

It follows from (11) that 

C(O) = cos ¢o, S(O) = sin ¢o , 

d kC k - I k - i diS 
-(0) = - (k-1)! L ---. (O)¢k_i' 
d1]k i = 0 if d1]' 

dkS (0) = (k _ 1)! kil k - i diC (O)¢ . 
d1]k i = 0 i ! d1]i k -, , 

for k>l. 
Finally, we define the functions of x,t: 

(9) 

(10) 

(11) 

(12) 

where i,j,t are non-negative integers such thatj >i, t >2, and 
k = 1,2. We observe that the functions H f and L f defined 
above depend on ¢o, ¢I""'¢j _ i; and the functions F Ik and 
Flk depend on ¢o and ¢0"",¢/-1' respectively. 

As an immediate consequence ofThoerem 2.1 we obtain 
the following corollary. 

Corollary 2.2: Letlij (x,t,1]), l<i<3, l<j<2, be differ
entiable functions of x,t, analytic at 1] = 0, that satisfy (6). 
Then, with the above notation, the following statements 
hold. 

(a) The solutions ¢ of (7) are analytic at 1] = 0; ¢o is 
determined by 

(14) 

and, for j > 1, ¢j are recursively determined by the system 

¢}," = H~ ¢} + l'jl' ¢j,t = H1f ¢} + Fp. . (15) 
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(b) For any such solution ¢ and any integerj >0, 

(tJ) = ~ 1 (Hij dx +Hij dt) 
~ (. ')' I 2 i=Oj-l. 

(16) 

is a closed one-form. 
Now we consider a nonlinear evolution equation for 

u(x,t) which describes a p.s.s. There exist functions /;}' 
1<;<3, l<j<2, which depend on u(x,t) and its derivatives 
such that, for any solution U of the evolution equation, lij 
satisfy (6). Then it follows from Theorem 2.1 that (7) is 
completely integrable for ¢. If we supposelij to be analytic 
functions of a parameter 1], then the solutions ¢ of (7) and 
the one-form (tJ, given by (8), are analytic in 1]. Their coeffi
cients ¢) and (tJ) , as functions of u, are determined by (14)
( 16). Therefore the closed one-forms (tJ) provide a sequence 
of conservation laws for the evolution equation, with con
served density and flux given, respectively, by 

9 - ± 1 Hij 
} - i = 0 (j - ;)! I' 

} 1 
Y

J
. = - ~ H 2ij, j·>O. 

~ V-z·)'. i=O 

(17) 

Remark 2.3: If an evolution equation is the integrability 
condition of Eq. (4), where n (hence all functions lij) is 
analytic with respect to 1], then it follows from Corollary 2.2 
that a sequence of conservation laws is obtained from the 
analyticity of the form (tJ. As we shall see in Secs. III E and 
III F, the sufficient condition-all/ij to be analytic in 1]-is 
not necessary in order to obtain a sequence of conservation 
laws. 

III. APPLICATIONS 

We will apply the method described in the preceding 
section to obtain an infinite number of conserved densities 
for the following equations: Burgers, modified Korteweg-de 
Vries (MKdV), KdV, Eq. (1), sine-Gordon, and sinh
Gordon. To each equation we associate functions/;J satisfy
ing (6), as in Ref. 1. 

A. Burgers equation 

This equation has the form 

For any solution U of Burgers equation, the functions 

III = u/2, 112 = u2/4 + U,,/2, 

(18) 

121 = 1], 122 = 1](u/2) , (19) 

131 = -1], 132 = -1](u/2) , 

satisfy (6). Therefore, applying Corollary 2.2, we obtain a 
sequence of functions ¢} of u, which are determined by ( 14) 
and ( 15). It follows from ( 13) and ( 19) that we may consid
er 

¢O = 2 arctan exp( ~ f U dX) 

and the ¢I are recursively defined by 

¢I = eh (1 + f FlI e - h dX), t ;;;.} , 

where 
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h = J ~ cos <Po dx, Fl1 = - 1 + cos <Po , 

and 

I-I I-r u d'e 
FIl = L -'I -2 -d ' (O)<PI_, 

,=1 r. "I 

1 dl-Ie + -- (0) 1>2 
(I - I)! dTJI - I ' • 

Using (12) in the above expressions, we obtain <PI in terms of 
u. We display only the first terms of the series: 

<Po = 2 arctan exp( ~ J u dX) , 

<PI = eh(1 - J 2 exp(fu dx) e- h dX), 
1 + exp(fu dx) 

<P2 = eh(l - Je-h<pI sin <Po( 1 + : <PI)dX) , 

The conserved densities of Eq. (18) are given by (17), 
namely 

u 
-cos <Po, 
2 

~ dje (0) _ 1 dj-IS (0) . 1 
2J1 dTJ j (j - I)! dTJ j - I ,J > . 

Using ( 12) in the above expression, we obtain the first terms 

u 
-cos <Po, 
2 

i.e., ~ (1 - exp (J u dX) )( 1 + exp(J u dX) ) - I , 

- (1 + ~ <PI)sin <Po, 

- ~ <P2 sin <Po - ~ <Pi cos <Po - <PI cos <Po, 
2 4 

. , 
where the functions <Pj are given by (20) and (21). 

B. MKdV equation 

The MKdV equation is expressed as 

u, = Uxxx + ~U2ux . 
For any solution u of the MKdV, the functions 

111 = 0, /12 = - "lUx' 

hi = "I, h2 = !TJU2 + "13 
, 

hi = U, h2 = Uxx + !u3 + TJ2U 

(22) 

(23) 

satisfy (6). Applying Corollary 2.2, we obtain <p},j >0, de
fined by 

<Po = JUdX, 
(24) 

1 Jd}-Ie 
<Pj = (j-l)! dTJ j - 1 (O)dx, j>l. 

Using (12) in the above expressions we obtain <pj. The first 
terms are 
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<Po = JUdX, 

<PI = J cos <Po dx , 

<P2 = - J <PI sin <Po dx , 

The conserved densities are given by 

d}-IS 
--. -I (0), j>l. 
dTJ'-

Using (12), we obtain the first terms 

sin <Po, 

<PI cos <Po, 

2<P2 cos <Po - <Pi sin <Po , 

. , 
where the <Pj are given by (24). 

c. KdV equation 

This is the equation 

u, = Uxxx + 6uux . 

We consider the functions of u (x,t) defined by 

111 = 1- U, 

];.2 = - Uxx - 2u2 + 2u + UxTJ + ( - U + 1 )"12, 

(25) 

hi = "I, h2 = - 2ux + 2uTJ + "13 
, (26) 

hi = -1-u, 

h2= -uxx -2u2-2u+uxTJ+(-u-1)TJ2. 

For any solution u of Eq. (25), the above functions/;j 
satisfy (2). Applying Corollary 2.2, we have a sequence of 
functions <Pj determined by (11) and (12). It follows from 
(26) that (11) reduces to 

<Po,x = - 1 - u + (1 - u) sin <Po , 

""0 = - u - 2u2 - 2u '!' ,I xx 

+ ( - Uxx - 2u2 + 2u)sin <Po - 2ux cos <Po, 
(27) 

and from (12) we obtain recursively 

<Pj = eh ( 1 + J Fjl e - h dX), j > 1 , 

where 

h = J (1 - u)cos <Po dx 

and 

1 }-I j - i die 
Fjl = -:- L -- (1 - u) --. (O)<PJ-I 

J i= I 11 dTJ' 
1 d}-Ie 

+ d..,,'-I (0) . 
(j-1)! "' 

(28) 

The sequence of conserved densities for KdV is given by 
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(1 - U) cos <Po , 

(1-U) dje (0) _ d
j
-

, 
0 . 1 

j! d1/ J (j - I)! d1/ j - I ( ), J > . 
Solving the integrable system ofEq. (27), from <Po we 

obtain <Pj' j > 1, defined by (28). 

D. Equation (1) 

We now consider Eq. (1), 

u, = (U",-1/2)xx + U!/2. 

The functions of u(x,t), 

III = 1/ sinh u, 

112 = 1/(u",- (112)", cosh U 

+ (U~1I2) - 1/U",- (1/2)1/ sinh u, 
(29) 

III = 1/, h2 = _1/2 U",- (112), III = 1/ cosh U, 

h2 = 1/(U",- (1/2)", sinh U 

+ (U!/2 -1/U",- (1/2)1/ cosh u, 

satisfy (6) whenever U satisfies (1). 
Since the functions defined in (29) are analytic with 

respect to 1/, we can apply Corollary 2.2. Therefore, by solv
ing (14) and (15), we obtain 

<Po = a (constant), <Pj = f Fjl dx, j >1, (30) 

where 

1 
Fjl = cosh u6j, + ---

(j -1)! 

( 
dj-'S dj-'e) 

X sinh U --. - (0) + --. -I (0) . 
d1/J-' d1/J-

We show the first elements in the series in terms of u: 

<po=a, 

<PI = f (sin a sinh U + cos a + cosh u)dx, 

<P2 = J <PI (cos a sinh U - sin a)dx, 

<P3 = J [<P2(COS a sinh U - sin a) 

- ~<pi (sin a sinh U + cos a) ]dx, 

The conserved densities are given by 

dj-'e dj-'S 
sinh U --. - (0) - --. (0), j >1. 

d1/J-' d1l'-' 

Using (12), we list the first terms 
cosasinhu-sina, 

- <PI (sin a sinh u + cos a) , 

(31 ) 

- <P2(sin a sinh u + cos a) - ~ <Pi (cos a sinh u - sin a) , 

. , 
where <P1,<P2'OO. are given by (31). 

Before going on to the next example, we point out that 
the traveling wave solutions of Eq. (1) are given as follows: 
Define 
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tPk (5) = (5 _1_ dr, k = 1,2, 
Jo gi(r) 

where 5 = x - ct, c is a positive constant, and gl (1') [resp. 
g2( 1')] is the unique positive (resp. negative) valued real 
function, defined for 1'>0, which satisfies the equation 

cg -log(cg + 1) = c2r. 

Then u(x,t) = tPk (5) isa traveling wave solution ofEq. (1). 

Observe that I~ I - Ii I = 1/2. Therefore (1) is an equation 
that describes a p.s.s. as in Theorem 2.5 of Ref. 1. 

E. Sine-Gordon equation 

This equation has the form 

u"" = sin u. 

Consider the functions defined by 

III = 0, 112 = (lI1/)sin u, 

hI = 1/, h2 = (l/1/)cos u, 

h,=u"" h2=0. 

(32) 

(33) 

For any solution u ofEq. (32), the above functions sat
isfy (6). Since they are not analytic with respect to 1/, we 
cannot apply Corollary 2.2. However, we will obtain a se
quence of conserved densities for the sine-Gordon equation 
by showing that the one-form (t) of Theorem 2.1 provides 
another closed one-form which is analytic with respect to 1/. 

From Theorem 2.1 (i), we have the completely integra
ble system for <p, 

<P",=u",+1/cos<p, <p,=(lI1/)cos(u-<p), (34) 

whenever u is a solution of (32). 
We consider the first equation of (34) as an ordinary 

differential equation. Since the right-hand side of it is an 
analytic function of (<p, 1/), it follows that the solutions of 
(34) are analytic with respect to 1/. Therefore, we can con
sider 

00 

<P= L <Pj(x,t)1/j. 
j=O 

Hence (34) reduces to 

<Po,,,, = u"" cos(u - <Po) = 0, (35) 

and, forj > 1, 

1 dj-Ie 
<Pj,,,, = (j _ I)! d1/j- I (0) , 

(36) 

<Pj-I" = -.!.. (Sin u dj~ (0) + cos u dje (0»). 
J1 d1/ J d1/J 

From (35) we may consider 

u - <Po = 1T/2, (37) 

and from the second equation of (36) we obtain, recursively, 
forj >1, 

1 j-l j - i 
<Pj = <Pj-l" - -:- L -~

J i= I l. 

(
die diS) 

X sin u --. (0) - cos u -. (0) <Pj-,' 
d1/' d1/' 

It is not difficult to show that such <Pj satisfy the first equa
tion of (36). We display explicitly the first terms: 
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<Po = U -1T12, 

<PI =U t , 

<P2=Utt , (38) 

<P3 = Uttt + i(Ut )3, 

Using (33) we obtain from Theorem 2.1 (ii) a closed 
one-form given by 

(tJ= -TJsin<pdx+ (lITJ)sin(u-<p)dt. 

Since <P is analytic with respect to "I, then using (11) and 
(37) we reduce the above one-form to 

(39) 

where 

___ dj-IS (O)dx+---
(j - 1)! dTJ j - 1 (j + I)! 

The one-form (tJ being closed implies that 0 = l:j": I OJ "I j is 
closed. Therefore, from (39) we obtain a sequence of con
served densities given by 

, dj~ (0), j;;;'O. 
dTJ' 

Substituting (12) into the above expression and using <Pj 
given by (38), we obtain 

cos U, 

U t sin U, 

Utt sin U + !u; cos U , 

Uttt sin U + UtU tt cos U , 

We conclude the discussion of the sine-Gordon equa
tion by observing that by changing the independent vari
ables, Eq. (32) is equivalent to 

Uxx - Utt = sin U . (40) 

This is the integrability condition of an equation dv = Ov, 
where 0 is a 2 X 2 matrix of one-forms given by 
o = M dx + N dt, where 

M=HTJA + (lITJ)Q+ (ux + ut)P], 

N=UTJA - (1/TJ)Q+ (ux + U,)P] , 

with 

Q=(C~SU 
sm U 

sin U ) 

-cosu' 

Applying Theorem 2.1 we can also obtain a sequence of con
served densities for the sine-Gordon equation (40), where 
the functions lij are determined by the matrices M and N. 
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F. Sinh-Gordon equation 

This equation is expressed as 

ux , = sinh u. 

Consider the functions defined by 

111= Ux ' h2 = 0, 

III = n, h2 = (lITJ)cosh U, 

131 = 0, h2 = (1/TJ)sinh U • 

(41 ) 

(42) 

For any solution U of Eq. (41), the above functions sat
isfy (6). As in the preceeding example, we will obtain a se
quence of conserved densities for (41) by using Theorem 
2.1. Substituting (42) into (7), we obtain the system of 
equations 

<Px = Ux sin <P + "I cos <P , (43) 
<p, = (1/TJ)sinh U + (1/TJ)cosh U cos <p, 

which is completely integrable whenever U is a solution of 
(41 ). 

From the first equation of (43) we conclude that <P is 
analytic with respect to "I. Therefore, considering 

00 

<P= L <Pj(x,t)TJ
j
, 

j=O 

( 43) reduces to 

<Po,x = Ux sin <Po, cos <Po cosh U + sinh U = 0 , 

and, for j ;;;.1, 

1 djS 1 dj-IC 
<Pj,x=uxif-d j (0)+ ('-1)' d j_1 (0), 

J, "I J, "I 
1 djC 

<Pj- I,t = cosh U if -d j (0) , 
J. "I 

From the second equation of ( 44) and (45) we obtain 

cos <Po = - tanh U , 

<pj= -~[~h <Pj-I,t 
sm 'f'O cos U 

+..!. j~1 j - i diS (0)"' .. J ]':;;.1. 
,~ ~ d i 'f', -" ~ 

] i= I l. "I 

(44) 

(45) 

(46) 

It is not difficult to show that Eqs. (46) satisfy the first equa
tions of ( 44) and (45), The first functions are given by 

cos <Po = - tanh U , 

1 
----U t ' 

cosh U 

-, 1 2 (..!. tanh U u; - Utt) , 
sm <Po cosh U 2 

From Theorem 2.1 (ii), it follows that 

(tJ = (ux cos <P - "I sin <P )dx - (1/"1) cosh U sin <P dt 

(47) 

is a closed form whenever U and <P are solutions of ( 41) and 
( 43), respectively. Since <P is analytic with respect to "I, using 
( 11) we reduce the above one-form to 

(tJ = -..!. cosh U sin <Po dt + i: OJ "I j , 
"I j=O 

(48) 

where 
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0 0 = cos tPo(Ux dx - tPl cosh u dt) , 

and, for j ;;;.1 , 

O. = [~ djC (0) _ 1 dj~ IS (O)]dX 
J Jl d1Jl (j - 1)1 d1Jl-t 

_ cosh U d H IS (O)dt. 
(j + I)! d1JJ+ t 

Now, we observe that since tPo satisfies (44), it follows that 
cosh u sin tPo dt is a closed fonn. Therefore we conclude 
from (48) that 

is also a closed fonn. Hence we obtain a sequence of con
served densities given by 

Ux cos tPo, 

~ djC (0) _ 1 dj-IS 
Jl d1Jl (j-1)! d1Jj-t (0), j;;;.l. 
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Using the expressions in Eq. (8) and the functions tPj given 
by (47), we obtain the first conserved densities: 

Ux tanh u, 

. ( u:;cut ) smtPo 1---- , 
coshu 

Ux 
--=:,-- ( - 2u; tanh u + 2utt + U t sinh u) , 
cosh2 u 
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Nonlocal symmetries and the linearization of the massless Thirring 
and the Federbush models 
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Multilation of nonlocal symmetries of the massless Thirring and the Federbush models leads to 
transformations linearizing these equations. 

I. INTRODUCTION AND GENERAL 

In recent papers 1-5 we studied local and nonlocal Lie
Backlund transformations of the massive Thirring and the 
Federbush models. Now we shall study nonlocal symmetries 
of the massless Thirring and the Federbush models. From 
these symmetries we obtain transformations that linearize 
these systems. 

The nonlocal symmetries have to satisfy the symmetry 
condition6 

!L'vICI, (1.1 ) 

where Vis a vector field, !L'v denotes the Lie derivative with 
respect to the vector field V, and I denotes a closed ideal of 
differential forms generated by contact one-forms 7 and po
tential forms. 2 

In Sec. II we study the massless Thirring model, where 
we obtain the well-known transformation linearizing the 
system by mutilation ofa nonlocal symmetry. In Sec. III the 
Federbush model is treated in an analogous way. 

The computations have been carried through on a DEC 
System 20 computer using the symbolic language REDUCE 

3.0.8 We used software developed by Gragert et al.9
•
10 to do 

differential geometric computations and software developed 
to solve overdetermined systems of partial differential equa
tions. 11 

II. NON LOCAL SYMMETRIES AND THE LINEARIZATION 
OF THE MASSLESS THIRRING MODEL 

The massless Thirring model is described by the follow
ing system of first-order partial differential equations: 

- Ulx + Ult = - AR2VI, Vlx - Vlt = - AR2UI, 

U2x + U2t = - ARI V2, - V2x - V2t = - ARI U2, 
(2.1 ) 

where R; = U~ + V~ (i = 1,2). In Ref. 1 we constructed 
ordinary and generalized infinitesimal symmetries and asso
ciated conserved vectors for the massive Thirring model. As
sociated with the infinitesimal symmetry 

VI au, - UI a v, + V2 au, - U2 a v" 

there is a conserved current 

(2.2) 

(2.3 ) 

which is a conserved current for the massless Thirring model 
as well. We now construct an exterior differential system I 
for the massless Thirring model, including the potential p, 
defined on 

HII = {(x,t,UI,· .. , V2,P,Ulx , ... , V2x )}, 

and generated by the differential forms 

a l = dUI - Ulx dx - Ult dt, 

a 2 = dVI - Vlx dx - Vlt dt, 

a 3 = dU2 - U2x dx - U2t dt, 

a 4 = dV2 - V2x dx - V2t dt, 

a5 = dp - (R I + R 2)dx + (R I - R 2)dt, 

(2.4 ) 

and the exterior derivatives da l , ... ,da4 • The exterior deriva
tive da5 is in I by (2.3). In (2.4) UII"'" V2t are defined by 
(2.1 ). 

The infinitesimal symmetry condition 

!L'vICI (2.5 ) 

leads to an overdetermined system of partial differential 
equations for the components of the vector field V. Solving 
this system by the assumption that the a x and at components 
of the vector field V are independent of UI , ... , V2, we obtain 
the following result: The Lie algebra of the infinitesimal 
symmetries of (2.4) is generated by 

vl=ap ' 

V2 = ~(UI + ApVI)au, + ~(VI -ApUI)av, 

+~(U2-ApV2)aU, +~(V2+ApU2)aV, +pap ' 

V3= -Hau, +Hav" (2.6) 

V4 = -K au, +K a v" 

V5 = - iI ax - iI at + iI au, + iI a v" 

v6 =Kax -Kat +Kau, +Kav" 

where H, K, iI, and K are functions of x and t satisfying the 
equations 

-Hx +Ht =0, Kx +Kt =0, 
(2.7) 

-iIx +iIt =0, Kx +Kt =0. 

We now compute the local one-parameter group of sym
metry transformations associated to the vector field V2• The 
resulting system of differential equations is 

iVI =J.. (VI + AjiVI), iV2 =J.. (V -rV) 
ds 2 ds 22 P2' 

dVI 1 - _-
--=-(VI-ApUI), 

ds 2 

dP -
ds=P, 

with initial conditions 

dVI 1 - _---= -( V2 + ApU2), 
ds 2 

(2.8a) 
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(2.8b) 

The solution of (2.8a) and (2.8b) is 

- {A- A-} UI = e 12 UI cos "2P(e - I) + VI sin "2P(e -1) , 

VI =e12 {VI cos ~ p(e-I) - UI sin ~ p(e-I)}, 

- 12{ A- I V.. A- I } U2 =e U2 cos"2P(e- ) - 2 sm "2P(e- ) , 

- {A- A-} V2 =e12 V2 cos"2P(e-l) + U2sin"2p (eS -I) , 

P2 = ep. (2.9) 

Now, setting e = r, we obtain 

UI = vr{ UI cos ~ p(r - 1) + VI sin ~ p(r - I)} , 
VI = vr{vi cos ~ p(r-I) - UI sin ~ p(r-I)}, 

U2 = vr{ U2 cos ~ p(r - I) - V2 sin ~ p(r - 1)} , 

V2 = vr{v2cos ~ p(r-I) + U2sin ~ p(r-1)}, 

p = rp. (2.10) 

From (2.4) we formally have 

p = f: QO (Ui + vi + Ui + vi )dx. (2.11) 

Since (2.10) is a symmetry transformation, (2.1) is trans
formed into (2.1) with UI , ••• , V2 replaced by UI ,. •• ,V2• 

We now "mutilate" the symmetry transformation 
(2.10), Le., 

- A- A-
UI = UI cos-p(r-l) + VI sin-p(r-I), 

2 2 

- A- A-
VI = VI cos-p(r-1) - UI sin-p(r-l), 

2 2 

- A- . A-
U2= U2cos-p(r-l) - V2 sm-p(r-1), 

2 2 
- A- A-
V2 = V2 cos-p(r - 1) + U2 sin -p(r - I), 

p=p, 

or 

2 2 

UI = UI cos.3...p(r- 1) - VI sin.3...p (r-1), 
2 2 

VI = VI cos.3...p(r-l) + UI sin.3...p (r-l), 
2 2 

U2= u2cos.3...p(r-l) + V2sin.3... p (r-l), 
2 2 

V2= v2cos.3...p(r-l) - U2sin.3...p (r-l), 
2 2 

p=p. 

(2.12) 

(2.13) 

Substitution of (2.13) into (2.1) yields the following nonlin
ear first-order system: 
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- Ulx + UII = - rA-R2VI, V IX - VII = - rA-R2UI, 

U2x + U2t = - rA-RIV2, - V2X - V 2t = - rA-RIU2· 
(2.14) 

Now, for r = 0, the right-hand side of (2.14) vanishes, so the 
transformation 

- A- . A-
UI = UI cos-p+ VI sm-p, 

2 2 
- A- . A-
VI = VI cos-p- UI sm-p, 

2 2 
- A- . A-
U2 = U2 cos - P - V2 sm - p, 

2 2 
- A- . A-
V2= V2cos-p+ U2sm-p, 

2 2 
linearizes the massless Thirring model into 

- Utx + UII =0, U2x + U2t =0, 

V IX - VII = 0, - V 2x - V 21 = o. 

III. NON LOCAL SYMMETRIES AND THE 
LINEARIZATION OF THE FEDERBUSH MODEL 

(2.15) 

(2.16) 

We construct nonlocal symmetries of the Federbush 
model. By mutilation of the resulting one-parameter group 
of symmetry transformations, we obtain transformations of 
the Federbush model into another nonlinear model that, for 
a certain value of the parameter, results in the well-known 
linearizing transformation of the Federbush model. 

The Federbush model is described by 

(
i(a, + ax) - m(k) )(tPk'l) 
- m(k) i(a, - ax) tPk.2 

=kA(+ltP-k.21:tPk,l) (k= ±l) (3.1) 
-ltP-k.11 tPk.2 

where tPk (x,t) (k = ± 1) are two-component functions de
fined on C. Introducing Ui, Vi (i, ... ,4) by 

tPl,1 = UI + iVI, tP _ 1.1 = U3 + iV3, 

tPI.2 = U2 + iV2, tP _ 1.2 = U4 + iV4 , 

(3.2) 

system (3.1) is rewritten as a system of eight nonlinear par
tial differential equations: 

UII + Ulx - m l V2 =A-R4 VI, 

VII + Vlx + m l U2 = -A-R4 UI, 

U21 - U2x - mlVI = -A-R3 V2, 

V21 - V2x + m l UI = A-R3 U2, 

U31 + U3x - m2 V4 = -A-R2 V3, 

V31 + V3x + m2 U4 =A-R2 U3 , 

U41 - U4x - m2 V3 = A-RI V4 , 

V41 - V4x + m2 U3 = - A-R I U4 , 

where 

m(1) = m l , m( - I) = m2, 
Ri = U; + V; (i = 1, ... ,4). 

(3.3 ) 

(3.4) 

In Ref. 3 we obtained two infinitesimal symmetries, 

Paul H. M. Kersten 1051 



                                                                                                                                    

VI = - VI au, + UI a v, - V2a U2 + U2a V2 , 

V2 = - V3 au + U3 a v - V4 au + U4 a v , 
3 J 4 4 

(3.5) 

giving rise to conserved currents 7 

(R I + R 2)dx + ( - RI + R2)dt, 

(R3 + R4)dx + ( - R3 + R4)dt. 
(3.6) 

We now formally introduce the nonlocal variables PI andp2 
by 

PI = f: 00 (R I + R 2 )dx, 

P2 = f: 00 (R3 + R4)dx, 

(3.7) 

and construct the exterior differential system I, defined on 

R20 = {(X,t,UI,,,,,V4,PI,P2,Ulx,,,,,V4x )}, 

and generated by the differential one-forms 

a l = dUI - UIx dx - Ult dt, 

a 2 = dVI - Vlx dx - VIt dt, 

a 3 = dU2 - U2x dx - U2t dt, 

a4 = dV2 - V2x dx - V2t dt, 

as = dU3 - U3x dx - U3t dt, 

a 6 = dV3 - V3x dx - V3t dt, 

a 7 = dU4 - U4x dx - U4t dt, 

a g = dV4 - V4x dx - V4t dt, 

a 9 = dpI - (R I + R2)dx - ( - RI + R2)dt, 

a lO = dp2 - (R3 + R4)dx - ( - R3 + R4)dt, 

(3.8) 

and the exterior derivatives da I, ... ,dag• The exterior deriva
tives da9, dalO are in Iby (3.6). 

The symmetry condition 

X'vICI (3.9) 

leads to an overdetermined system of partial differential 
equations for the components of the vector field V. The Lie 
algebra of infinitesimal symmetries is generated by the vec
tor fields 

vl=ax, v 2=at, 

V3 = VI au, - UI a v, + V2 a U2 - U2 a V2 ' 

V4 = V3 au, - U3 a v, + V4 au, - U4 a v" 

Vs = tax +xat 

+!(ulaU, + vlaV, - u 2a U2 - V2a V2 ) 

+~(U3aU, + v3aV, - u 4aU, - v4a V)' 

v 6 =ap" v 7 =ap2 , (3.10) 

Vg = UI au, + VI a y , + u 2a U2 + v2a V2 

+).,PI( - v3aU, + u 3aV, - v4aV, + u4aU,) 

+ 2pI ap " 

V9 = ).,P2( VI au, - UI a y , + V2 a U2 - U2 a V2 ) 

+ U3 au, + V3 a v, + U4 au, + V4 a v, + 2p2 ap2 ' 

The symmetries VI'''' Vs are the classical local ones [cf. 
Ref. 3, (2.6)]. We now compute the local one-parameter 
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group of symmetries associated to the vector field Vg + V9• 

This leads to the following result: 

UI(S) =e'(UI cosr l + VI sinrl ), 

VI (s) = eSC - UI sin r l + VI cos r l ), 

U2(s) = e'(U2 cos r l + V2 sin r l ), 

V2(s) = e'( - U2 sin r l + V2 cos r l ), 

U3(s) = e'( U3 cos r2 - V3 sin r2), 

V3 (s) = e'( U3 sin r2 + V3 cos r2), 

U4(s) = e'( U4 cos r2 - V4 sin r2), 

V4(s) = e'( U4 sin r2 + V4 cos r2), 

or, from (3.2), 

ipl,1 = e'tPl, 1 eir" ipl,2 = e'tPl,2 eir" 

ip _ 1,1 = e'tP _ 1,1 e - ir" ip _ 1,2 = e'tP _ 1,2 e - ir2
, 

ih(S) = e2spl , P2(S) = e2Sp2' 

where s is the group parameter and 

(3.lla) 

(3.11b) 

(3.11c) 

s = ° representing the identity map in (3.11 ). By definition, 
the transformation (3.11) maps solutions of the Federbush 
model into solutions of the same system. 

We now mutilate the transformations defined by (3.11) 
in a way similar to that in Sec. II, i.e., by deleting e' in 
(3.lla) and [as a consequence of (3.7)] e2s in (3.llb), 
which results in the transformations 

.i, _ .1, eir,;', .1. eir, 
'i"1,1 - 'i"1,1 , 'i"1,2 = 'i"1,2 , 

ip-l,1 =tP_I,l e - ir2, ip-l,2 =tP_l,2 e - ir2, 

and their inverse. 

(3.13) 

An easy calculation now sho,!s that if tPiJ (i = ± 1, 
j = 1,2) is a solution of (3.1 ), then tPiJ satisfies the following 
nonlinear system of partial differential equations: 

(
t(at + at) - m (k) )(ipk'l) 

- m(k) t(a, + ax) ipk,2 

_ ,.1(+ lip_k,21
2
ipk,l) 2s 

- SI{A - 2- e. 
- ItP - k,11 tPk,2 

(3.14 ) 

Now, for S = 0, the nonlinear term in the right-hand side of 
(2.14) cancels out, and, consequently, the transformations 

.i. - .1. e( - iA./2)P2 :t. - .1. e( - iA./2)P2 
'i"1,1 - 'i"1,1 , 'i"1,2 -'i"1,2 , 

.i. _.1, e(+iA./2)p, .i. e(+iA./2)P, 
'i"-I,I - 'i"-I,1 , 'i"-1,2 , 

(3.15 ) 

transform (3.1) into the linear system 

(
t(a, + ax) - m(k) )(ipk'l) 

- m(k) i(a, + ax) ipk,2 = 0, 
( 3.16) 

IV. CONCLUSION 

By mutilation of nonlocal symmetries we obtain trans
formations of the massless Thirring and the Federbush mod
els linearizing these equations. The Lie algebra structure of 
these and higher-order nonlocal symmetries will be studied 
elsewhere. 
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A proof for local charges of the classical result first put forward by Coleman and Mandula 
[.Phys. Rev. 159, 1251 (1967) 1 is given. Local charges are operators defined as integrals of the 
time component of conserved Hermitian density currents; in interacting theories they happen 
to be generators of symmetries of the S matrix. 

I. INTRODUCTION 

Twenty years ago Coleman and Mandula I excluded the 
possibility of a nontrivial connection between internal and 
space-time symmetries of the S matrix in an interacting, 
massive, local quantum field theory. Their fundamental "no 
go" theorem not only established an important feature of the 
quantum field theories of that time (i.e., before the flourish
ing of the gauge field theories), but also influenced decisively 
the further research on physical symmetries, making possi
ble the advent of the supersymmetric algebras.2 What seems 
dubious to many people, however, is the way this theorem 
was proved, since the authors' reasoning is not rigorous but 
rather heuristic. As the authors themselves confess in the 
introduction to Ref. 1, "Although at times this [the proof] 
attains mathematical levels of obscurity, we make no claim 
for corresponding standards of rigor." 

Considering the importance of such a result, several at
tempts were undertaken after the publication of Ref. 1 in 
order to provide a satisfactory proof.3 The most careful ap
proach known to me is that of Garber and Reeh.4 However, 
their result is weaker than that of Coleman and Mandula in 
two aspects: (i) it does not involve arbitrary generators of 
Lie groups of symmetries of the S matrix, but only "local 
charges," Le., bosonic symmetric generators defined as inte
grals over the Minkowski space of the time component of 
conserved current densities; and (ii) it covers only the case 
of scalar field theory. Later this second restriction was 
slightly removed by Reeh,5 who extended the result of Ref. 4 
to the case of scalar and spinor quantum field theory, and 
also by topuszanski and Amigo (unpublished), who found 
different methods of coping with special theories with vec
torial and scalar fields. 

In this paper I present a proof concerning the structure 
of local charges in local quantum field theories (without 
spontaneous symmetry breaking) describing interacting 
massive particles with arbitrary spins. This completes the 
program initiated by Reeh in Ref. 5 in order to encompass 
massive theories with higher and higher spins. The present 
state of this question in the case of massless theories is briefly 
referred to in Sec. IV (c). 

II. STATEMENTS AND RESULTS 

Consider a Wightman field theory. Its fields 'I1j (x), jEl, 
are meant to interpolate the asymptotic fields 'I1r(x) ("ex" 
stands for "in" or "out") of a relativistic scattering theory 
describing particles with mass m = m (j) > 0 and spin 

q = q( j). This amounts to a splitting of the Hilbert space 
"w' of the physical states in minimally invariant subspaces, 

"w' = nEll"w'(1) Ell "w'(n>2>, (1 ) 

where n is the vacuum, "w'( I) is the one-particle subspace, 
a d crP(n>2)' th . I n en IS e many-partlc e subspace. The one-particle 
states are created from the vacuum by the fields 'I1ex and 
belong to the discrete irred~cible representation [~(j), 
q( j) 1 [m (j) > 0, VjEll of 9, the covering group of the 
Poincare group.6 Correspondingly, each field 'I1ex (x) has 
definite transformation properties under SL(2,C), the cov
ering group of the Lorentz group .Y'1+ : It describes a boson 
or a fermion according to whether its (possibly reducible) 
representation is purely tensorial or purely spinorial. 

In this framework let Q be an operator in "w' defined as 
the integral over the Minkowski space of the time compo
nent of a conserved (not necessarily covariant) Hermitian 
current density. Such Hermitian operators are called local 
charges; they induce an infinitesimal transformation of the 
fields belonging to the theory such that the transformed 
fields are local again, without changing their statistics. 

Furthermore, let the theory be supplemented by the 
rather modest assumptions (Al) existence of a mass gap 
above the vacuum n, (A2) finite multiplicity of the one
particle hyperboloids, which are also supposed to lie below 
the continuum, and (A3) invariance of the vacuum, i.e., 
Qn=o. 

Within this extended framework one can show7 that Q 
acts upon the (in general multicomponent) asymptotic 
fields 

'I1~x(x) = {'11~ (x)}n(j) 
) p a-I (2) 

in the following way: 

n(k) (1) [Q, '11;; (x)] = L L Pja,k(3 x, -:- a 'I1icP (x). 
k /3- I I 

(3) 

Here the c-number coefficients Pja,k(3(x, (1/i)a) [j,kEl, 
l,a,n(j), l,p,n(k) 1 are polynomials in the generators 
of the Poincare group 

1 a 1 
pp:=---=:-ap 

i axp i 

and 

Mil-V: =x"~av -XV ~all- +SIl-V 
I I 

[5l'V are generators ofSO(3,1) ofthe correct dimensionali-
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ty], and the first sum runs over all particles k with the same 
statistics as the particle j. 

Some basic properties of the local charge Q follow readi
lyfrom (3). 

(PI) Q commutes with the S matrix since ~a,k{1(x, 
(1/i)a) does not depend on the label "ex." Therefore local 
charges are always candidates for symmetry generators of 
the S matrix (their self-adjointness cannot be taken for 
granted). 

(P2) Locality implies8 thatPja,kP (x, ( 1/i)a ) vanishes for 
me}) =/=m(k). Thus Qconnects only particles with the same 
mass. 

(P3) Q acts "additively" on the asymptotic many-parti
cle states, i.e" it transforms many-particle states as if they 
were tensor products. 

The additivity of the local charges is a consequence of 
the [in (A3) assumed] invariance of the vacuum; it allows 
reconstruction of the action of Q on the whole Hilbert space 
J¥' solely from its restriction to J¥'( I) , Furthermore, we may 
confine our attention hereafter to the submatrix acting on a 
single mass multiplet of particles in agreement with (P2); all 
such multiplets are finite according to (A2). 

The purpose of the present paper is to investigate further 
the structure of Q in the only interesting case-where the S 
matrix is nontrivial. Since, then, the optical theorem (short
range forces!) assures the occurrence of elastic forward scat
tering in J¥'(2) , I state the precise assumption to be used later 
as to what "interaction" means in the following terms. 

Assumption 2.1 (interaction assumption): There exists an 
open neighborhood ~ on the scattering manifold JI, 

JI: = {(PI,P2,P3,P4)ER I2: 

PI + Pz = P3 + P4' pO = (pz + mZ) 1/2}, 

with a nonempty intersection with the forward scattering, so 
that (i) in ~ all the particles of the considered mass multi
plet interact with each other, and (ii) the elastic reduced 
two-particle scattering amplitude is continuous in ~ for all 
pairs of particles. 

The interaction assumption is strong in the sense that it 
must hold for every basis of one-particle states. With this 
proviso it is possible to prove the following theorem. 

Theorem 2.2: Q is at most a linear combination of the 
generators of the Poincare group and of internal symmetries. 

III. THE PROOF 

Since only asymptotic fields appear in the proof and the 
theory is asymptotically complete, I shall exclusively use, 
say, "in" fields, omitting the label "in" henceforth. I split the 
proof into two steps. 

A. The translatlonally invariant case 

Consider first the case [Q,PP ] = 0, 0<p<3, so that the 
polynomials Pja,k{1(x, ( 1/i)a)in (3) cannot depend onx, i.e., 

[Q,'I'ja (x)] = ~a,k{1(1/i)a)'I'pk (x) (4a) 

(summation convention!). 
In order to keep the proof as simple as possible, I may 

assume that all the free fields 'l'j (x) belong to the irreducible 
representation (u(j),O) ofSL(2,C). The reason is as follows: 
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All the irreducible pieces of 'l'j (x) not transforming as 
(u(j),O) can be obtained from this representation by apply
ing suitable polynomials in a [- (~,!)], and, moreover, this 
procedure can also be inverted with such polynomials on 
account of the equations of motion of the fields 'l'j (X).9,1O 

This being the case, one can absorb the differential operators 
which change the representation of 'l'j (x) and 'l'k (x) in 
(4a) to the (0'( }),O) and (u(k) ,0), respectively, in the coeffi
cients Pja,kP((1/i)a) without changing their polynomical 
character at all. In such representations the asymptotic 
fields have as many different components, namely 
2u(}) + 1, 

{'I'j' (x)} ;=u~() 

= {'I'jO"'l1) (x),'I'jO"'IO) (x), ... ,'I'j(o,,,OO) (x)}, 

as physical degrees of freedom (polarizations) that the par
ticles they describe have. 

Hence, without loss of generality, one can take 

[Q,'I'j' (x)] = Pj"ks((1/i)a )'I'ks (x) ['I'j (x) -(u(j),O)] 

(4b) 

as the starting point. Here the sum runs both over all parti
cles k in the multiplet with the same statistics as the particle} 
(i.e., both bosons or both fermions) and over all polariza
tions SE{ - u(k), ... ,u(k)} (which, correspondingly, are in
tegers or half-integers). 

Next, decompose the fields into positive- and negative
frequency parts,9,11 

'1'. (x) = (21T)-3/2 f d 3
p 

J' 2w 
p 

- u(j) { 
X L (e- O(lpl)joJa()),,1' a; (p)eipX 

l' =u(j) 

- u(j) } + L (cu(j»;) bjr" (p)e - ipx , 

,.. =u(j) 
(5) 

in the distributive sense. The notation is as follows. 
(i) The destruction and creation operators aj , (p) and 

aj~(p), respectively, of a particle} with momentum p and 
polarization r are canonically quantized, i.e., 

[aj , (p),at (q)] (_ )Zu(j) + I 

= 2(p2 + m 2 ) I128jk8,.lj3(p - q), (6) 

and zero otherwise. The same applies to the corresponding 
operators for the antiparticlesbj, (p) andb j~ (p). If the parti
cle } is self-conjugated, then one must set ajr (p) = bj , (p). 

(ii) In the exponents, 

pO = (pz + m 2 ) liZ = : w
p

, 

8(lpl): = sinh-I(lpllm) =: 8, 

il: =p/lpl· 

(7) 

(8) 

(9) 

The matrices JU(j) = (Jf(j),J~(j),J~(j» are the (Hermi
tian) generators ofthe (2u(j) + I)-dimensional irreducible 
representation of SU (2). The choice 

(Jf(j) ± iJ~(j»,,1' 
= «(u(j) ± r)(u(j) + r + 1» 1/28,,1' ± P 

J. M.Amig6 
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Vr,r'E{ - u(j), ... ,u(j)}, fixes all these representations; 
physically, this amounts to measuring the polarization of all 
the particles involved in the three-direction. Furthermore, 
one can show9 that 

( ± 20j10J
U
(j) ) I . I' ( 11 ) e r." = po ynomla 1n cup,P, 

Vr,r' [so that (5) makes sense as an operator-valued tem
pered distribution] . 

(iii) The expression 

(cu(j» ".r" : = ( - l)u(j) +"<5". _ r" (12) 

is the so-called charge conjugation matrix. The relation 

C U(j) J':(j)cu(j)-' = _Ju(j) (I' 123) 
I I = " (13 ) 

will be used shortly. 
Inserting (5) into (4b) one obtains, for the positive

frequency part (summation convention!), 

[Q • ] lIf-Ju(j) P ) ,a}r(P) = (e )r." j".ks' (cup'p 
OjIoJu(k) • 

X (e- )".saks(p), (14a) 

and for the negative-frequency one, 

[Q b'!'(p)] = - (e-OjIoJ
U(}) (cu(j» 

, Jr r." ".r" 

( 
OjIoJU(k) b· ( ) X e ... s ks P , (14b) 

where (13) has been used. 
From ( 14a) and ( 14b) it does not follow that Q does not 

mix particles with antiparticles, since in general both \}I k (x) 
and \}It (x) appear among the fields in (4a). In order to 
achieve a unified treatment, aJ: (p), at (p), etc., stand here
after for the creation operators of both particles and antipar
ticles (enlarge the index set I! ) . 

Defining 

(15) 

Eq. (14a) reads 

[Q,aJ: (p)] = H jr.ks (p)ats (p). (16a) 

Observe that, by virtue of (11), Eq. (14b) has actually this 
form. 

At this point, a notational simplification is convenient: 
Capital letters from the beginning of the alphabet, A,B, ... 
(also primed) will be used to enumerate the possible values 
of the multi-indices (j,r), (k,s), ... ordered, say, lexico
graphically. Let I,A,B, ... ,N, N = l:j(2u(j) + 1), be their 
range. 

With this convention (16a) becomes 

[Q,a;: (p)] = HA •B (p)a~ (p). 

Lemma 3.1: The N xN matrix 

H(p): = (HA.B(P»)l<A.B<N 

is Hermitian (VpER3
). 

Proof' The Hermiticity of Q implies 

(Qa;: (p)Ola~ (q)O) = (a;: (p)OIQa~ (q)O), 

(16b) 

(17) 

and this, together with the invariance of the vacuum 0 and 
(16b), leads to 
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H A•A, (p) (01 [aA, (p),a~ (q)] 0) 

= H B•B , (q)(OI [aA (p),a~. (q)] 0). 

The canonical commutation relations (6) do the rest. 0 
In order to introduce the interaction at this stage, one 

possibility is to extend the technique employed in proving 
Lemma 3.1 to JY'(2), for according to assumption (2.1), 
S 1JY'(2) #1 holds. In fact, from 

(Qa~, (pl)a~, (p2)0ISa~, (p3)a~, (P4)0) 

= (a~, (pda~, (p2)0ISQa;:, (P3)a;:, (P4)0) 

(where [Q,S] = 0 has been used) and 

Qa;:; (Pi ) a;:; + I (Pi + 1 )0 = [Q,a;:; (Pi) ] a;:; + I (Pi + 1 )0 

(18) 

+ a;:; (Pi) [ Q,a;:; + I (Pi + 1 ) ] 0 

(i= 1,3), (19) 

one obtains by means of ( 16b ) 

H A,A,A,A4 .B,B,B,B4 (Pl,P2,P3,P4)SB,B,B,B
4 
(PI,P2,P3,P4) = 0, 

(20) 

VPI"",P4ER3, where HA''''B, (PI,,,,,P4) are the matrix ele
ments of the N 4 XN 4 matrix [cf. (17)] 

H(Pl,P2,P3,P4): = H(Pl) ® 1 ® 1 ® 1 + 1 ® H(P2) ® 1 ® 1 

- 1 ® 1 ®H(P3) ® 1-1 ® 1 ® 1 ®H(P4) 

(21) 

(1 is the unit N X N matrix and ® stands for the usual ten
sorial product of matrices), and 

SB,B,B,B
4 
(PI,P2,P3,P4) 

: = (a~, (pI)a~, (p2)0ISa~, (P3)at (P4)0) (22) 

is the elastic two-particle scattering amplitude; it is a tem
pered distribution with support in the scattering manifold 
vIt. Therefore, Eq. (20) is only nontrivial for (PI,,,,,P4)EJ/. 
Furthermore, since we are interested in nontrivial scatter
ing, we may restrict our attention to the corresponding re
duced scattering amplitUde YB,B,B,B, (PI"",P4) defined in 
(22) after separation of the trivial scattering S = 1 + iT 
through 

(a~, (pl)a~, (p2)0I Tat (p3)at (P4)0) 

= : <5
4

(PI + P2 - P3 - P4)YB,B,B,B, (PI,P2,P3,P4)' 

(23) 

Hence the assumed occurrence of interaction in JY'(2) 

leads from (20) to 

HA,A,A,A •. B,B,B,B. (PI>P2,P3,P4)Y B,B,B,B, (PI,P2,P3,P4) = 0, 

VAI, ... ,A4E{I, ... ,N}, V(PI"",P4)EJ/. (24) 

Let now 

U(p): = (UA.B(P»)I<A.B<N (pER3
) (25) 

be any unitary matrix that diagonalizes the Hermitian ma
trix H(p) (see Lemma 3.1), i.e., 

U(p)H(p) U(p) -I = diag {AI (P), ... ,A.N (p)}. (26) 

Set now 
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U(PI,PZ,P3,P4): = U(PI) ® U(PZ) ® U(P3) ® U(P4)' 
(27) 

Then it follows from (26) and (21) that the unitary matrix 
U(PI"",P4) diagonalizes the Hermitian matrix H(PI"",P4): 

(U(PI"",P4)H(PI"",P4) U(p"""P4) -I)A A A A B B B B 
I 2 Y"4' I 2 3 4 

= {) A,B, {) A,B, {) A,B, {) A,B, 

X (AB, (PI) +AB,(Pz) -AB,cP3) -AB,(P4») (28) 

(no summation over the B 'sf). 
By means of the diagonalization (28), Eq. (25) (where 

the reduced scattering amplitudes are viewed as the compo
nents of a column vector) transforms to 

(AA, (PI) + AA, (pz) - AA, (P3) - AA, (P4») 

XY;{'A,A,A, (PI,PZ,P3,P4) = 0, 

VA " ... ,A4E{ 1, ... ,N}, V (P1>"",P4)~' (29) 

with 

: = UA"B, (p,) UA"B, (pz) UA"B, (P3) UA"B, (P4) 

XYB,B,B,B, (PI,PZ,P3,P4)' (30) 

From (30) and (23) one obtains 

{)4(PI + pz - P3 - P4)YJ,A,A,A, (PI,PZ,P3,P4) 

= (UA"B, (PI )al (PI) UA"B, (pz)a%, (pz)!ll 

X TUA"B, (P3)a%, (P3) UA"B. (P4)a%. (P4)!l), (31) 

so that, in conformity with assumption 2.1 (i), 

Y;f,A,A,A. (p"PZ,P3,P4) 
can be interpreted as the reduced two-particle scattering 
amplitude for a new (nontrivial) reaction for all 
(p"PZ,P3,P4)E~. This being the case, the optical theorem 
implies 

Y;f,A,A,A, (P"P2,P"P2) #0, VA 1,A2' V(Pl,P2,Pl,Pz)E~. 
(32) 

The continuity of 

Y B,B,B,B. (Pl,P2,P3,P4) 

in ~ for I<B1,oo.,B4 <.N, assumed in 2.1 (ii), leads further 
from (32) to the following corollary. 

Corollary 3.2: There exists an open neighborhood 
rCJI, rn ~ #0, such that 

Y;f,A,A,A, (Pt>P2,P3,P4) #0 (33) 

holds V (Pt>P2,P3,P4)Er and VA 1,A2dl,.oo,N}. 
In tum, from (29) and (33) one concludes 

AA,(PI) +AA.(PZ) =AA
t
(P3) + AA. (P4), (34) 

V(Pl,P2,P3,P4)ErCJl (scattering manifold) and I<A1,A2 
<N. The most general solution of this conditioned func
tional equation [even for A A (p) only locally integrable] is 12 

AA(p)=a,..]Y'+rA (po=wp ), (35) 

with a,.., rAER, andpER3 arbitrary. Plugging (35) back into 
(26) one obtains 

U(p)(H(p) - a,..]Y'I)U(p)-l = diag {rl,. .. ,rN}. (36) 
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Lemma 3.3: The relation 

H(p) = a,..]Y'1 + r (po = wp , a,..ER) (37) 

holds, where r is a Hermitian N XN matrix not depending 
onp. 

Proof: According to the definition (15), the matrix ele
ments of H(p) are linear combinations of products of poly
nomials in wp = (p2 + m 2

) 1/2 and P [remember that 
Pjr,ks(Wp,P) are polynomials] times square roots of such 
polynomials [see ( 11 ) ]; hence the same holds for the matrix 
elements of H(p) - a,..p"'I. 

On the other hand, Eq. (36) spells out that the Hermi
tian matrix H(p) - a,..p"'1 is unitary equivalent to a con
stant matrix, so that its norm has to be P independent. Rec
onciliation of these two facts can only be achieved if the 
matrix elements of H(p) - a,..p"'1 are actually constants. 0 

Inserting (37) into ( 16b), one derives the following cor
ollary. 

Corollary 3.4: In the interaction case the relation 

(38) 

holds, with pO = wp , a,..ER, and rA,B = rB.A EC. 

Defining now the operator Qint (first) on dY( I) through 

Qinta:: (p)!l: = rA,Ba% (p)!l, 

Eq. (38) reads 

(39a) 

(39b) 

where, of course, P'" is the energy-momentum operator (in 
dY(\) ). By virtue of the additivity ofQ and P'" in the whole 
of the Hilbert space dY, Eq. (39b) extends to dY and defines, 
in this way, Qint on dY. As a result, Qint is a translationally 
invariant local charge that annihilates the vacuum. It will 
tum out that Qint is the generator of an internal symmetry of 
the S matrix. 

In order to show this, one has to take advantage of the 
Lorentz covariance of the theory. Let AE2' 1+ be a (proper) 
Lorentz transformation in Minkowski space, and let iiJ (A) 
denote a unitary representation ofSL(2,C) in dY(\) (posi
tive metric!). [Since no confusion will arise, no care has been 
taken to distinguish A from any of its two representants in 
SL(2,C).] Then 

- u(j) 
iiJ (A)ajr (p)iiJ (A) -I = L D ~~/) (Ap )ajr' (Ap) (40) 

r' = u(j) 

holds 11 (Ap stands for the spatial part of Ap), where Ap 
ESU(2) is the so-called Wigner rotation, and the matrices 
D u( j) span the unitary (2u( j) + 1 )-dimensional irreducible 
representation of SU(2), the little group of SL(2,C) in the 
caseP,..P'" >0. Its generators JU(j) were given in (lOa) and 
(lOb). 

For the purposes of proof it suffices to know the explicit 
form of ( 40) for A being an infinitesimal boost. In terms of 
the column vector 

aj(p): = (a.%-(j) (p),oo.,aj_u(j) (p»),ransposed, 

one has13 

iiJ (1 + it· B)aj(p)iiJ (1 - it . B) 

= (1 + i(itxp)/(wp + m) • JU(j»)aj(p - wpit), 
(41) 
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where, of course, the B are the corresponding generators of 
SL(2,C), and the {tElR3 are infinitesimal velocities. 

In order to stick to the compact notation A = (j,r), 
B = (k,s), ... used so far, define 

D A.B (Ap): = 8jk D ~~j) (Ap)' (42) 

Thus (40) can be rewritten (take its Hermitian conjugate) 
as 

.9t1 (A)a~ (p).9t1 (A) -I = D A.A' (Ap- 1 )a~, (Ap). (43) 

Now define ~ to be the local charge obtained from Q by 
performing the Lorentz transformation A upon it, i.e., 

(44) 

An easy computation [using (43), (16b), and the iden
tity (A - 1 ) Ap = Ap - I] shows that ~ acts in JY'( I) as 

[QA,a~ (Ap)] = DA,A' (Ap )HA',B' (p)D(Ap )B,,1a~ (Ap). 

(45) 

On the other hand, since ~ is a translationally invari
ant local charge, then, according to (4b), 

[Q ",'1' A (x)] = P1,B( (1 Ii) a )'1' B (x) (46a) 

holds, where P1,B( l/i)a), 1 <;;;A,B<;;;N, are polynomials. In
serting now the decomposition (5) into (46a), one gets in 
turn [cf. (16b) and (15)] 

[QA,a~(p)] = H1,B (p)a~(p), 

where the continuous functions 

(46b) 

A Iip.JU(j) A _ IIpoJU ( k) 

Hjr,k.s (p): = (e )r,r'Pjr',ks' (cup'p) (e )s',s (47a) 

build, analogously to Lemma 3.1, a Hermitian matrix 

HA(p): = (H1,B{P»)I<A,B<N' (47b) 

The same reasoning that led to Corollary 3.4 obviously 
applies also to ~ , 

Lemma 3.5: In the interaction case the relation 

HA(p) = a~p"'l + r" (pO = cup' a~ElR) (48) 

holds, 'rI AE!f 1+ , where r" is a Hermitian N X N matrix not 
depending on p. 

With A = lone recovers Lemma 3.3. 
Substitution of (48) in (46b) yields 

Q A=aAP"'+QA JL mt 

in JY', where Q ~t n = 0, 

(49) 

[Q~t>a~ (p)]: = r1,Ba~ (p) (50) 

in JY'(1) , and it is additively defined on the rest of JY'. 
Comparing (45) and (46b) one arrives now at 

HA(Ap) =D(Ap)H(p)D(Ap)-I. (51) 

Substitution of ( 48) into (51) renders 

(a~(Ap)"'- a,.,p"')l = D(Ap )yD(Ap )-1 - r". (52) 

Next, take the trace of (52) and observe that its rhs does not 
depend on p. Hence 

a~(Ap)'" = at-tp"', i.e., a~ = (A -I)~av, 

and this together with (52) implies 

r"=D(Ap)yD(Ap)-I, 'rIPElR3
, 'rIAE!ff+. 

Lemma 3.6: From (54) it follows that 

1058 J. Math. Phys., Vol. 29, No.4, April 1988 

(53) 

(54) 

Yjr,ks = 8u(j)u(k)8rsAjk' with Ajk = AkjEc' (55) 

Proof' In accordance with Lemma 3.6, r" does not de
pend on p, so that from (54) one obtains [see (42) ] 
Du(j)(A )y. Du(k)(A -I) r,r' p Jr',/cs' s,s p 

(56) = D ~~j) (Ao)Yjr',/cs'D ;~k) (Ao -I). 

For any j,k, define yJk to be 
(2a(j) + I)X(2a(k) + 1) matrix 

the rectangular 

Y
jk. - (Y ) . - jr,ks - u(j)<r<u(j), - u(k)<s<u(k) ' (57) 

and insert the representation (41) for an infinitesimal boost 
in (56) in order to derive 

( {tXp) • JU(j»)yjk = yjk( ({tXp) • JU(k»), (58) 

for any PElR3 and any infinitesimal velocity {to Thus 

Jf(j)yJk = yjkJf(k), 'rI(j,k), 1 <;;;i<;;;3. (59) 

Since Jf(j), Jf(kl, I <;;;i<;;;3, are generators ofSU(2), Eq. 
(59) amounts to the matrix yjk intertwining both irreduci
blerepresentationsD u(j) andD u(k) ofSU(2). This being the 
case, Schur's lemma implies (remember that the representa
tions of the same dimension are equal) 

(60) 

o 
As a matter of fact, one easily verifies rf;,ks = Yjr,ks by 

substituting (55) in (54), so that [see (50)] 

[Q~paJ;(p)] =8u(j)u(k)8rsAjkat.,(p) = [QinpaJ;(p)]. 
(61) 

This shows that the local charge Qint is Poincare invariant. 
Putting (55) in (37) and inverting (15), one ends up 

with 

Pjr,k.s(cup,p) = 8rs(8jk ap,p'" + 8 u(j)u(k)Ajk)' (62) 

All that remains now is to return to the Minkowski 
space. This proves the following theorem [see (4b) ] . 

Theorem 3.7: Let Q be a translationally invariant local 
charge, and suppose that the interaction assumption 2.1 is 
fulfilled. Then 

[Q,qtjr(x) ] 

(63) 

i.e., 

Q = a,.,pt-t + Qinp (64) 

with 

[Qinpqtjr (x)] : = 8 rs 8 u(j)u(k) Ajk 'I' k.s (x), (65) 

and ap,ElR, Ajk = AkjEc' 

Remark: Translationally invariant local charges are 
self-adjoint operators. 14 (By the way, this is in general not 
true for nontranslationally invariant local charges.7

) Hence 
it turns out that Qint is actually the generator of a symmetry 
of the S matrix called an "internal symmetry" because its 
action on JY'is independent of the space-time coordinates. 

B. The general case 

I continue to use the representations (a( j) ,0). The start
ing point is Eq. (3) again. The proofthat, in an interacting 
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theory (in the sense of assumption 2.1), the polynomials 
Pj,.1<s (x, ( 1/x)a I appearing in (3) are bound to be at most of 
first degree will be carried out by elimination according to 
their degree G in x. Of course, G = 0 corresponds to the 
translationally invariant case we disposed of in Sec. III A. 

(A) G = 1. Then (3) can be written as 

[Q,l{Ij,(x)] = {Xl' +avPJ::~](+a) 

+ Pj"ks( + a ) }l{Iks (x), (66) 

where 

P J::~]( ( 1/na I = - P J:.t] ( ( 1/na I, 
and l}"ks ( ( 1/ i) a ) are polynomials in a. [The generators of 
the spin angular momentum S pv are obviously contained in 
the constant term of l}"ks ( 1/na).] 

In order to reduce the present case G = 1 to the already 
solved case G = 0, define the local charge 

QP: = i[Q,PP], (67) 

which happens to be translationally invariant. In fact, 

[QP,l{Ij'(x)] = (1/i)avpJf.k';](1/i)a)l{Iks(X). (68) 

In a theory with interaction, Theorem 3.7 implies 

(69) 

withp = (£up,p), aPpeR, andAfk = AfjeC. 
Before proceeding further, notice that all the polynomi

als P(p) in £up and p we are dealing with can be brought by 
means of the on-mass-shell condition (7) to the form 

pep) = £upPO)(p) + P(2)(p), (70) 

with pO) (p) and p(2) (p) being now polynomials in peR3 

alone. Then one can easily prove the technical lemma that 
follows. 

Lemma 3.8: For all polynomials P(p) of the form (70), 
P(p) == 0 if and only if all its coefficients vanish. 

Corollary 3.9: From (69) it follows that 

aPP = - al'P =: a[P.}'] and Afk = O. (71) 

Proof Multiply (69) times p P' sum over p, and apply 
Lemma 3.8. 0 

Consequently, (69) gets simplified to 

PvPJf.k';](p) = ~jk~rsa[P'p]pp. (72) 

Inserting (72) in (66), one gets 

[Q,l{Ij, (x)] = {~jk~rs,8pV(xP + a v - XV + a
p
) 

+ Pj"ks(+ a )} I{Iks(X), (73) 

with,8pv: = ~a[p,v]. 
Since the expression between the curly brackets in (73) 

has to be a polynomial in the generators of the total angular 
momentum? 

MPv = xP( 1/i)a v _ XV( 1/i)ap + Spv 

(as well as in those of the four-momentum), then 
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A 

Pj"ks( (1/i)a I = ~js,8pv (SpV)"s + l}"ks« 1/na) (74) 

must hold. 
Hence (73) becomes 

A 

[Q - ,8pvMpv, I{Ij, (x)] = Pj"ks( (1/na)1{I ks (x), (75) 

and one ends up with the local charge Q - ,8pvM pv being 
translationally invariant. Thus, in the case of interaction, 

(76) 

by means of Theorem 3.7. 
One sees that the interaction suppresses the appearance 

of (nontranslationally invariant) local charges, which are 
not self-adjoint. This is a feature not present in free theories.? 

(B) It remains to exclude the possibility G> 2. To begin 
with, one can write 

P x-a --x "'X -a .. ·-a ( 1 ) 1 (1 1) j"ks , i - G! (I', pG); v, ; VG 

xpJ;'~V,]".[pGoVG1(+a) +o(G), (77) 

where the polynomials 

P [p"v,]'" [PGoVG1( ( 1/i)a) 
",ks 

are symmetric under the transpositions fLg ++fLg" V g ++v g , 
and 

[fLg,Vg ]++[fLg,Vg ] (1 <g,g'<G), 

and antisymmetric under fLg++vg; o(G) denotes all the 
terms of lower degree in x. With G = lone recovers (66). 

Generalizing the technique used in (A), define the (in 
P2, ... ,pG symmetric) local charge 

QP>P3"'PG: = [ ... [[Q,iPP»,;PP»" .,;pPG]. (78) 

Taking into account (77), one easily computes 

[QP>"'PG,l{Ij' (x) ] 

= {x (~a .. , ~a ) p[P,V'][P>'Vz]"'[P"'VG1(~a)· 
I' i v, ; VG i 

+ o( 1) } I{I ks (x), (79) 

so that QPz, "PG is a local charge with G = 1. 
Comparison of (79) with (66) shows that the substitu

tion 

(80) 

(Po = £up) is all one needs to transcribe the results of the 
precedent case G = 1 for QP>···PG. In particular, the result 
(72) (valid in the interaction case) becomes, under (80), 

(p "'p )P [p"v']"'[p",vGl (p) =~. ~ aP""PGpp (81) 
v. Vo jr,ks Jk 1'S II' 

where the real constants a P' "'PGp fulfill the generalization of 
(71 ), 

ap,,"p/""PGP= _aP''''P'''PGP/ (lo;;;;;o;;;;G), (82) 

for any Pl, ... ,pGe{0, ... ,3}. Without loss of generality, the 
polynomials 
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P [p"V,]'" [p",VG] (p) 
Jr,ks 

are supposed to be expressed in the "reduced" form (70). 
The next lemma ends the proof of Theorem 2.2. 
Lemma 3.10: It follows from (81) that 

pj:';:;']"'[PG,VG](p)=O (G>2). (83) 

Proof In order to apply Lemma 3.8 to (81), one has first 
to bring its lhs into the form (70). Two cases appear in the 
summation. 

(i) #{vg = 0, l.;;;g.;;;G} = 2L, O.;;;L.;;; L G /2 J. Then 
the lhs of (81) becomes [notation like in (70), ig e{I,2,3}] 

2L( ...){ p(l) ... () + p(2)"'( )} 
{r}p Pi2L + I PiG {r}p Jr,ks P jr,ks P 

= {r}p {(p2 + m2 )L(Pi2L + I' "PiG)P ]r~k;" (p)} 

+ (p2 + m2)L(PizL +
I

" 'PiG)P];'k;"(p). (84a) 

(ii) #{Vg = 0, l.;;;g.;;;G} = 2L + 1, O.;;;L 
.;;; L (G - 1) /2 J . Analogously to (i), one obtains for the 
lhs of (81) 

{r} {(p2 + m2)L(p. .. 'p. )p~2)'''(p)} 
P IzL+Z'G Jr,ks 

+ (p2 + m2 )L+ 1 (Pi2L +2 .. ·PiG)P]r~k;"(p). (84b) 

Since we are assuming G>2, the only possibility for both 
( 84a) and (84b) to fulfill (81) without each P ]r~k; .. (p) and 
P ];,k;" (p) having to vanish identically (invoke Lemma 3.8) 
is that some summands on the lhs of (81) cancel among 
them. But this can easily be shown to be impossible due to 
the symmetry properties of Pv, .. 'PvG and 

P ~p"v,]··· [p"'VG] (p) 
Jr,ks 

under transpositions of indices. o 

IV. CONCLUDING REMARKS 

(a) The Poincare invariance of the generators of inter
nal symmetries Qint [see (61) ] can be expressed as 

[QinPPP] = 0, [QinpMI'V] = 0 (0';;;p,jl,v.;;;3). (85) 

In a group-theoretical setting, the commutation rela
tions (85), together with the statement of Theorem 2.2, Eq. 
(76), amount to the decomposition of the Lie algebra ~ of 
those symmetries of the S matrix that are generated by local 
charges into two commutative subalgebras, namely, the Lie 
algebra of the Poincare group -l' and the Lie algebra ~int' 
which is generated by all the (R-) linearly independent Qint 

(supposing that their number is finite), i.e., 

~ = -l' E9 ~int . ( 86 ) 

It follows the local isomorphy of the corresponding Lie 
groups. By the way, it was in this form that Coleman and 
Mandula stated their result (with the difference that they 
allow for infinite-dimensional groups of symmetries of the S 
matrix). 

(b) Another consequence of the Poincare invariance of 
Qint is that it prevents Qint from containing any linear combi
nation of the generators of the spin angular momentum. This 
shows that, in case of interaction, there is in general no sepa
rately conserved spin angular momentum (in a local massive 
relativistic quantum field theory). 
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(c) The most important assumptions underlying the 
proof of Theorem 1.2 are (i) interaction (in the form of 
assumption 2.1 ), (ii) Lorentz invariance, (iii) finite particle 
multiplets, (iv) massive particles, and (v) invariance of the 
vacuum. 

Theorem 2.2 is known to be false whenever any of the 
three first assumptions is not satisfied. 1 As for massless the
ories, their investigation has not been completed yet, the 
main difficulty being the proof of an expression analogous to 
( 3 ). (In the massless case one expects the generators of the 
conformal group to replace those of the Poincare group in 
(3), but this does not at all entail that Theorem 2.2 cannot 
hold any more! 15) With regard to theories with spontaneous 
symmetry breaking, no result about the structure of the sym
metries of the S matrix in such theories is known to me. Yet 
in non-Abelian gauge theories with magnetic monopoles, in
ternal and space-time symmetries do couple ("spin from iso
spin"16) . 

Finally, it should be pointed out that assumptions (iv) 
and (v) are quite restrictive as far as the phenomenological 
application of Theorem 2.2 (and of the Coleman-Mandula 
theorem, for that case) is concerned. As a matter of fact this 
observation carries over, in particular, to the supersymme
tries of the S matrix, for their structure rests completely on 
the Coleman-Mandula result. 2 In spite of this, these superal
gebras are often applied as though they were universally val
id. One should keep this shortcoming in mind whenever su
persymmetric models are proposed for describing real 
physics. 
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